Cancer and IgE pp 185-213 | Cite as

IgE Interacts with Potent Effector Cells Against Tumors: ADCC and ADCP

  • Sophia N. KaragiannisEmail author
  • Frank O. Nestle
  • Hannah J. Gould


We examine the properties of IgE antibodies which may render them effective against tumors. This may be due to the uniquely high affinity of IgE antibodies for their Fc epsilon (Fcɛ) receptors and the expression of IgE antibodies on potent effector cells. Owing to these properties, IgE antibodies activate effector cell mechanisms that may be different from and stronger than those mediated by antibodies of other classes, thereby inducing superior anti-tumor responses. In examining the potential of IgE–FcɛRI complexes on effector cells to activate effector cells (and describe evidence to-date) we suggest that the interactions of IgE antibodies with tumor-associated antigens on tumor cells and Fc receptors on IgE receptor-bearing cells trigger the association of tumor and effector cells. The outcome of these interactions is effector cell activation and effective tumor cell death by a number of mechanisms including antibody-dependent cellular cytotoxicity (ADCC) and antibody-dependent cellular phagocytosis (ADCP).


Mast Cell Natural Killer Cell Effector Cell Monocytic Cell Kill Tumor Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors acknowledge financial support from the Department of Health via the National Institute for Health Research (NIHR) comprehensive Biomedical Research Centre award to Guy’s, and St Thomas’ NHS Foundation Trust in partnership with King’s College London and King’s College Hospital NHS Foundation Trust. The authors thank Dr. James Spicer for his support and helpful comments, Professor Andrew P. Grieve for advice on statistical evaluations and Dr. Rebecca Beavil and Ms. Kate Kirwan for expert assistance with the figures.


  1. 1.
    Gould HJ, Sutton BJ, Beavil AJ, Beavil RL, McCloskey N, Coker HA, Fear D, and Smurthwaite L (2003) The biology of IGE and the basis of allergic disease. Annu Rev Immunol 21, 579–628PubMedCrossRefGoogle Scholar
  2. 2.
    Zhang M, Murphy RF, and Agrawal DK (2007) Decoding IgE Fc receptors. Immunol Res 37, 1–16PubMedCrossRefGoogle Scholar
  3. 3.
    Liu FT, Hsu DK, Zuberi RI, Hill PN, Shenhav A, Kuwabara I, and Chen SS (1996) Modulation of functional properties of galectin-3 by monoclonal antibodies binding to the non-lectin domains. Biochemistry 35, 6073–6079PubMedCrossRefGoogle Scholar
  4. 4.
    Ravetch JV and Kinet JP (1991) Fc receptors. Annu Rev Immunol 9, 457–492PubMedGoogle Scholar
  5. 5.
    Gounni AS, Lamkhioued B, Delaporte E, Dubost A, Kinet JP, Capron A, and Capron M (1994) The high-affinity IgE receptor on eosinophils: from allergy to parasites or from parasites to allergy? J Allergy Clin Immunol 94, 1214–1216PubMedCrossRefGoogle Scholar
  6. 6.
    Gounni AS, Lamkhioued B, Ochiai K, Tanaka Y, Delaporte E, Capron A, Kinet JP, and Capron M (1994) High-affinity IgE receptor on eosinophils is involved in defence against parasites. Nature 367, 183–186PubMedCrossRefGoogle Scholar
  7. 7.
    Sihra BS, Kon OM, Grant JA, and Kay AB (1997) Expression of high-affinity IgE receptors (Fc epsilon RI) on peripheral blood basophils, monocytes, and eosinophils in atopic and nonatopic subjects: relationship to total serum IgE concentrations. J Allergy Clin Immunol 99, 699–706PubMedCrossRefGoogle Scholar
  8. 8.
    Ying S, Barata LT, Meng Q, Grant JA, Barkans J, Durham SR, and Kay AB (1998) High-affinity immunoglobulin E receptor (Fc epsilon RI)-bearing eosinophils, mast cells, macrophages and Langerhans’ cells in allergen-induced late-phase cutaneous reactions in atopic subjects. Immunology 93, 281–288PubMedCrossRefGoogle Scholar
  9. 9.
    Wang B, Rieger A, Kilgus O, Ochiai K, Maurer D, Fodinger D, Kinet JP, and Stingl G (1992) Epidermal Langerhans cells from normal human skin bind monomeric IgE via Fc epsilon RI. J Exp Med 175, 1353–1365PubMedCrossRefGoogle Scholar
  10. 10.
    Bieber T, de la Salle H, Wollenberg A, Hakimi J, Chizzonite R, Ring J, Hanau D, and de la Salle C (1992) Human epidermal Langerhans cells express the high affinity receptor for immunoglobulin E (Fc epsilon RI). J Exp Med 175, 1285–1290PubMedCrossRefGoogle Scholar
  11. 11.
    Maurer D, Fiebiger S, Ebner C, Reininger B, Fischer GF, Wichlas S, Jouvin MH, Schmitt-Egenolf M, Kraft D, Kinet JP, and Stingl G (1996) Peripheral blood dendritic cells express Fc epsilon RI as a complex composed of Fc epsilon RI alpha- and Fc epsilon RI gamma-chains and can use this receptor for IgE-mediated allergen presentation. J Immunol 157, 607–616PubMedGoogle Scholar
  12. 12.
    Maurer D, Fiebiger E, Reininger B, Wolff-Winiski B, Jouvin MH, Kilgus O, Kinet JP, and Stingl G (1994) Expression of functional high affinity immunoglobulin E receptors (Fc epsilon RI) on monocytes of atopic individuals. J Exp Med 179, 745–750PubMedCrossRefGoogle Scholar
  13. 13.
    Scholl PR and Geha RS (1993) Physical association between the high-affinity IgG receptor (Fc gamma RI) and the gamma subunit of the high-affinity IgE receptor (Fc epsilon RI gamma). Proc Natl Acad Sci USA 90, 8847–8850PubMedCrossRefGoogle Scholar
  14. 14.
    Morton HC, van den Herik-Oudijk IE, Vossebeld P, Snijders A, Verhoeven AJ, Capel PJ, and van de Winkel JG (1995) Functional association between the human myeloid immunoglobulin A Fc receptor (CD89) and FcR gamma chain. Molecular basis for CD89/FcR gamma chain association. J Biol Chem 270, 29781–29787PubMedCrossRefGoogle Scholar
  15. 15.
    Kinet JP (1999) The high-affinity IgE receptor (Fc epsilon RI): from physiology to pathology. Annu Rev Immunol 17, 931–972PubMedCrossRefGoogle Scholar
  16. 16.
    Kraft S and Kinet JP (2007) New developments in FcepsilonRI regulation, function and inhibition. Nat Rev Immunol 7, 365–378PubMedCrossRefGoogle Scholar
  17. 17.
    Dombrowicz D, Lin S, Flamand V, Brini AT, Koller BH, and Kinet JP (1998) Allergy-associated FcRbeta is a molecular amplifier of IgE- and IgG-mediated in vivo responses. Immunity 8, 571–529PubMedCrossRefGoogle Scholar
  18. 18.
    Lin S, Cicala C, Scharenberg AM, and Kinet JP (1996) The Fc(epsilon)RIbeta subunit functions as an amplifier of Fc(epsilon)RIgamma-mediated cell activation signals. Cell 85, 985–995PubMedCrossRefGoogle Scholar
  19. 19.
    Donnadieu E, Jouvin MH, and Kinet JP (2000) A second amplifier function for the allergy-associated Fc(epsilon)RI-beta subunit. Immunity 12, 515–523PubMedCrossRefGoogle Scholar
  20. 20.
    Kraft S, Rana S, Jouvin MH, and Kinet JP (2004) The role of the FcepsilonRI beta-chain in allergic diseases. Int Arch Allergy Immunol 135, 62–72PubMedCrossRefGoogle Scholar
  21. 21.
    Maenaka K, van der Merwe PA, Stuart DI, Jones EY, and Sondermann P (2001) The human low affinity Fcgamma receptors IIa, IIb, and III bind IgG with fast kinetics and distinct thermodynamic properties. J Biol Chem 276, 44898–44904PubMedCrossRefGoogle Scholar
  22. 22.
    Matsuda H, Fukui K, Kiso Y, and Kitamura Y (1985) Inability of genetically mast cell-deficient W/Wv mice to acquire resistance against larval Haemaphysalis longicornis ticks. J Parasitol 71, 443–448PubMedCrossRefGoogle Scholar
  23. 23.
    Matsuda H, Nakano T, Kiso Y, and Kitamura Y (1987) Normalization of anti-tick response of mast cell-deficient W/Wv mice by intracutaneous injection of cultured mast cells. J Parasitol 73, 155–160PubMedCrossRefGoogle Scholar
  24. 24.
    Matsuda H, Watanabe N, Kiso Y, Hirota S, Ushio H, Kannan Y, Azuma M, Koyama H, and Kitamura Y (1990) Necessity of IgE antibodies and mast cells for manifestation of resistance against larval Haemaphysalis longicornis ticks in mice. J Immunol 144, 259–262PubMedGoogle Scholar
  25. 25.
    Gould HJ and Sutton BJ (2008) IgE in allergy and asthma today. Nat Rev Immunol 8, 205–217PubMedCrossRefGoogle Scholar
  26. 26.
    Tokuyama H, Hagi T, Mattarollo SR, Morley J, Wang Q, Fai-So H, Moriyasu F, Nieda M, and Nicol AJ (2008) V gamma 9 V delta 2 T cell cytotoxicity against tumor cells is enhanced by monoclonal antibody drugs–rituximab and trastuzumab. Int J Cancer 122, 2526–2534PubMedCrossRefGoogle Scholar
  27. 27.
    Clynes RA, Towers TL, Presta LG, and Ravetch JV (2000) Inhibitory Fc receptors modulate in vivo cytoxicity against tumor targets. Nat Med 6, 443–446PubMedCrossRefGoogle Scholar
  28. 28.
    Dyall R, Vasovic LV, Clynes RA, and Nikolic-Zugic J (1999) Cellular requirements for the monoclonal antibody-mediated eradication of an established solid tumor. Eur J Immunol 29, 30–37PubMedCrossRefGoogle Scholar
  29. 29.
    Munn DH, McBride M, and Cheung NK (1991) Role of low-affinity Fc receptors in antibody-dependent tumor cell phagocytosis by human monocyte-derived macrophages. Cancer Res 51, 1117–1123PubMedGoogle Scholar
  30. 30.
    Kudo T, Suzuki M, Katayose Y, Shinoda M, Sakurai N, Kodama H, Ichiyama M, Takemura S, Yoshida H, Saeki H, Saijyo S, Takahashi J, Tominaga T, and Matsuno S (1999) Specific targeting immunotherapy of cancer with bispecific antibodies. Tohoku J Exp Med 188, 275–288PubMedCrossRefGoogle Scholar
  31. 31.
    Rouard H, Tamasdan S, Moncuit J, Moutel S, Michon J, Fridman WH, and Teillaud JL (1997) Fc receptors as targets for immunotherapy. Int Rev Immunol 16, 147–185PubMedCrossRefGoogle Scholar
  32. 32.
    Watanabe M, Wallace PK, Keler T, Deo YM, Akewanlop C, and Hayes DF (1999) Antibody dependent cellular phagocytosis (ADCP) and antibody dependent cellular cytotoxicity (ADCC) of breast cancer cells mediated by bispecific antibody, MDX-210. Breast Cancer Res Treat 53, 199–207PubMedCrossRefGoogle Scholar
  33. 33.
    Bevaart L, Goldstein J, Vitale L, Russoniello C, Treml J, Zhang J, Graziano RF, Leusen JH, van de Winkel JG, and Keler T (2006) Direct targeting of genetically modified tumour cells to Fc gammaRI triggers potent tumour cytotoxicity. Br J Haematol 132, 317–325PubMedCrossRefGoogle Scholar
  34. 34.
    Yokota A, Kikutani H, Tanaka T, Sato R, Barsumian EL, Suemura M, and Kishimoto T (1988) Two species of human Fc epsilon receptor II (Fc epsilon RII/CD23): tissue-specific and IL-4-specific regulation of gene expression. Cell 55, 611–618PubMedCrossRefGoogle Scholar
  35. 35.
    Yokota A, Yukawa K, Yamamoto A, Sugiyama K, Suemura M, Tashiro Y, Kishimoto T, and Kikutani H (1992) Two forms of the low-affinity Fc receptor for IgE differentially mediate endocytosis and phagocytosis: identification of the critical cytoplasmic domains. Proc Natl Acad Sci USA 89, 5030–5034PubMedCrossRefGoogle Scholar
  36. 36.
    Mossalayi MD, Paul-Eugene N, Ouaaz F, Arock M, Kolb JP, Kilchherr E, Debre P, and Dugas B (1994) Involvement of Fc epsilon RII/CD23 and L-arginine-dependent pathway in IgE-mediated stimulation of human monocyte functions. Int Immunol 6, 931–934PubMedCrossRefGoogle Scholar
  37. 37.
    Paul-Eugene N, Mossalayi D, Sarfati M, Yamaoka K, Aubry JP, Bonnefoy JY, Dugas B, and Kolb JP (1995) Evidence for a role of Fc epsilon RII/CD23 in the IL-4-induced nitric oxide production by normal human mononuclear phagocytes. Cell Immunol 163, 314–318PubMedCrossRefGoogle Scholar
  38. 38.
    Mossalayi MD, Arock M, Mazier D, Vincendeau P, and Vouldoukis I (1999) The human immune response during cutaneous leishmaniasis: NO problem. Parasitol Today 15, 342–345PubMedCrossRefGoogle Scholar
  39. 39.
    Vouldoukis I, Riveros-Moreno V, Dugas B, Ouaaz F, Becherel P, Debre P, Moncada S, and Mossalayi MD (1995) The killing of Leishmania major by human macrophages is mediated by nitric oxide induced after ligation of the Fc epsilon RII/CD23 surface antigen. Proc Natl Acad Sci USA 92, 7804–7808PubMedCrossRefGoogle Scholar
  40. 40.
    Spittler A, Oehler R, Goetzinger P, Holzer S, Reissner CM, Leutmezer F, Rath V, Wrba F, Fuegger R, Boltz-Nitulescu G, and Roth E (1997) Low glutamine concentrations induce phenotypical and functional differentiation of U937 myelomonocytic cells. J Nutr 127, 2151–2157PubMedGoogle Scholar
  41. 41.
    Schoppmann SF, Birner P, Stockl J, Kalt R, Ullrich R, Caucig C, Kriehuber E, Nagy K, Alitalo K, and Kerjaschki D (2002) Tumor-associated macrophages express lymphatic endothelial growth factors and are related to peritumoral lymphangiogenesis. Am J Pathol 161, 947–956PubMedGoogle Scholar
  42. 42.
    Saka B, Aktan M, Sami U, Oner D, Sanem O, and Dincol G (2006) Prognostic importance of soluble CD23 in B-cell chronic lymphocytic leukemia. Clin Lab Haematol 28, 30–35PubMedCrossRefGoogle Scholar
  43. 43.
    Karagiannis SN, Bracher MG, Beavil RL, Beavil AJ, Hunt J, McCloskey N, Thompson RG, East N, Burke F, Sutton BJ, Dombrowicz D, Balkwill FR, and Gould HJ (2008) Role of IgE receptors in IgE antibody-dependent cytotoxicity and phagocytosis of ovarian tumor cells by human monocytic cells. Cancer Immunol Immunother 57, 247–263PubMedCrossRefGoogle Scholar
  44. 44.
    Karagiannis SN, Bracher MG, Hunt J, McCloskey N, Beavil RL, Beavil AJ, Fear DJ, Thompson RG, East N, Burke F, Moore RJ, Dombrowicz DD, Balkwill FR, and Gould HJ (2007) IgE-antibody-dependent immunotherapy of solid tumors: cytotoxic and phagocytic mechanisms of eradication of ovarian cancer cells. J Immunol 179, 2832–2843PubMedGoogle Scholar
  45. 45.
    Liu FT (2005) Regulatory roles of galectins in the immune response. Int Arch Allergy Immunol 136, 385–400PubMedCrossRefGoogle Scholar
  46. 46.
    Frigeri LG and Liu FT (1992) Surface expression of functional IgE binding protein, an endogenous lectin, on mast cells and macrophages. J Immunol 148, 861–867PubMedGoogle Scholar
  47. 47.
    Zuberi RI, Hsu DK, Kalayci O, Chen HY, Sheldon HK, Yu L, Apgar JR, Kawakami T, Lilly CM, and Liu FT (2004) Critical role for galectin-3 in airway inflammation and bronchial hyperresponsiveness in a murine model of asthma. Am J Pathol 165, 2045–2053PubMedGoogle Scholar
  48. 48.
    Ahmad N, Gabius HJ, Andre S, Kaltner H, Sabesan S, Roy R, Liu B, Macaluso F, and Brewer CF (2004) Galectin-3 precipitates as a pentamer with synthetic multivalent carbohydrates and forms heterogeneous cross-linked complexes. J Biol Chem 279, 10841–10847PubMedCrossRefGoogle Scholar
  49. 49.
    van den Brule F, Califice S, and Castronovo V (2004) Expression of galectins in cancer: a critical review. Glycoconj J 19, 537–542PubMedCrossRefGoogle Scholar
  50. 50.
    Brigati C, Noonan DM, Albini A, and Benelli R (2002) Tumors and inflammatory infiltrates: friends or foes? Clin Exp Metastasis 19, 247–258PubMedCrossRefGoogle Scholar
  51. 51.
    Lin EY and Pollard JW (2004) Role of infiltrated leucocytes in tumour growth and spread. Br J Cancer 90, 2053–2058PubMedCrossRefGoogle Scholar
  52. 52.
    Crivellato E, Nico B, and Ribatti D (2008) Mast cells and tumour angiogenesis: new insight from experimental carcinogenesis. Cancer Lett 269, 1–6PubMedCrossRefGoogle Scholar
  53. 53.
    Dabiri S, Huntsman D, Makretsov N, Cheang M, Gilks B, Bajdik C, Gelmon K, Chia S, and Hayes M (2004) The presence of stromal mast cells identifies a subset of invasive breast cancers with a favorable prognosis. Mod Pathol 17, 690–695PubMedCrossRefGoogle Scholar
  54. 54.
    Aaltomaa S, Lipponen P, Papinaho S, and Kosma VM (1993) Mast cells in breast cancer. Anticancer Res 13, 785–788PubMedGoogle Scholar
  55. 55.
    Glimelius I, Edstrom A, Fischer M, Nilsson G, Sundstrom C, Molin D, Amini RM, and Enblad G (2005) Angiogenesis and mast cells in Hodgkin lymphoma. Leukemia 19, 2360–2362PubMedCrossRefGoogle Scholar
  56. 56.
    Molin D, Edstrom A, Glimelius I, Glimelius B, Nilsson G, Sundstrom C, and Enblad G (2002) Mast cell infiltration correlates with poor prognosis in Hodgkin’s lymphoma. Br J Haematol 119, 122–124PubMedCrossRefGoogle Scholar
  57. 57.
    Ribatti D, Ennas MG, Vacca A, Ferreli F, Nico B, Orru S, and Sirigu P (2003) Tumor vascularity and tryptase-positive mast cells correlate with a poor prognosis in melanoma. Eur J Clin Invest 33, 420–425PubMedCrossRefGoogle Scholar
  58. 58.
    Ribatti D, Finato N, Crivellato E, Guidolin D, Longo V, Mangieri D, Nico B, Vacca A, and Beltrami CA (2007) Angiogenesis and mast cells in human breast cancer sentinel lymph nodes with and without micrometastases. Histopathology 51, 837–842PubMedCrossRefGoogle Scholar
  59. 59.
    Kankkunen JP, Harvima IT, and Naukkarinen A (1997) Quantitative analysis of tryptase and chymase containing mast cells in benign and malignant breast lesions. Int J Cancer 72, 385–388PubMedCrossRefGoogle Scholar
  60. 60.
    Thoresen S, Thorsen T, and Hartveit F (1982) Does progesterone receptor in human breast cancer reflect the mast-cell content of the tumour tissue? Br J Cancer 45, 618–620PubMedGoogle Scholar
  61. 61.
    Ribatti D, Crivellato E, Roccaro AM, Ria R, and Vacca A (2004) Mast cell contribution to angiogenesis related to tumour progression. Clin Exp Allergy 34, 1660–1664PubMedCrossRefGoogle Scholar
  62. 62.
    Norrby K (2000) Oral administration of a nitric oxide synthase inhibitor enhances de novo mammalian angiogenesis mediated by TNF-alpha, saline and mast-cell secretion. APMIS 108, 496–502PubMedCrossRefGoogle Scholar
  63. 63.
    Grutzkau A, Kruger-Krasagakes S, Kogel H, Moller A, Lippert U, and Henz BM (1997) Detection of intracellular interleukin-8 in human mast cells: flow cytometry as a guide for immunoelectron microscopy. J Histochem Cytochem 45, 935–945PubMedGoogle Scholar
  64. 64.
    Grutzkau A, Kruger-Krasagakes S, Baumeister H, Schwarz C, Kogel H, Welker P, Lippert U, Henz BM, and Moller A (1998) Synthesis, storage, and release of vascular endothelial growth factor/vascular permeability factor (VEGF/VPF) by human mast cells: implications for the biological significance of VEGF206. Mol Biol Cell 9, 875–884PubMedGoogle Scholar
  65. 65.
    Qu Z, Liebler JM, Powers MR, Galey T, Ahmadi P, Huang XN, Ansel JC, Butterfield JH, Planck SR, and Rosenbaum JT (1995) Mast cells are a major source of basic fibroblast growth factor in chronic inflammation and cutaneous hemangioma. Am J Pathol 147, 564–573PubMedGoogle Scholar
  66. 66.
    Blair RJ, Meng H, Marchese MJ, Ren S, Schwartz LB, Tonnesen MG, and Gruber BL (1997) Human mast cells stimulate vascular tube formation. Tryptase is a novel, potent angiogenic factor. J Clin Invest 99, 2691–2700PubMedCrossRefGoogle Scholar
  67. 67.
    Crivellato E, Beltrami CA, Mallardi F, and Ribatti D (2004) The mast cell: an active participant or an innocent bystander? Histol Histopathol 19, 259–270PubMedGoogle Scholar
  68. 68.
    Valent P, Agis H, Sperr W, Sillaber C, and Horny HP (2008) Diagnostic and prognostic value of new biochemical and immunohistochemical parameters in chronic myeloid leukemia. Leuk Lymphoma 49, 635–638PubMedCrossRefGoogle Scholar
  69. 69.
    Di Carlo E, Modesti A, Coletti A, Colombo MP, Giovarelli M, Forni G, Diodoro MG, and Musiani P (1998) Interaction between endothelial cells and the secreted cytokine drives the fate of an IL4- or an IL5-transduced tumour. J Pathol 186, 390–397PubMedCrossRefGoogle Scholar
  70. 70.
    Leek RD, Lewis CE, Whitehouse R, Greenall M, Clarke J, and Harris AL (1996) Association of macrophage infiltration with angiogenesis and prognosis in invasive breast carcinoma. Cancer Res 56, 4625–4629PubMedGoogle Scholar
  71. 71.
    Lewis CE and Pollard JW (2006) Distinct role of macrophages in different tumor microenvironments. Cancer Res 66, 605–612PubMedCrossRefGoogle Scholar
  72. 72.
    Bingle L, Brown NJ, and Lewis CE (2002) The role of tumour-associated macrophages in tumour progression: implications for new anticancer therapies. J Pathol 196, 254–265PubMedCrossRefGoogle Scholar
  73. 73.
    Mantovani A, Sozzani S, Locati M, Allavena P, and Sica A (2002) Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol 23, 549–555PubMedCrossRefGoogle Scholar
  74. 74.
    Leek RD and Harris AL (2002) Tumor-associated macrophages in breast cancer. J Mammary Gland Biol Neoplasia 7, 177–189PubMedCrossRefGoogle Scholar
  75. 75.
    Elgert KD, Alleva DG, and Mullins DW (1998) Tumor-induced immune dysfunction: the macrophage connection. J Leukoc Biol 64, 275–290PubMedGoogle Scholar
  76. 76.
    Weigert A and Brune B (2008) Nitric oxide, apoptosis and macrophage polarization during tumor progression. Nitric Oxide 19, 95–102PubMedCrossRefGoogle Scholar
  77. 77.
    Keller R, Geiges M, and Keist R (1990) L-arginine-dependent reactive nitrogen intermediates as mediators of tumor cell killing by activated macrophages. Cancer Res 50, 1421–1425PubMedGoogle Scholar
  78. 78.
    Xie K, Huang S, Dong Z, Juang SH, Gutman M, Xie QW, Nathan C, and Fidler IJ (1995) Transfection with the inducible nitric oxide synthase gene suppresses tumorigenicity and abrogates metastasis by K-1735 murine melanoma cells. J Exp Med 181, 1333–1343PubMedCrossRefGoogle Scholar
  79. 79.
    Masztalerz A, Van Rooijen N, Den Otter W, and Everse LA (2003) Mechanisms of macrophage cytotoxicity in IL-2 and IL-12 mediated tumour regression. Cancer Immunol Immunother 52, 235–242PubMedGoogle Scholar
  80. 80.
    Dirkx AE, Oude Egbrink MG, Wagstaff J, and Griffioen AW (2006) Monocyte/macrophage infiltration in tumors: modulators of angiogenesis. J Leukoc Biol 80, 1183–1196PubMedCrossRefGoogle Scholar
  81. 81.
    Houghton AM, Grisolano JL, Baumann ML, Kobayashi DK, Hautamaki RD, Nehring LC, Cornelius LA, and Shapiro SD (2006) Macrophage elastase (matrix metalloproteinase-12) suppresses growth of lung metastases. Cancer Res 66, 6149–6155PubMedCrossRefGoogle Scholar
  82. 82.
    Huang Y, Lee C, Borgstrom P, and Gjerset RA (2007) Macrophage-mediated bystander effect triggered by tumor cell apoptosis. Mol Ther 15, 524–533PubMedCrossRefGoogle Scholar
  83. 83.
    Hagemann T, Lawrence T, McNeish I, Charles KA, Kulbe H, Thompson RG, Robinson SC, and Balkwill FR (2008) “Re-educating” tumor-associated macrophages by targeting NF-kappaB. J Exp Med 205, 1261–1268PubMedCrossRefGoogle Scholar
  84. 84.
    Colombo N, Peccatori F, Paganin C, Bini S, Brandely M, Mangioni C, Mantovani A, and Allavena P (1992) Anti-tumor and immunomodulatory activity of intraperitoneal IFN-gamma in ovarian carcinoma patients with minimal residual tumor after chemotherapy. Int J Cancer 51, 42–46PubMedCrossRefGoogle Scholar
  85. 85.
    Thomsen LL and Miles DW (1998) Role of nitric oxide in tumour progression: lessons from human tumours. Cancer Metastasis Rev 17, 107–118PubMedCrossRefGoogle Scholar
  86. 86.
    Dugas B, Mossalayi MD, Damais C, and Kolb JP (1995) Nitric oxide production by human monocytes: evidence for a role of CD23. Immunol Today 16, 574–580PubMedCrossRefGoogle Scholar
  87. 87.
    Perlmann P, Perlmann H, ElGhazali G, and Blomberg MT (1999) IgE and tumor necrosis factor in malaria infection. Immunol Lett 65, 29–33PubMedCrossRefGoogle Scholar
  88. 88.
    Fremeaux-Bacchi V, Aubry JP, Bonnefoy JY, Kazatchkine MD, Kolb JP, and Fischer EM (1998) Soluble CD21 induces activation and differentiation of human monocytes through binding to membrane CD23. Eur J Immunol 28, 4268–4274PubMedCrossRefGoogle Scholar
  89. 89.
    Iwasaki K, Torisu M, and Fujimura T (1986) Malignant tumor and eosinophils. I. Prognostic significance in gastric cancer. Cancer 58, 1321–1327PubMedCrossRefGoogle Scholar
  90. 90.
    Samoszuk M (1997) Eosinophils and human cancer. Histol Histopathol 12, 807–812PubMedGoogle Scholar
  91. 91.
    Ishibashi S, Ohashi Y, Suzuki T, Miyazaki S, Moriya T, Satomi S, and Sasano H (2006) Tumor-associated tissue eosinophilia in human esophageal squamous cell carcinoma. Anticancer Res 26, 1419–1424PubMedGoogle Scholar
  92. 92.
    Fernandez-Acenero MJ, Galindo-Gallego M, Sanz J, and Aljama A (2000) Prognostic influence of tumor-associated eosinophilic infiltrate in colorectal carcinoma. Cancer 88, 1544–1548PubMedCrossRefGoogle Scholar
  93. 93.
    Gleich GJ and Adolphson CR (1986) The eosinophilic leukocyte: structure and function. Adv Immunol 39, 177–253PubMedCrossRefGoogle Scholar
  94. 94.
    Newton DL and Rybak SM (1998) Unique recombinant human ribonuclease and inhibition of Kaposi’s sarcoma cell growth. J Natl Cancer Inst 90, –1791PubMedCrossRefGoogle Scholar
  95. 95.
    Ellyard JI, Simson L, and Parish CR (2007) Th2-mediated anti-tumour immunity: friend or foe? Tissue Antigens 70, 1–11PubMedCrossRefGoogle Scholar
  96. 96.
    Furbert-Harris PM, Laniyan I, Harris D, Dunston GM, Vaughn T, Abdelnaby A, Parish-Gause D, and Oredipe OA (2003) Activated eosinophils infiltrate MCF-7 breast multicellular tumor spheroids. Anticancer Res 23, 71–78PubMedGoogle Scholar
  97. 97.
    Tepper RI, Pattengale PK, and Leder P (1989) Murine interleukin-4 displays potent anti-tumor activity in vivo. Cell 57, 503–512PubMedCrossRefGoogle Scholar
  98. 98.
    Rothenberg ME, Luster AD, and Leder P (1995) Murine eotaxin: an eosinophil chemoattractant inducible in endothelial cells and in interleukin 4-induced tumor suppression. Proc Natl Acad Sci USA 92, 8960–8964PubMedCrossRefGoogle Scholar
  99. 99.
    Cormier SA, Taranova AG, Bedient C, Nguyen T, Protheroe C, Pero R, Dimina D, Ochkur SI, O’Neill K, Colbert D, Lombari TR, Constant S, McGarry MP, Lee JJ, and Lee NA (2006) Pivotal advance: eosinophil infiltration of solid tumors is an early and persistent inflammatory host response. J Leukoc Biol 79, 1131–1139PubMedCrossRefGoogle Scholar
  100. 100.
    Mattes J, Hulett M, Xie W, Hogan S, Rothenberg ME, Foster P, and Parish C (2003) Immunotherapy of cytotoxic T cell-resistant tumors by T helper 2 cells: an eotaxin and STAT6-dependent process. J Exp Med 197, 387–393PubMedCrossRefGoogle Scholar
  101. 101.
    Kayaba H, Dombrowicz D, Woerly G, Papin JP, Loiseau S, and Capron M (2001) Human eosinophils and human high affinity IgE receptor transgenic mouse eosinophils express low levels of high affinity IgE receptor, but release IL-10 upon receptor activation. J Immunol 167, 995–1003PubMedGoogle Scholar
  102. 102.
    Dombrowicz D, Quatannens B, Papin JP, Capron A, and Capron M (2000) Expression of a functional Fc epsilon RI on rat eosinophils and macrophages. J Immunol 165, –1271PubMedGoogle Scholar
  103. 103.
    Nutten S, Papin JP, Woerly G, Dunne DW, MacGregor J, Trottein F, and Capron M (1999) Selectin and Lewis(x) are required as co-receptors in antibody-dependent cell-mediated cytotoxicity of human eosinophils to Schistosoma mansoni schistosomula. Eur J Immunol 29, 799–808PubMedCrossRefGoogle Scholar
  104. 104.
    Tepper RI, Coffman RL, and Leder P (1992) An eosinophil-dependent mechanism for the antitumor effect of interleukin-4. Science 257, 548–551PubMedCrossRefGoogle Scholar
  105. 105.
    Pericle F, Giovarelli M, Colombo MP, Ferrari G, Musiani P, Modesti A, Cavallo F, Di Pierro F, Novelli F, and Forni G (1994) An efficient Th2-type memory follows CD8+ lymphocyte-driven and eosinophil-mediated rejection of a spontaneous mouse mammary adenocarcinoma engineered to release IL-4. J Immunol 153, 5659–5673PubMedGoogle Scholar
  106. 106.
    Esendagli G, Bruderek K, Goldmann T, Busche A, Branscheid D, Vollmer E, and Brandau S (2008) Malignant and non-malignant lung tissue areas are differentially populated by natural killer cells and regulatory T cells in non-small cell lung cancer. Lung Cancer 59, 32–40PubMedCrossRefGoogle Scholar
  107. 107.
    Gu T, Kilinc MO, and Egilmez NK (2008) Transient activation of tumor-associated T-effector/memory cells promotes tumor eradication via NK-cell recruitment: minimal role for long-term T-cell immunity in cure of metastatic disease. Cancer Immunol Immunother 57, 997–1005PubMedCrossRefGoogle Scholar
  108. 108.
    Jurisic V, Srdic T, Konjevic G, Markovic O, and Colovic M (2007) Clinical stage-depending decrease of NK cell activity in multiple myeloma patients. Med Oncol 24, 312–317PubMedCrossRefGoogle Scholar
  109. 109.
    Arnould L, Gelly M, Penault-Llorca F, Benoit L, Bonnetain F, Migeon C, Cabaret V, Fermeaux V, Bertheau P, Garnier J, Jeannin JF, and Coudert B (2006) Trastuzumab-based treatment of HER2-positive breast cancer: an antibody-dependent cellular cytotoxicity mechanism? Br J Cancer 94, 259–267PubMedCrossRefGoogle Scholar
  110. 110.
    Miyajima I, Dombrowicz D, Martin TR, Ravetch JV, Kinet JP, and Galli SJ (1997) Systemic anaphylaxis in the mouse can be mediated largely through IgG1 and Fc gammaRIII. Assessment of the cardiopulmonary changes, mast cell degranulation, and death associated with active or IgE- or IgG1-dependent passive anaphylaxis. J Clin Invest 99, 901–914PubMedCrossRefGoogle Scholar
  111. 111.
    Lorenzen J, Lewis CE, McCracken D, Horak E, Greenall M, and McGee JO (1991) Human tumour-associated NK cells secrete increased amounts of interferon-gamma and interleukin-4. Br J Cancer 64, 457–462PubMedGoogle Scholar
  112. 112.
    Menetrier-Caux C, Montmain G, Dieu MC, Bain C, Favrot MC, Caux C, and Blay JY (1998) Inhibition of the differentiation of dendritic cells from CD34(+) progenitors by tumor cells: role of interleukin-6 and macrophage colony-stimulating factor. Blood 92, 4778–4791PubMedGoogle Scholar
  113. 113.
    Menetrier-Caux C, Thomachot MC, Alberti L, Montmain G, and Blay JY (2001) IL-4 prevents the blockade of dendritic cell differentiation induced by tumor cells. Cancer Res 61, 3096–3104PubMedGoogle Scholar
  114. 114.
    Bieber T (1997) Fc epsilon RI on human epidermal Langerhans cells: an old receptor with new structure and functions. Int Arch Allergy Immunol 113, 30–34PubMedCrossRefGoogle Scholar
  115. 115.
    Luiten RM, Fleuren GJ, Warnaar SO, and Litvinov SV (1996) Target-specific activation of mast cells by immunoglobulin E reactive with a renal cell carcinoma-associated antigen. Lab Invest 74, 467–475PubMedGoogle Scholar
  116. 116.
    Luiten RM, Warnaar SO, Schuurman J, Pasmans SG, Latour S, Daeron M, Fleuren GJ, and Litvinov SV (1997) Chimeric immunoglobulin E reactive with tumor-associated antigen activates human Fc epsilon RI bearing cells. Hum Antibodies 8, 169–180PubMedGoogle Scholar
  117. 117.
    Sapino A, Cassoni P, Ferrero E, Bongiovanni M, Righi L, Fortunati N, Crafa P, Chiarle R, and Bussolati G (2003) Estrogen receptor alpha is a novel marker expressed by follicular dendritic cells in lymph nodes and tumor-associated lymphoid infiltrates. Am J Pathol 163, 1313–1320PubMedGoogle Scholar
  118. 118.
    Dadabayev AR, Sandel MH, Menon AG, Morreau H, Melief CJ, Offringa R, van der Burg SH, Janssen-van Rhijn C, Ensink NG, Tollenaar RA, van de Velde CJ, and Kuppen PJ (2004) Dendritic cells in colorectal cancer correlate with other tumor-infiltrating immune cells. Cancer Immunol Immunother 53, 978–986PubMedCrossRefGoogle Scholar
  119. 119.
    Shah S, Divekar AA, Hilchey SP, Cho HM, Newman CL, Shin SU, Nechustan H, Challita-Eid PM, Segal BM, Yi KH, and Rosenblatt JD (2005) Increased rejection of primary tumors in mice lacking B cells: inhibition of anti-tumor CTL and TH1 cytokine responses by B cells. Int J Cancer 117, 574–586PubMedCrossRefGoogle Scholar
  120. 120.
    Barbera-Guillem E, Nelson MB, Barr B, Nyhus JK, May KF, Jr., Feng L, and Sampsel JW (2000) B lymphocyte pathology in human colorectal cancer. Experimental and clinical therapeutic effects of partial B cell depletion. Cancer Immunol Immunother 48, 541–549PubMedCrossRefGoogle Scholar
  121. 121.
    Tan TT and Coussens LM (2007) Humoral immunity, inflammation and cancer. Curr Opin Immunol 19, 209–216PubMedCrossRefGoogle Scholar
  122. 122.
    Gould HJ, Mackay GA, Karagiannis SN, O’Toole CM, Marsh PJ, Daniel BE, Coney LR, Zurawski VR, Jr., Joseph M, Capron M, Gilbert M, Murphy GF, and Korngold R (1999) Comparison of IgE and IgG antibody-dependent cytotoxicity in vitro and in a SCID mouse xenograft model of ovarian carcinoma. Eur J Immunol 29, 3527–3537PubMedCrossRefGoogle Scholar
  123. 123.
    Karagiannis SN, Wang Q, East N, Burke F, Riffard S, Bracher MG, Thompson RG, Durham SR, Schwartz LB, Balkwill FR, and Gould HJ (2003) Activity of human monocytes in IgE antibody-dependent surveillance and killing of ovarian tumor cells. Eur J Immunol 33, 1030–1040PubMedCrossRefGoogle Scholar
  124. 124.
    Bracher M, Gould HJ, Sutton BJ, Dombrowicz D, and Karagiannis SN (2007) Three-colour flow cytometric method to measure antibody-dependent tumour cell killing by cytotoxicity and phagocytosis. J Immunol Methods 323, 160–171PubMedCrossRefGoogle Scholar
  125. 125.
    Karagiannis P, Singer J, Hunt J, Gan SK, Rudman SM, Mechtcheriakova D, Knittelfelder R, Daniels TR, Hobson PS, Beavil AJ, Spicer J, Nestle FO, Penichet ML, Gould HJ, Jensen-Jarolim E, and Karagiannis SN (2009) Characterisation of an engineered trastuzumab IgE antibody and effector cell mechanisms targeting HER2/neu-positive tumour cells. Cancer Immunol Immunother 58, 915–930PubMedCrossRefGoogle Scholar
  126. 126.
    Nagy E, Berczi I, and Sehon AH (1991) Growth inhibition of murine mammary carcinoma by monoclonal IgE antibodies specific for the mammary tumor virus. Cancer Immunol Immunother 34, 63–69PubMedCrossRefGoogle Scholar
  127. 127.
    Kershaw MH, Darcy PK, Trapani JA, MacGregor D, and Smyth MJ (1998) Tumor-specific IgE-mediated inhibition of human colorectal carcinoma xenograft growth. Oncol Res 10, 133–142PubMedGoogle Scholar
  128. 128.
    Reali E, Greiner JW, Corti A, Gould HJ, Bottazzoli F, Paganelli G, Schlom J, and Siccardi AG (2001) IgEs targeted on tumor cells: therapeutic activity and potential in the design of tumor vaccines. Cancer Res 61, 5517–5522PubMedGoogle Scholar
  129. 129.
    Fu SL, Pierre J, Smith-Norowitz TA, Hagler M, Bowne W, Pincus MR, Mueller CM, Zenilman ME, and Bluth MH (2008) Immunoglobulin E antibodies from pancreatic cancer patients mediate antibody-dependent cell-mediated cytotoxicity against pancreatic cancer cells. Clin Exp Immunol 153, 401–409PubMedCrossRefGoogle Scholar
  130. 130.
    Wines BD, Hulett MD, Jamieson GP, Trist HM, Spratt JM, and Hogarth PM (1999) Identification of residues in the first domain of human Fc alpha receptor essential for interaction with IgA. J Immunol 162, 2146–2153Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Sophia N. Karagiannis
    • 1
    Email author
  • Frank O. Nestle
    • 1
  • Hannah J. Gould
    • 2
  1. 1.Cutaneous Medicine and Immunotherapy, Division of Genetics and Molecular MedicineKing’s College London School of Medicine, St. John’s Institute of Dermatology, NIHR Biomedical Research Centre, St. Thomas’s HospitalsLondonUK
  2. 2.Randall Division of Cell and Molecular BiophysicsKing’s College LondonLondonUK

Personalised recommendations