Skip to main content

Molecular Targets of General Anesthetics in the Nervous System

  • Chapter
  • First Online:
Suppressing the Mind

Part of the book series: Contemporary Clinical Neuroscience ((CCNE))

Abstract

Current concepts of the molecular and cellular mechanisms that underlie general anesthetic actions are incomplete. This is both surprising, given that leading scientists have approached this problem for more than a century, and unfortunate since this lack of knowledge limits our ability to employ these important drugs with optimal safety and efficacy. Considerable evidence now implicates agent-specific effects on discreet molecular targets and neuronal networks central to specific anesthetic end points. Major progress in understanding the molecular pharmacology of the intravenous anesthetics has been made using modern genetic approaches, but the actions of the inhaled anesthetics have been more difficult to resolve. This chapter provides an overview of the principal molecular targets implicated in mediating the effects of general anesthetics on vertebrate neuronal function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Antognini, J. F., and K. Schwartz. 1993. Exaggerated anesthetic requirements in the preferentially anesthetized brain. Anesthesiology 79(6):1244–1249.

    CAS  PubMed  Google Scholar 

  • Bai, D., G. Zhu, P. Pennefather, M. F. Jackson, J. F. MacDonald, and B. A. Orser. 2001. Distinct functional and pharmacological properties of tonic and quantal inhibitory postsynaptic currents mediated by g-aminobutyric acid A receptors in hippocampal neurons. Mol Pharmacol 59:814–824.

    CAS  PubMed  Google Scholar 

  • Bali, M., and M. H. Akabas. 2004. Defining the propofol binding site location on the GABAA receptor. Mol Pharmacol 65(1):68–76.

    CAS  PubMed  Google Scholar 

  • Bean, B. P., P. Shrager, and D. A. Goldstein. 1981. Modification of sodium and potassium channel gating kinetics by ether and halothane. J Gen Physiol 77:233–253.

    CAS  PubMed  Google Scholar 

  • Belelli, D., J. J. Lambert, J. A. Peters, K. Wafford, and P. J. Whiting. 1997. The interaction of the general anesthetic etomidate with the g -aminobutyric acid type A receptor is influenced by a single amino acid. Proc Natl Acad Sci USA 94(20):11031–11036.

    CAS  PubMed  Google Scholar 

  • Berg-Johnsen, J., and I. A. Langmoen. 1986. The effect of isoflurane on unmyelinated and myelinated fibres in the rat brain. Acta Physiol Scand 127:87–93.

    CAS  PubMed  Google Scholar 

  • Bertaccini, E. J., J. R. Trudell, and N. P. Franks. 2007. The common chemical motifs within anesthetic binding sites. Anesth Analg 104(2):318–324.

    CAS  PubMed  Google Scholar 

  • Bieda, M. C., and M. B. MacIver. 2004. Major role for tonic GABAA conductances in anesthetic suppression of intrinsic neuronal excitability. J Neurophysiol 92(3):1658–1667.

    CAS  PubMed  Google Scholar 

  • Caraiscos, V. B., E. M. Elliott, Ten You, V. Y. Cheng, D. Belelli, J. G. Newell, M. F. Jackson, J. J. Lambert, T. W. Rosahl, K. A. Wafford, J. F. MacDonald, and B. A. Orser. 2004. Tonic inhibition in mouse hippocampal CA1 pyramidal neurons is mediated by {alpha}5 subunit-containing {gamma}-aminobutyric acid type A receptors. Proc Natl Acad Sci USA 101(10):3662–3667.

    CAS  PubMed  Google Scholar 

  • Caraiscos, V. B., J. G. Newell, Ten You, E. M. Elliott, T. W. Rosahl, K. A. Wafford, J. F. MacDonald, and B. A. Orser. 2004. Selective enhancement of tonic GABAergic inhibition in murine hippocampal neurons by low concentrations of the volatile anesthetic isoflurane. J Neurosci 24(39):8454–8458.

    CAS  PubMed  Google Scholar 

  • Catterall, W. A. 2000. Structure and regulation of voltage-gated Ca2+ channels. Annu Rev Cell Dev Biol 16:521–555.

    CAS  PubMed  Google Scholar 

  • Chen, X., S. Shu, and D. A. Bayliss. 2009. HCN1 channel subunits are a molecular substrate for hypnotic actions of ketamine. J Neurosci 29(3):600–609.

    CAS  PubMed  Google Scholar 

  • Chen, X., J. E. Sirois, Q. Lei, E. M. Talley, C. Lynch, III, and D. A. Bayliss. 2005. HCN subunit-specific and cAMP-modulated effects of anesthetics on neuronal pacemaker currents. J Neurosci 25(24):5803–5814.

    CAS  PubMed  Google Scholar 

  • Cheng, V. Y., L. J. Martin, E. M. Elliott, J. H. Kim, H. T. Mount, F. A. Taverna, J. C. Roder, J. F. MacDonald, A. Bhambri, N. Collinson, K. A. Wafford, and B. A. Orser. 2006. Alpha5GABAA receptors mediate the amnestic but not sedative-hypnotic effects of the general anesthetic etomidate. J Neurosci 26(14):3713–3720.

    CAS  PubMed  Google Scholar 

  • Culley, D. J., R. Y. Yukhananov, Z. C. Xie, R. R. Gali, R. E. Tanzi, and G. Crosby. 2006. Altered hippocampal gene expression 2 days after general anesthesia in rats. Eur J Pharmacol 549(1–3):71–78.

    CAS  PubMed  Google Scholar 

  • Dai, S., M. Perouansky, and R. A. Pearce. 2009. Amnestic concentrations of etomidate modulate GABAA,slow synaptic inhibition in hippocampus. Anesthesiology. Sep7. (Epub a head of print) PMID: 19741493

    Google Scholar 

  • Das, Joydip, George H. Addona, Warren S. Sandberg, S. Shaukat Husain, Thilo Stehle, and Keith W. Miller. 2004. Identification of a General Anesthetic Binding Site in the Diacylglycerol-binding Domain of Protein Kinase C{δ}. J Biol Chem 279(36):37964–37972.

    CAS  PubMed  Google Scholar 

  • Dickinson, R., B. K. Peterson, P. Banks, C. Simillis, J. C. S. Martin, C. A. Valenzuela, M. Maze, and N. P. Franks. 2007. Competitive inhibition at the glycine site of the n-methyl-d-aspartate receptor by the Anesthetics xenon and Isoflurane. Anesthesiology 107(5):756–767.

    CAS  PubMed  Google Scholar 

  • Dingledine, R., K. Borges, D. Bowie, and S. F. Traynelis. 1999. The glutamate receptor ion channels. Pharmacol Rev 51(1):7–61.

    CAS  PubMed  Google Scholar 

  • Eger, E. I., 2nd, D. M. Fisher, J. P. Dilger, J. M. Sonner, A. R. Evers, N. P. Franks, R. A. Harris, J. J. Kendig, W. R. Lieb, and T. Yamakura. 2001. Relevant concentrations of inhaled anesthetics for in vitro studies of anesthetic mechanisms. Anesthesiology 94:915–921.

    CAS  PubMed  Google Scholar 

  • Flood, P., J. Ramirez-Latorre, and L. Role. 1997. Alpha 4 beta 2 neuronal nicotinic acetylcholine receptors in the central nervous system are inhibited by isoflurane and propofol, but alpha 7-type nicotinic acetylcholine receptors are unaffected [see comments]. Anesthesiology 86(4):859–865.

    CAS  PubMed  Google Scholar 

  • Franks, N. P., R. Dickinson, S. L. de Sousa, A. C. Hall, and W. R. Lieb. 1998. How does xenon produce anaesthesia? Nature 396(6709):324.

    CAS  PubMed  Google Scholar 

  • Franks, N. P., and E. Honore. 2004. The TREK K-2P channels and their role in general anaesthesia and neuroprotection. Trends Pharmacol Sci 25(11):601–608.

    CAS  PubMed  Google Scholar 

  • Franks, N. P., and W. R. Lieb. 1988. Volatile general anaesthetics activate a novel neuronal K+ current. Nature 333:662–664.

    CAS  PubMed  Google Scholar 

  • Franks, N. P. 1994. Molecular and cellular mechanisms of general anaesthesia. Nature 367(6464):607–614.

    CAS  PubMed  Google Scholar 

  • Friederich, P., D. Benzenberg, S. Trellakis, and B. W. Urban. 2001. Interaction of volatile anesthetics with human Kv channels in relation to clinical concentrations. Anesthesiology 95(4):954–958.

    CAS  PubMed  Google Scholar 

  • Futterer, C. D., M. H. Maurer, A. Schmitt, R. E. Feldmann, W. Kuschinsky, and K. F. Waschke. 2004. Alterations in rat brain proteins after desflurane anesthesia. Anesthesiology 100(2):302–308.

    PubMed  Google Scholar 

  • Girault, JA, and HC Jr Hemmings. 2006. Cell Signaling. In Foundations of Anesthesia: Basic Sciences for Clinical Practice, edited by H. C. Hemmings, Jr. and P. M. Hopkins. London: Moby Elsevier.

    Google Scholar 

  • Gomez, R. S., C. Guatimosim, and M. V. Gomez. 2003. Mechanism of action of volatile anesthetics: Role of protein kinase C. Cell Mol Neurobiol 23(6):877–885.

    CAS  PubMed  Google Scholar 

  • Gruss, M., T. J. Bushell, D. P. Bright, W. R. Lieb, A. Mathie, and N. P. Franks. 2004. Two-pore-domain K+ channels are a novel target for the anesthetic gases xenon, nitrous oxide, and cyclopropane. Mol Pharmacol 65(2):443–452.

    CAS  PubMed  Google Scholar 

  • Hall, A. C., W. R. Lieb, and N. P. Franks. 1994. Insensitivity of P-type calcium channels to inhalational and intravenous general anesthetics. Anesthesiology 81(1):117–123.

    CAS  PubMed  Google Scholar 

  • Hamaya, Y., T. Takeda, S. Dohi, S. Nakashima, and Y. Nozawa. 2000. The effects of pentobarbital, isoflurane, and propofol on immediate-early gene expression in the vital organs of the rat. Anesth Analg 90(5):1177–1183.

    CAS  PubMed  Google Scholar 

  • Harris, R. A., S. J. Mihic, J. E. Dildymayfield, and T. K. Machu. 1995. Actions of anesthetics on ligand-gated ion channels - Role of Receptor Subunit Composition. FASEB J 9(14):1454–1462.

    CAS  PubMed  Google Scholar 

  • Haseneder, R., S. Kratzer, E. Kochs, V. S. Eckle, W. Zieglgansberger, and G. Rammes. 2008. Xenon reduces N-methyl-D-aspartate and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor-mediated synaptic transmission in the amygdala. Anesthesiology 109(6):998–1006.

    CAS  PubMed  Google Scholar 

  • Haydon, D. A., and B. W. Urban. 1983. The effects of some inhalation anaesthetics on the sodium current of the squid giant axon. J Physiol (Lond) 341:429–439.

    CAS  Google Scholar 

  • Hemmings, H. C., Jr. 1998. General anesthetic effects on protein kinase C. Toxicol Lett 100–101:89–95.

    PubMed  Google Scholar 

  • Hemmings, H. C., Jr., and A. I. Adamo. 1994. Effects of halothane and propofol on purified brain protein kinase C activation. Anesthesiology 81(1):147–155.

    CAS  PubMed  Google Scholar 

  • Hemmings, H. C., Jr., M. H. Akabas, P. A. Goldstein, J. R. Trudell, B. A. Orser, and N. L. Harrison. 2005. Emerging molecular mechanisms of general anesthetic action. Trends Pharmacol Sci 26(10):503–510.

    CAS  PubMed  Google Scholar 

  • Hemmings, H. C., Jr., Perouansky, M. 2009. Neurotoxicity of general anesthetics: cause for concern? Anesthesiology (in press).

    Google Scholar 

  • Hemmings, H. C., Jr., W. Yan, R. I. Westphalen, and T. A. Ryan. 2005. The general anesthetic isoflurane depresses synaptic vesicle exocytosis. Mol Pharmacol 67(5):1591–1599.

    CAS  PubMed  Google Scholar 

  • Herold, K.F., C. Nau, W. Ouyang, and H.C. Jr. Hemmings. 2009. Isoflurane inhibits the tetrodotoxin-resistant voltage-gated sodium channel Nav1.8. Anesthesiology 111:591–599.

    Google Scholar 

  • Heurteaux, C., N. Guy, C. Laigle, N. Blondeau, F. Duprat, M. Mazzuca, L. Lang-Lazdunski, C. Widmann, M. Zanzouri, G. Romey, and M. Lazdunski. 2004. TREK-1, a K(+) channel involved in neuroprotection and general anesthesia. EMBO J 23(13):2684–2695.

    CAS  PubMed  Google Scholar 

  • Jenkins, A., N. P. Franks, and W. R. Lieb. 1996. Actions of general anaesthetics on 5-HT3 receptors in N1E-115 neuroblastoma cells. Br J Pharmacol 117(7):1507–1515.

    CAS  PubMed  Google Scholar 

  • Jenkins, A., E. P. Greenblatt, H. J. Faulkner, E. Bertaccini, A. Light, A. Lin, A. Andreasen, A. Viner, J. R. Trudell, and N. L. Harrison. 2001. Evidence for a common binding cavity for three general anesthetics within the GABA(A) receptor. J Neurosci 21(6):art-RC136.

    Google Scholar 

  • Jevtovic-Todorovic, V., S. M. Todorovic, S. Mennerick, S. Powell, K. Dikranian, N. Benshoff, C. F. Zorumski, and J. W. Olney. 1998. Nitrous oxide (laughing gas) is an NMDA antagonist, neuroprotectant and neurotoxin. Nat Med (4):460–463.

    Google Scholar 

  • Joksovic, Pavle M., Douglas A. Bayliss, and Slobodan M. Todorovic. 2005. Different kinetic properties of two T-type Ca2+ currents of rat reticular thalamic neurones and their modulation by enflurane. J Physiol Online 566(1):125–142.

    CAS  Google Scholar 

  • Jones, M. V., and N. L. Harrison. 1993. Effects of volatile anesthetics on the kinetics of inhibitory postsynaptic currents in cultured rat hippocampal neurons. J Neurophysiol 70(4):1339–1349.

    CAS  PubMed  Google Scholar 

  • Jurd, R., M. Arras, S. Lambert, B. Drexler, R. Siegwart, F. Crestani, M. Zaugg, K. E. Vogt, B. Ledermann, B. Antkowiak, and U. Rudolph. 2003. General anesthetic actions in vivo strongly attenuated by a point mutation in the GABA(A) receptor beta3 subunit. FASEB J 17(2):250–252.

    CAS  PubMed  Google Scholar 

  • Kameyama, K., K. Aono, and K. Kitamura. 1999. Isoflurane inhibits neuronal Ca2+ channels through enhancement of current inactivation. Br J Anaesth 82(3):402–411.

    CAS  PubMed  Google Scholar 

  • Koblin, D. D., B. S. Chortkoff, M. J. Laster, E. I. Eger, 2nd, M. J. Halsey, and P. Ionescu. 1994. Polyhalogenated and perfluorinated compounds that disobey the meyer-overton hypothesis. Anesth Analg 79(6):1043–1048.

    CAS  PubMed  Google Scholar 

  • Koltchine, V. V., S. E. Finn, A. Jenkins, N. Nikolaeva, A. Lin, and N. L. Harrison. 1999. Agonist gating and isoflurane potentiation in the human gamma-aminobutyric acid type A receptor determined by the volume of a second transmembrane domain residue. Mol Pharmacol. 56(5):1087–1093.

    CAS  PubMed  Google Scholar 

  • Krasowski, M. D., and N. L. Harrison. 1999. General anaesthetic actions on ligand-gated ion channels. Cell Mol Life Sci 55(10):1278–1303.

    CAS  PubMed  Google Scholar 

  • Krasowski, M. D., K. Nishikawa, N. Nikolaeva, A. Lin, and N. L. Harrison. 2001. Methionine 286 in transmembrane domain 3 of the GABAA receptor beta subunit controls a binding cavity for propofol and other alkylphenol general anesthetics. Neuropharmacology 41(8):952–964.

    CAS  PubMed  Google Scholar 

  • Larrabee, M. G., and J. M. Posternak. 1952. Selective action of anesthetics on synapses and axons in mammalian sympathetic ganglia. J Neurophysiol 15:91–114.

    CAS  PubMed  Google Scholar 

  • Linden, A. M., M. I. Aller, E. Leppa, O. Vekovischeva, T. itta-Aho, E. L. Veale, A. Mathie, P. Rosenberg, W. Wisden, and E. R. Korpi. 2006. The in vivo contributions of TASK-1-containing channels to the actions of inhalation anesthetics, the alpha(2) adrenergic sedative dexmedetomidine, and cannabinoid agonists. J Pharmacol Exp Ther 317(2):615–626.

    CAS  PubMed  Google Scholar 

  • Linden, A. M., C. Sandu, M. I. Aller, O. Y. Vekovischeva, P. H. Rosenberg, W. Wisden, and E. R. Korpi. 2007. TASK-3 knockout mice exhibit exaggerated nocturnal activity, impairments in cognitive functions, and reduced sensitivity to inhalation anesthetics. J Pharmacol Exp Ther 323(3):924–934.

    CAS  PubMed  Google Scholar 

  • Machu, T. K., and R. A. Harris. 1994. Alcohols and anesthetics enhance the function of 5-hydroxytryptamine(3) receptors expressed in Xenopus-laevis oocytes. J Pharmacol Exp Ther 271(2):898–905.

    CAS  PubMed  Google Scholar 

  • MacIver, M. B., A. A. Mikulec, S. M. Amagasu, and F. A. Monroe. 1996. Volatile anesthetics depress glutamate transmission via presynaptic actions. Anesthesiology 85:823–834.

    Google Scholar 

  • Marota, J. J., G. Crosby, and G. R. Uhl. 1992. Selective effects of pentobarbital and halothane on c-fos and jun-B gene expression in rat brain. Anesthesiology 77(2):365–371.

    CAS  PubMed  Google Scholar 

  • Mennerick, S., V. Jevtovic-Todorovic, S. M. Todorovic, W. Shen, J. W. Olney, and C. F. Zorumski. 1998. Effect of nitrous oxide on excitatory and inhibitory synaptic transmission in hippocampal cultures. J Neurosci 26(23):9716–9726.

    Google Scholar 

  • Miao, N., M. J. Frazer, and C. Lynch, 3rd. 1995. Volatile anesthetics depress ca2+ transients and glutamate release in isolated cerebral synaptosomes. Anesthesiology 83(3):593–603.

    CAS  PubMed  Google Scholar 

  • Mihic, S. J., Q. Ye, M. J. Wick, V. V. Koltchine, M. D. Krasowski, S. E. Finn, M. P. Mascia, C. F. Valenzuela, K. K. Hanson, E. P. Greenblatt, R. A. Harris, and N. L. Harrison. 1997. Sites of alcohol and volatile anaesthetic action on GABA(A) and glycine receptors. Nature 389(6649):385–389.

    CAS  PubMed  Google Scholar 

  • Mikulec, A. A., S. Pittson, S. M. Amagasu, F. A. Monroe, and M. B. MacIver. 1998. Halothane depresses action potential conduction in hippocampal axons. Brain Res 796(1–2):231–238.

    CAS  PubMed  Google Scholar 

  • Minami, K., R. W. Gereau, M. Minami, S. F. Heinemann, and R. A. Harris. 1998. Effects of ethanol and anesthetics on type 1 and 5 metabotropic glutamate receptors expressed in Xenopus laevis oocytes. Mol Pharmacol. 53(1):148–156.

    CAS  PubMed  Google Scholar 

  • Minami, K., M. Minami, and R. A. Harris. 1997. Inhibition of 5-hydroxytryptamine type 2A receptor-induced currents by n-alcohols and anesthetics. J Pharmacol Exp Ther. 281(3):1136–1143.

    CAS  PubMed  Google Scholar 

  • Minami, K., T. W. Vanderah, M. Minami, and R. A. Harris. 1997. Inhibitory effects of anesthetics and ethanol on muscarinic receptors expressed in Xenopus oocytes. Eur J Pharmacol. 339(2–3):237–244.

    CAS  PubMed  Google Scholar 

  • Ouyang, W., and H. C. Hemmings, Jr. 2005. Depression by isoflurane of the action potential and underlying voltage-gated ion currents in isolated rat neurohypophysial nerve terminals. J Pharmacol Exp Ther 312(2):801–808.

    CAS  PubMed  Google Scholar 

  • Ouyang, W. 2007. Isoform-selective effects of isoflurane on voltage-gated Na+ channels. Anesthesiology 107(1):91–98.

    CAS  PubMed  Google Scholar 

  • Ouyang, W., K. F. Herold, and H. C. Hemmings, Jr. 2009. Comparative effects of halogenated inhaled anesthetics on voltage-gated Na+ channel function. Anesthesiology 110(3):582–590.

    CAS  PubMed  Google Scholar 

  • Ouyang, W., T. Y. Jih, T. T. Zhang, A. M. Correa, and H. C. Hemmings, Jr. 2007. Isoflurane inhibits NaChBac, a prokaryotic voltage-gated sodium channel. J Pharmacol Exp Ther 322(3):1076–1083.

    CAS  PubMed  Google Scholar 

  • Ouyang, W., G. Wang, and H. C. Hemmings. 2003. Isoflurane and propofol inhibit voltage-gated sodium channels in isolated rat neurohypophysial nerve terminals. Mol Pharmacol 64(2):373–381.

    CAS  PubMed  Google Scholar 

  • Patel, A. J., and E. Honore. 2001. Anesthetic-sensitive 2P domain K+ channels. Anesthesiology 95(4):1013–1021.

    CAS  PubMed  Google Scholar 

  • Patel, A. J., E. Honore, F. Lesage, M. Fink, G. Romey, and M. Lazdunski. 1999. Inhalational anesthetics activate two-pore-domain background K+ channels. Nat Neurosci 2(5):422–426.

    CAS  PubMed  Google Scholar 

  • Perouansky, M., and H. C. Hemmings, Jr. 2009. Neurotoxicity of general anesthetics: Cause for concern? Anesthesiology, in press.

    Google Scholar 

  • Perouansky, M., D. Baranov, M. Salman, and Y. Yaari. 1995. Effects of halothane on glutamate receptor-mediated excitatory postsynaptic currents. a patch-clamp study in adult mouse hippocampal slices. Anesthesiology 83(1):109–119.

    CAS  PubMed  Google Scholar 

  • Perouansky, M., H. C. Hemmings. 2003. Presynaptic actions of general anesthetics. In Neural Mechanisms of Anesthesia, edited by J. F. Antognini, E. E. Carstens, and D. E. Raines. Totowa, NJ: Humana Press.

    Google Scholar 

  • Peterlin, Zita, Yumiko Ishizawa, Ricardo Araneda, Roderic Eckenhoff, and Stuart Firestein. 2005. Selective activation of G-protein coupled receptors by volatile anesthetics. Mol Cell Neurosci 30(4):506–512.

    CAS  PubMed  Google Scholar 

  • Petrenko, A. B., M. Tsujita, T. Kohno, K. Sakimura, and H. Baba. 2007. Mutation of alpha(1G) T-type calcium channels in mice does not change anesthetic requirements for loss of the righting reflex and minimum alveolar concentration but delays the onset of anesthetic induction. Anesthesiology 106(6):1177–1185.

    CAS  PubMed  Google Scholar 

  • Raines, D. E., R. J. Claycomb, M. Scheller, and S. A. Forman. 2001. Nonhalogenated alkane anesthetics fail to potentiate agonist actions on two ligand-gated ion channels. Anesthesiology 95(2):470–477.

    CAS  PubMed  Google Scholar 

  • Raines, D. E., and K. W. Miller. 1994. On the importance of volatile agents devoid of anesthetic action. Anesth Analg 79(6):1031–1033.

    CAS  PubMed  Google Scholar 

  • Rampil, I. J., P. Mason, and H. Singh. 1993. Anesthetic potency (MAC) is independent of forebrain structures in the rat. Anesthesiology 78(4):707–712.

    CAS  PubMed  Google Scholar 

  • Ratnakumari, L., and H. C. Hemmings. 1998. Inhibition of presynaptic sodium channels by halothane. Anesthesiology 88(4):1043–1054.

    CAS  PubMed  Google Scholar 

  • Ratnakumari, L., T. N. Vysotskaya, D. S. Duch, and H. C. Hemmings. 2000. Differential effects of anesthetic and nonanesthetic cyclobutanes on neuronal voltage-gated sodium channels. Anesthesiology 92(2):529–541.

    CAS  PubMed  Google Scholar 

  • Rebecchi, M. J., and S. N. Pentyala. 2002. Anaesthetic actions on other targets:protein kinase C and guanine nucleotide-binding proteins. Br J Anaesth 89(1):62–78.

    CAS  PubMed  Google Scholar 

  • Rehberg, B., Y. H. Xiao, and D. S. Duch. 1996. Central nervous system sodium channels are significantly suppressed at clinical concentrations of volatile anesthetics. Anesthesiology 84(5):1223–1233.

    CAS  PubMed  Google Scholar 

  • Reynolds, D. S., T. W. Rosahl, J. Cirone, G. F. O'Meara, A. Haythornthwaite, R. J. Newman, J. Myers, C. Sur, O. Howell, A. R. Rutter, J. Atack, A. J. Macaulay, K. L. Hadingham, P. H. Hutson, D. Belelli, J. J. Lambert, G. R. Dawson, R. McKernan, P. J. Whiting, and K. A. Wafford. 2003. Sedation and anesthesia mediated by distinct GABA(A) receptor isoforms. J Neurosci 23(24):8608–8617.

    CAS  PubMed  Google Scholar 

  • Robinson, R. B., and S. A. Siegelbaum. 2003. Hyperpolarization-activated cation currents: from molecules to physiological function. Annu Rev Physiol 65:453–480.

    CAS  PubMed  Google Scholar 

  • Role, L. W., and D. K. Berg. 1996. Nicotinic receptors in the development and modulation of CNS synapses. Neuron 16(6):1077–1085.

    CAS  PubMed  Google Scholar 

  • Rudolph, U., and B. Antkowiak. 2004. Molecular and neuronal substrates for general anaesthetics. Nat Rev Neurosci 5(9):709–720.

    CAS  PubMed  Google Scholar 

  • Schlame, M., and H. C. Hemmings, Jr. 1995. Inhibition by volatile anesthetics of endogenous glutamate release from synaptosomes by a presynaptic mechanism. Anesthesiology 82(6):1406–1416.

    CAS  PubMed  Google Scholar 

  • Semyanov, A., M. C. Walker, D. M. Kullmann, and R. A. Silver. 2004. Tonically active GABA(A) receptors: modulating gain and maintaining the tone. Trends Neurosci 27(5):262–269.

    CAS  PubMed  Google Scholar 

  • Shiraishi, M., and R. A. Harris. 2004. Effects of alcohols and anesthetics on recombinant voltage-gated Na+ channels. J Pharmacol Exp Ther 309(3):987–994.

    CAS  PubMed  Google Scholar 

  • Shumilla, Jennifer A., Sarah M. Sweitzer, Edmond I. Eger, II, Michael J. Laster, and Joan J. Kendig. 2004. Inhibition of spinal protein kinase C-{epsilon} or -{gamma} isozymes does not affect halothane minimum alveolar anesthetic concentration in rats. Anesth Analg 99(1):82–84.

    CAS  PubMed  Google Scholar 

  • Sirois, J. E., Q. Lei, E. M. Talley, C. Lynch, III, and D. A. Bayliss. 2000. The TASK-1 two-pore domain K+ channel is a molecular substrate for neuronal effects of inhalation anesthetics. J Neurosci 20(17):6347–6354.

    CAS  PubMed  Google Scholar 

  • Sirois, J. E., C. Lynch, III, and D. A. Bayliss. 2002. Convergent and reciprocal modulation of a leak K+ current and I(h) by an inhalational anaesthetic and neurotransmitters in rat brainstem motoneurones. J Physiol 541(Pt 3):717–729.

    CAS  PubMed  Google Scholar 

  • Snyder, G. L., S. Galdi, J. P. Hendrick, and H. C. Hemmings, Jr. 2007. General anesthetics selectively modulate glutamatergic and dopaminergic signaling via site-specific phosphorylation in vivo. Neuropharmacology 53(5):619–630.

    CAS  PubMed  Google Scholar 

  • Solt, K., E. I. Eger, and D. E. Raines. 2006. Differential modulation of human N-Methyl-â–µ-aspartate receptors by structurally diverse general anesthetics. Anesth Analg 102(5):1407–1411.

    CAS  PubMed  Google Scholar 

  • Sonner, J. M., J. F. Antognini, R. C. Dutton, P. Flood, A. T. Gray, R. A. Harris, G. E. Homanics, J. Kendig, B. Orser, D. E. Raines, I. J. Rampil, J. Trudell, B. Vissel, and E. I. Eger. 2003. Inhaled anesthetics and immobility: mechanisms, mysteries, and minimum alveolar anesthetic concentration. Anesth Analg 97(3):718–740.

    CAS  PubMed  Google Scholar 

  • Sonner, J. M., D. Gong, J. Li, E. I. Eger, and M. J. Laster. 1999. Mouse strain modestly influences minimum alveolar anesthetic concentration and convulsivity of inhaled compounds. Anesth Analg 89(4):1030–1034.

    CAS  PubMed  Google Scholar 

  • Sonner, J. M., B. Vissel, G. Royle, A. Maurer, D. Gong, N. V. Baron, N. Harrison, M. Fanselow, and E. I. Eger. 2005. The effect of three inhaled anesthetics in mice harboring mutations in the GluR6 (kainate) receptor gene. Anesth Analg 101(1):143–148, table.

    CAS  PubMed  Google Scholar 

  • Stadnicka, A., W. M. Kwok, H. A. Hartmann, and Z. J. Bosnjak. 1999. Effects of halothane and isoflurane on fast and slow inactivation of human heart hH1a sodium channels. Anesthesiology 90(6):1671–1683.

    CAS  PubMed  Google Scholar 

  • Stowe, D. F., G. C. Rehmert, W. M. Kwok, H. U. Weigt, M. Georgieff, and Z. J. Bosnjak. 2000. Xenon does not alter cardiac function or major cation currents in isolated guinea pig hearts or myocytes. Anesthesiology 92(2):516–522.

    CAS  PubMed  Google Scholar 

  • Study, R. E. 1994. Isoflurane inhibits multiple voltage-gated calcium currents in hippocampal pyramidal neurons. Anesthesiology 81(1):104–116.

    CAS  PubMed  Google Scholar 

  • Takei, T., H. Saegusa, S. Zong, T. Murakoshi, K. Makita, and T. Tanabe. 2003. Increased sensitivity to halothane but decreased sensitivity to propofol in mice lacking the N-type Ca2+ channel. Neurosci Lett 350(1):41–45.

    CAS  PubMed  Google Scholar 

  • Todorovic, S. M., V. Jevtovic-Todorovic, S. Mennerick, E. Perez-Reyes, and C. F. Zorumski. 2001. Ca(v)3.2 channel is a molecular substrate for inhibition of T-type calcium currents in rat sensory neurons by nitrous oxide. Mol Pharmacol 60(3):603–610.

    CAS  PubMed  Google Scholar 

  • Topf, N., E. Recio-Pinto, T. J. Blanck, and H. C. Hemmings. 2003. Actions of general anesthetics on voltage-gated ion channels. In Neural Mechanisms of Anesthesia, edited by J. F. Antognini, E. E. Carstens, and D.E. Raines. Totowa, NJ: Humana Press.

    Google Scholar 

  • Trudell, J. R., and E. Bertaccini. 2004. Comparative modeling of a GABAA alpha1 receptor using three crystal structures as templates. J Mol Graph Model 23(1):39–49.

    CAS  PubMed  Google Scholar 

  • Violet, J. M., D. L. Downie, R. C. Nakisa, W. R. Lieb, and N. P. Franks. 1997. Differential sensitivities of mammalian neuronal and muscle nicotinic acetylcholine receptors to general anesthetics. Anesthesiology 86(4):866–874.

    CAS  PubMed  Google Scholar 

  • Westphalen, R. I., R. S. Gomez, and H. C. Hemmings, Jr. 2009. Nicotinic receptor-evoked hippocampal norepinephrine release is highly sensitive to inhibition by isoflurane. Br J Anaesth 102(3):355–360.

    CAS  PubMed  Google Scholar 

  • Westphalen, R. I., and H. C. Hemmings. 2003. Selective depression by general anesthetics of glutamate versus GABA release from isolated cortical nerve terminals. J Pharmacol Exp Ther 304(3):1188–1196.

    CAS  PubMed  Google Scholar 

  • Westphalen, R. I., M. Krivitski, A. Amarosa, N. Guy, and H. C. Hemmings, Jr. 2007. Reduced inhibition of cortical glutamate and GABA release by halothane in mice lacking the K(+) channel, TREK-1. Br J Pharmacol 152(6):939–945.

    CAS  PubMed  Google Scholar 

  • Wick, M. J., S. J. Mihic, S. Ueno, M. P. Mascia, J. R. Trudell, S. J. Brozowski, Q. Ye, N. L. Harrison, and R. A. Harris. 1998. Mutations of gamma-aminobutyric acid and glycine receptors change alcohol cutoff: evidence for an alcohol receptor? Proc Natl Acad Sci USA 95(11):6504–6509.

    CAS  PubMed  Google Scholar 

  • Wu, X. S., J. Y. Sun, A. S. Evers, M. Crowder, and L. G. Wu. 2004. Isoflurane inhibits transmitter release and the presynaptic action potential. Anesthesiology 100(3):663–670.

    CAS  PubMed  Google Scholar 

  • Yamakura, T., E. Bertaccini, J. R. Trudell, and R. A. Harris. 2001. Anesthetics and ion channels: molecular models and sites of action. Ann Rev Pharmacol Toxicol 41:23–51.

    CAS  Google Scholar 

  • Yost, C. S. 1999. Potassium channels: basic aspects, functional roles, and medical significance. Anesthesiology 90(4):1186–1203.

    CAS  PubMed  Google Scholar 

  • Yu, F. H., and W. A. Catterall. 2004. The VGL-chanome: a protein superfamily specialized for electrical signaling and ionic homeostasis. Sci STKE 2004(253):re15.

    Google Scholar 

  • Zarnowska, E. D., R. Keist, U. Rudolph, and R. A. Pearce. 2009. GABAA receptor alpha5 subunits contribute to GABAA, slow synaptic inhibition in mouse hippocampus. J Neurophysiol 101(3):1179–1191.

    CAS  PubMed  Google Scholar 

  • Zecharia, A. Y., L. E. Nelson, T. C. Gent, M. Schumacher, R. Jurd, U. Rudolph, S. G. Brickley, M. Maze, and N. P. Franks. 2009. The involvement of hypothalamic sleep pathways in general anesthesia: testing the hypothesis using the GABAA receptor {beta}3N265M knock-in mouse. J Neurosci 29(7):2177–2187.

    CAS  PubMed  Google Scholar 

  • Zeilhofer, H. U., D. Swandulla, G. Geisslinger, and K. Brune. 1992. Differential effects of ketamine enantiomers on NMDA receptor currents in cultured neurons. Eur J Pharmacol 213(1):155–158.

    CAS  PubMed  Google Scholar 

  • Zeller, A., R. Jurd, S. Lambert, M. Arras, B. Drexler, C. Grashoff, B. Antkowiak, and U. Rudolph. 2008. Inhibitory ligand-gated ion channels as substrates for general anesthetic actions. Handb Exp Pharmacol 182:31–51.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hugh C. Hemmings Jr .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Hemmings, H.C. (2009). Molecular Targets of General Anesthetics in the Nervous System. In: Hudetz, A., Pearce, R. (eds) Suppressing the Mind. Contemporary Clinical Neuroscience. Humana Press. https://doi.org/10.1007/978-1-60761-462-3_2

Download citation

Publish with us

Policies and ethics