Epidemiological Evidence: IgE, Allergies, and Hematopoietic Malignancies

  • Otoniel Martínez-Maza
  • Alan Duane Moreno
  • Wendy CozenEmail author


This chapter presents an overview of recent epidemiologic studies that address the association between atopic diseases and IgE and the risk of hematopoietic cancers, including a discussion of potential biological mechanisms. The strongest and most consistent (inverse) associations have been observed between allergic conditions and childhood leukemia, especially acute lymphoblastic leukemia. The cumulative evidence for an inverse association between atopy and non-Hodgkin lymphoma is suggestive, but the inconsistency of the associations with specific types of atopic conditions, the lack of any associations observed in most cohort studies, and the correlation between timing of diagnosis and decreasing IgE levels warrant further clarification. No consistent evidence has been found supporting an association between atopy and either plasma cell neoplasms or Hodgkin lymphoma.

There are several potential mechanisms by which allergic conditions could contribute to the risk of hematopoietic cancers. These include features of allergic responses (IgE, mast cell products) that may mediate enhanced antitumor immune responses, as well as allergy-associated changes in immune responses that inhibit immune cell activation, resulting in less exposure to DNA mutating and potentially oncogenic activities.


Multiple Myeloma Acute Lymphoblastic Leukemia Chronic Lymphocytic Leukemia Hodgkin Lymphoma Antitumor Immune Response 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported, in part, by NIH grants R01-CA57152, R01-CA73475, P50-CA96888, P50-CA100707, P30-CA014089, and R01-CA121195, as well as by grants from the Department of Defense Peer-Reviewed Medical Research Program (PR054600) and the Leukemia and Lymphoma Society (6155-03 and 6137-07).


  1. 1.
    Eriksson N, Holmen A, Hogstedt B, Mikoczy Z, Hagmar L (1995) A prospective study of cancer incidence in a cohort examined for allergy. Allergy 50: 718–722PubMedGoogle Scholar
  2. 2.
    Lindelof B, Granath F, Tengvall-Linder M, Ekbom A (2005) Allergy and cancer. Allergy 60: 1116–1120PubMedGoogle Scholar
  3. 3.
    Lochmann O, Benes J, Vymola F, Pokorny J (1978) Observation of antibody activity against antibiotics in patients with atopic disease. J Hyg Epidemiol Microbiol Immunol 22: 344–353PubMedGoogle Scholar
  4. 4.
    Ellison-Loschmann L, Benavente Y, Douwes J, Buendia E, Font R, Alvaro T, Kogevinas M, de Sanjose S (2007) Immunoglobulin E levels and risk of lymphoma in a case-control study in Spain. Cancer Epidemiol Biomarkers Prev 16: 1492–1498PubMedGoogle Scholar
  5. 5.
    Holly E, Chitra L (1997) Non-Hodgkin’s lymphoma in HIV-positive and HIV-negative homosexual men in the San Francisco Bay area: Allergies, prior medication use, and sexual practices. J AIDS 15: 211–222Google Scholar
  6. 6.
    Groves FD, Linet MS, Devesa SS (1995) Patterns of occurrence of the leukaemias. Eur J Cancer 31A: 941–949PubMedGoogle Scholar
  7. 7.
    Jourdan-Da Silva N, Perel Y, Mechinaud F, Plouvier E, Gandemer V, Lutz P, Vannier J, Lamagnere J, Margueritte G, Boutard P, Robert A, Armari C, Munzer M, Millot F, de Lumley L, Berthou C, Rialland X, Pautard B, Hemon D, Clavel J (2004) Infections diseases in the first year of life, perinatal characteristics and childhood acute leukemia. Br J Cancer 90: 139–145PubMedGoogle Scholar
  8. 8.
    Rosenbaum P, Buck G, Brecher M (2005) Allergy and infectious disease histories and the risk of childhood acute lymphoblastic leukaemia. Paediatric Perinatal Epidemiol 19: 152–164Google Scholar
  9. 9.
    Schuz J, Morgan G, Bohler E, Kaatsch P, Michaelis J (2003) Atopic disease and childhood acute lymphoblastic leukemia. Int J Cancer 105: 255–260PubMedGoogle Scholar
  10. 10.
    Wen W, Shu X, Linet M, Neglia J, Potter J, Trigg M, Robison L (2000) Allergic disorders and the risk of childhood acute lymphoblastic leukemia (United States). Cancer Causes Contr 11: 303–307Google Scholar
  11. 11.
    Soderberg K, Jonsson F, Winqvist O, Hagmar L, Feychting M (2006) Autoimmune diseases, asthma and risk of haematological malignancies: a nationwide case-control study in Sweden. Eur J Cancer 42: 3028–3033.PubMedGoogle Scholar
  12. 12.
    Hughes A, Lightfoot T, Simpson J, Ansell P, McKinney P, Kinsey S, Mitchell C, Eden T, Greaves M, Roman E, United Kingdom Childhood Cancer Study Investigators (2007) Allergy and risk of childhood leukemia: Results from the UKCCS. Int J Cancer 121: 819–824PubMedGoogle Scholar
  13. 13.
    Spector L, Groves F, DeStefano F, Liff J, Klein M, Mullooly J, Black S, Shinefield H, Ward J, Marcy M, Vaccine Safety Datalink Project (2004) Medically recorded allergies and the risk of childhood acute lymphoblastic leukemia. Eur J Cancer 40: 579–584PubMedGoogle Scholar
  14. 14.
    Cooper G, Kamel F, Sandler D, Davey F, Bloomfield C (1996) Risk of adult acute leukemia in relation to prior immune-related conditions. Cancer Epidemiol Biomarkers Prev 5: 867–872PubMedGoogle Scholar
  15. 15.
    Severson R, Davis S, Thomas D, Stevens E, Heuser L, Sever L (1989) Acute myelocytic leukemia and prior allergies. J Clin Epidemiol 42: 995–1001PubMedGoogle Scholar
  16. 16.
    Vineis P, Crosignani P, Sacerdote C, Fontana A, Masala G, Miligi L, Nanni O, Ramazzotti V, Rodella S, Stagnaro E, Tumino R, Viganò C, Vindigni C, Costantini AS (2000) Haematopoietic cancer and medical history: A multicentre case control study. J Epidemiol Community Health 54: 4331–4436Google Scholar
  17. 17.
    Doody M, Linet M, Glass A, Friedman GD, Pottern LM, Boice JD Jr, Fraumeni JF Jr. (1992) Leukemia, lymphoma and multiple myeloma following selected medical conditions. Cancer Causes Contr 3: 449–456Google Scholar
  18. 18.
    Jaffe E, Harris N, Stein H, Vardiman J (2001) Pathology & genetics of tumours of haematopoietic and lymphoid tissues. In: Kleihues P, Sobin L (eds) World Health Organization Classification of Tumours. International Agency for Research on Cancer (IARC) Press, Lyon, France.Google Scholar
  19. 19.
    Becker N, De Sanjose S, Nieters A, Maynadie M, Foretova L, Cocco P, Staines A, Alvaro T, Vornanen M, Brennan P, Boffetta P (2007) Birth order, allergies and lymphoma risk: Results of the European collaborative reserach project Epilymph. Leuk Res 31: 1365–1372PubMedGoogle Scholar
  20. 20.
    Melbye M, Smedby K, Lehtinen T, Rostgaard K, Glimelius B, Munksgaard L, Schöllkopf C, Sundström C, Chang ET, Koskela P, Adami H-O, Hjalgrim H (2007) Atopy and risk of non-Hodgkin lymphoma. JNCI 99: 158–166PubMedGoogle Scholar
  21. 21.
    Zhang Y, Holdford T, Leaderer B, Zahm SH, Boyle P, Morton LM, Zhang B, Zou K, Flynn S, Tallini G, Owens PH, Zheng T (2004) Prior medical conditions and medication use and risk of non-Hodgkin lymphoma in Connecticut, United States women. Cancer Causes Contr 15: 419–428Google Scholar
  22. 22.
    Soderberg K, Hagmar K, Schwartzbaum J, Feychting M (2004) Allergic conditions and risk of hematopoietic malignancies in adults: A cohort study. BMC Public Health 4: 51–57PubMedGoogle Scholar
  23. 23.
    Morton L, Wang S, Cozen W, Linet M, Chatterjee N, Davis S, Severson R, Colt J, Vasef M, Rothman N, BLair A, Bernstein L, Cross A, De Roos A, Engels E, Hein D, Hill D, Keleman L, Lim U, Lynch C, Schenk M, Wacholder S, Ward M, Hoar Zahm S, Chanoock S, Cerhan J, Hartge P (2008) Etiologic heterogeneity among non-Hodgkin lymphoma subtypes. Blood 112: 5150–5160PubMedGoogle Scholar
  24. 24.
    Morton L, Wang S, SS D, Hartge P, Weisenburger D, Linet M (2006) Lymphoma incidence patterns by WHO subtype in the United States, 1992–2001. Blood 107: 265–276PubMedGoogle Scholar
  25. 25.
    Bernstein L, Ross R (1992) Prior medication use and health history as risk factors for non-Hodgkin’s lymphoma: Preliminary results from a case-control study in Los Angeles County. Cancer Res 52: 5510s–5515sPubMedGoogle Scholar
  26. 26.
    Briggs N, Levine R, Brann E (2002) Allergies and risk of non-Hodgkin’s lymphoma by subtype. Cancer Epidemiol Biomarkers Prev 11: 401–407PubMedGoogle Scholar
  27. 27.
    Cozen W, Cerhan J, Martinez-Maza O, Ward M, Linet M, Colt J, Davis S, Severson R, Hartge P, Bernstein L (2007) The effect of atopy, childhood crowding and other immune-related factors on non-Hodgkin lymphoma risk. Cancer Causes Contr 18: 821–831Google Scholar
  28. 28.
    Fabbro-Peray P, Daures J-P, Rossi J-F (2001) Environmental risk factors for non-Hodgkin’s lymphoma: A population-based case-control study in Languedoc-Rousillon, France. Cancer Causes Contr 12: 201–212Google Scholar
  29. 29.
    Grulich A, Vajdic C, Kaldor J, Hughes AM, Kricker A, Fritschi L, Turner JJ, Milliken S, Benke G, Armstrong BK (2005) Birth order, atopy, and risk of non-Hodgkin lymphoma. JNCI 97: 587–594PubMedGoogle Scholar
  30. 30.
    Holly E, Lele C, Bracci P, McGrath MS (1999) Case-control study of non-Hodgkin’s lymphoma among women and heterosexual men in the San Francisco Bay area, California. Am J Epidemiol 150: 375–389PubMedGoogle Scholar
  31. 31.
    Kallen B, Gunnarskog J, Conradson T (1993) Cancer risk in asthmatic subjects selected from hospital discharge registry. Eur Resp J 6: 694–697Google Scholar
  32. 32.
    Turner M, Chen Y, Krewski D, Ghadirian P, Thun M, Calle E (2005) Cancer mortality among US men and women and asthma and hay fever. Am J Epidemiol 162: 212–221PubMedGoogle Scholar
  33. 33.
    Vesterinen E, Pukkala E, Timonen T, Aromaa A (1993) Cancer incidence among 78,000 asthmatic patients. Int J Cancer 22: 976–982Google Scholar
  34. 34.
    Bracci P, Dalvi T, Holly E (2006) Residential history, family characteristics and non-Hodgkin’s lymphoma, a population-based case-control study in the San Francisco Bay are. . Cancer Epidemiol Biomarkers Prev 15: 1287–1294PubMedGoogle Scholar
  35. 35.
    Holly E, Bracci P (2003) Population-based study of non-Hodgkin lymphoma, histology and medical history among human immunodeficiency virus-negative participants in San Francisco. Am J Epidemiol 158: 316–327PubMedGoogle Scholar
  36. 36.
    Whittemore A, Holly E, Lee I-M, Abel E, Adams R, Nickoloff B, Bley L, Peters J, Gibney C (1989) Mycosis fungoides in relation to environmental exposures and immune response: A case-control study. J Natl Cancer Inst 81: 1560–1567PubMedGoogle Scholar
  37. 37.
    Vajdic CM, Falster MO, de Sanjose S, Martínez-Maza O, Becker N, Bracci PM, Melbye M, Smedby KE, Engels EA, Turner J, Vineis P, Costantini AS, Holly EA, Kane E, Spinelli JJ, La Vecchia C, Zheng T, Chiu BC, Maso LD, Cocco P, Maynadié M, Foretova L, Staines A, Brennan P, Davis S, Severson R, Cerhan JR, Breen EC, Birmann B, Cozen W, Grulich AE (2009) Atopic Disease and Risk of Non-Hodgkin Lymphoma: An InterLymph Pooled Analysis. Cancer Res 69: 6482–6489Google Scholar
  38. 38.
    Jarrett R (2006) Viruses and lymphoma/leukemia. J Pathol 208: 176–186PubMedGoogle Scholar
  39. 39.
    Cozen W, Katz J, Mack T (1992) Hodgkin’s disease varies by cell type in Los Angeles. Cancer Epidemiol Biomarkers Preven 1: 261–268Google Scholar
  40. 40.
    Glaser S, Gulley M, Clarke C, Keegan T, Chang E, Shema S, Craig F, Diguiseppe J, Dorfman R, Mann R, Anton-Culver H, Ambinder R (2008) Racial/ethnic variation in EBV-positive classical Hodgkin lymphoma in California. Int J Cancer 123: 1499–1507PubMedGoogle Scholar
  41. 41.
    Skinnider B, Mak T (2002) The role of cytokines in classical Hodgkin lymphoma. Blood 99: 4283–4297PubMedGoogle Scholar
  42. 42.
    Romagnani S, Biagiotti R, Amadori A, Maggi E, Biti G, Bellesi G, Ricci M (1980) Hyperproduction of IgE and T-cell dysfunction in Hodgkin’s disease. Int Arch Allergy Appl Immunol 63: 64–72PubMedGoogle Scholar
  43. 43.
    Amlot P, Green L (1978) Atopy and immunoglobulin E concentrations in Hodgkin’s disease and other lymphomas. BMJ 1: 327–329PubMedGoogle Scholar
  44. 44.
    Samoszuk M, Ramzi E (1992) IgE, Reed-Sternberg cells, and eosinophilia in Hodgkin’s Disease. Leuk Lymphoma 9: 315–319Google Scholar
  45. 45.
    Amlot P, Slaney J, Brown R (1983) Atopy—a favourable prognostic factor for survival in Hodgkin’s disease. Br J Cancer 48: 209–215PubMedGoogle Scholar
  46. 46.
    Slivnik D, Ellis T, Nawrocki J, Risher R (1990) The impact of Hodgkin’s disease on the immune system. Semin Oncol 17: 673–682Google Scholar
  47. 47.
    Chang E, Tongzhang Z, Weir E, Borowitz M, Mann R, Spiegelman D, Mueller N (2004a) Childhood social environment and Hodgkin’s lymphoma: New findings from a population-based case-control study. Cancer Epidemiol Biomarkers Prev 13: 1361–1370Google Scholar
  48. 48.
    Chang E, Zhang T, Lennette E, Weir E, Borowitz M, Mann R, Spiegelman D, Mueller N (2004b) Heterogeneity of risk factors and antibody profiles in Epstein-Barr virus genome-positive and -negative Hodgkin lymphoma. J Infect Dis 189: 2271–2281Google Scholar
  49. 49.
    Pahwa P, McDuffie H, Dosman J, Robson D, McLaughlin J, Spinelli J, Fincham S (2003) Exposure to animals and selected risk factors among Canadian farm residents with Hodgkin’s Disease, multiple myeloma, or soft tissue sarcoma. J Occup Environ Med 45: 857–868PubMedGoogle Scholar
  50. 50.
    Kyle R, Thermeau T, Rajkumar S, Larson D, Plevak M, Offord J, Dispenzieri A, Katzmann J, Melton L, III (2006) Prevalence of monoclonal gammopathy of undetermined sigficance. N Eng J Med 354: 1362–1369Google Scholar
  51. 51.
    Cozen W, Hamilton AS, Zhao P, Salam MT, Deapen DK, Nathwani BN, Weiss LM, Mack TM (2009) A protective role for early childhood exposures and young adult Hodgkin lymphoma. Blood, epub doi: 10.1182/blood-2009-03-209601Google Scholar
  52. 52.
    Kyle R, Therneau T, Rajkumar S, Offord J, Larson D, Plevak M, Melton L, III (2002) A long-term study of prognosis in monoclonal gammopathy of undetermined significance. N Eng J Med 346: 564–569Google Scholar
  53. 53.
    Kairemo K, Lindberg M, Pyrtz M (1999) IgE myeloma: A case presentation and a review of the literature. Scan J Clin Lab Invest 59: 451–456Google Scholar
  54. 54.
    Gebregziabher M, Bernstein L, Wang Y, Cozen W (2006) Risk patterns of multiple myeloma in Los Angeles County, 1972–1999. Cancer Causes Control 17: 931–938PubMedGoogle Scholar
  55. 55.
    Cozen W, Gebregziabher M, Conti D, Van Den Berg D, Coetzee G, Wang S, Rothman N, Bernstein L, Hartge P, Morhbacher A, Coetzee S, Salam M, Wang W, Zadnick J, Ingles S (2006) Interleukin-6 related genotypes, body mass index and risk of multiple myeloma and plasmacytoma. . Cancer Epidemiol Biomarkers Preven 15: 2285–2291Google Scholar
  56. 56.
    Larsson S, Wolk A (2007) Body mass index and multiple myeloma: A meta-analysis. Int J Cancer 121: 2512–2516PubMedGoogle Scholar
  57. 57.
    Alexander DD, Mink PJ, Adami HO, Cole P, Mandel JS, Oken MM, Trichopoulos D (2007) Multiple myeloma: A review of the epidemiologic literature. Int J Cancer 120(Suppl 12): 40–61, doi: 10.1002/ijc.22718PubMedGoogle Scholar
  58. 58.
    Bourguet C, Logue E (1993) Antigenic stimulation and multiple myeloma: A prospective study. Cancer 72: 2148–2154PubMedGoogle Scholar
  59. 59.
    Mills P, Beeson W, Fraser G, Phillips RL (1992) Allergy and cancer: Organ-site specific results from the Adventist Health Study. Am J Epidemiol 136: 287–295PubMedGoogle Scholar
  60. 60.
    Eriksson M (1993) Rheumatoid arthritis as a risk factor for multiple myeloma: A case-control study. Eur J Cancer 29A: 259–263PubMedGoogle Scholar
  61. 61.
    Koepsell T, Daling J, Weiss N, Taylor J, Olshan A, Lyon J, Swanson G, Child M (1987) Antigenic stimulation and the occurrence of multiple myeloma. Am J Epidemiol 126: 1051–1062PubMedGoogle Scholar
  62. 62.
    Landgren O, Zhang Y, Zham S, Inskip P, Zheng T, Baris D (2006) Risk of multiple myeloma following medication use and medical conditions: A case-control study in Connecticut women. Cancer Epidemiol Biomarkers Prev 15: 2342–2347PubMedGoogle Scholar
  63. 63.
    Lewis D, Pottern L, Brown L, Silverman D, Hayes R, Schoenberg J, Greenberg R, Swanson G, Schwartz A, Liff J, Hoover R (1994) Multiple myeloma among Blacks and Whites in the United States: The role of chronic antigenic stimulation Cancer Causes Contr 5: 529–539Google Scholar
  64. 64.
    Boffetta P, Stellman S, Garfinkel L (1989) A case-control study of multiple myeloma nested in the American Cancer Society prospective study. Int J Cancer 43: 554–559PubMedGoogle Scholar
  65. 65.
    Linet M, Harlow S, McLaughlin J, McCaffrey L (1989) A comparison of interview data and medical records for previous medical conditions and surgery. J Clin Epidemiol 42: 1207–1213PubMedGoogle Scholar
  66. 66.
    Burgess J, Walteres E, Byrnes G, Wharton C, Jenkins M, Abramson M, Hopper J, Dharmage S (2006) Who remembers whether they had asthma as children? J Asthma 43: 727–730PubMedGoogle Scholar
  67. 67.
    White LJ, Ozanne BW, Graber P, Aubry JP, Bonnefoy JY, Cushley W (1997) Inhibition of apoptosis in a human pre-B-cell line by CD23 is mediated via a novel receptor. Blood 90: 234–243PubMedGoogle Scholar
  68. 68.
    Chunsong H, Yuling H, Li W, Jie X, Gang Z, Qiuping Z, Qingping G, Kejian Z, Li Q, Chang AE, Youxin J, Jinquan T (2006) CXC chemokine ligand 13 and CC chemokine ligand 19 cooperatively render resistance to apoptosis in B cell lineage acute and chronic lymphocytic leukemia CD23+CD5+ B cells. J Immunol 177: 6713–6767.PubMedGoogle Scholar
  69. 69.
    Fu SL, Pierre J, Smith-Norowitz TA, Hagler M, Bowne W, Pincus MR, Mueller CM, Zenilman ME, Bluth MH (2008) Immunoglobulin E antibodies from pancreatic cancer patients mediate antibody-dependent cell-mediated cytotoxicity against pancreatic cancer cells. Clin Exp Immunol 153: 401–409PubMedGoogle Scholar
  70. 70.
    Jensen-Jarolim E, Achatz G, Turner MC, Karagiannis S, Legrand F, Capron M, Penichet ML, Rodriguez JA, Siccardi AG, Vangelista L, Riemer AB, Gould H (2008) AllergoOncology: The role of IgE-mediated allergy in cancer. Allergy 63: 1255–1266PubMedGoogle Scholar
  71. 71.
    Hartman ML, Lin SY, Jouvin MH, Kinet JP (2008) Role of the extracellular domain of Fc epsilon RI alpha in intracellular processing and surface expression of the high affinity receptor for IgE Fc epsilon RI. Mol Immunol 45: 2307–2311PubMedGoogle Scholar
  72. 72.
    Ozdemir O (2005) Immunosurveillance function of human mast cell? World J Gastroenterol 11: 7054–7056PubMedGoogle Scholar
  73. 73.
    Stingl G, Maurer D (1997) IgE-mediated allergen presentation via Fc epsilon RI on antigen-presenting cells. Int Arch Allergy Immunol 113: 24–29PubMedGoogle Scholar
  74. 74.
    Karagiannis SN, Bracher MG, Beavil RL, Beavil AJ, Hunt J, McCloskey N, Thompson RG, East N, Burke F, Sutton BJ, Dombrowicz D, Balkwill FR, Gould HJ (2008) Role of IgE receptors in IgE antibody-dependent cytotoxicity and phagocytosis of ovarian tumor cells by human monocytic cells. Cancer Immunol Immunother 57: 247–263PubMedGoogle Scholar
  75. 75.
    Karagiannis SN, Bracher MG, Hunt J, McCloskey N, Beavil RL, Beavil AJ, Fear DJ, Thompson RG, East N, Burke F, Moore RJ, Dombrowicz DD, Balkwill FR, Gould HJ (2007) IgE-antibody-dependent immunotherapy of solid tumors: Cytotoxic and phagocytic mechanisms of eradication of ovarian cancer cells. J Immunol 179: 2832–2843PubMedGoogle Scholar
  76. 76.
    Arase N, Arase H, Hirano S, Yokosuka T, Sakurai D, Saito T (2003) IgE-mediated activation of NK cells through Fc gamma RIII. J Immunol 170: 3054–3058PubMedGoogle Scholar
  77. 77.
    Gould HJ, Mackay GA, Karagiannis SN, O’Toole CM, Marsh PJ, Daniel BE, Coney LR, Zurawski VR, Jr., Joseph M, Capron M, Gilbert M, Murphy GF, Korngold R (1999) Comparison of IgE and IgG antibody-dependent cytotoxicity in vitro and in a SCID mouse xenograft model of ovarian carcinoma. Eur J Immunol 29: 3527–3537PubMedGoogle Scholar
  78. 78.
    Sarfati M, Fournier S, Wu CY, Delespesse G (1992) Expression, regulation and function of human Fc epsilon RII (CD23) antigen. Immunol Res 11: 260–272PubMedGoogle Scholar
  79. 79.
    Bonnefoy JY, Lecoanet-Henchoz S, Gauchat JF, Graber P, Aubry JP, Jeannin P, Plater-Zyberk C (1997) Structure and functions of CD23. Int Rev Immunol 16: 113–128PubMedGoogle Scholar
  80. 80.
    Ochiai K, Wang B, Rieger A, Kilgus O, Maurer D, Fodinger D, Kinet JP, Stingl G, Tomioka H (1994) A review on Fc epsilon RI on human epidermal Langerhans cells. Int Arch Allergy Immunol 104(Suppl 1): 63–64PubMedGoogle Scholar
  81. 81.
    Wang B, Rieger A, Kilgus O, Ochiai K, Maurer D, Fodinger D, Kinet JP, Stingl G (1992) Epidermal Langerhans cells from normal human skin bind monomeric IgE via Fc epsilon RI. J Exp Med 175: 1353–1365PubMedGoogle Scholar
  82. 82.
    Prussin C, Metcalfe DD (2006) 5. IgE, mast cells, basophils, and eosinophils. J Allergy Clin Immunol 117: S450–S456PubMedGoogle Scholar
  83. 83.
    Kikutani H, Yokota A, Uchibayashi N, Yukawa K, Tanaka T, Sugiyama K, Barsumian EL, Suemura M, Kishimoto T (1989) Structure and function of Fc epsilon receptor II (Fc epsilon RII/CD23): A point of contact between the effector phase of allergy and B cell differentiation. Ciba Found Symp 147: 23–31; discussion 31–25PubMedGoogle Scholar
  84. 84.
    Rivera J, Olivera A (2008) A current understanding of Fc epsilon RI-dependent mast cell activation. Curr Allergy Asthma Rep 8: 14–20PubMedGoogle Scholar
  85. 85.
    Kolb JP, Abadie A, Paul-Eugene N, Capron M, Sarfati M, Dugas B, Delespesse G (1993) Ligation of CD23 triggers cyclic AMP generation in human B lymphocytes. J Immunol 150: 4798–4809PubMedGoogle Scholar
  86. 86.
    Paul-Eugene N, Kolb JP, Abadie A, Gordon J, Delespesse G, Sarfati M, Mencia-Huerta JM, Braquet P, Dugas B (1992) Ligation of CD23 triggers cAMP generation and release of inflammatory mediators in human monocytes. J Immunol 149: 3066–3071PubMedGoogle Scholar
  87. 87.
    Costain DJ, Guha AK, Liwski RS, Lee TD (2001) Murine hypodense eosinophils induce tumour cell apoptosis by a granzyme B-dependent mechanism. Cancer Immunol Immunother 50: 293–299PubMedGoogle Scholar
  88. 88.
    Strik MC, de Koning PJ, Kleijmeer MJ, Bladergroen BA, Wolbink AM, Griffith JM, Wouters D, Fukuoka Y, Schwartz LB, Hack CE, van Ham SM, Kummer JA (2007) Human mast cells produce and release the cytotoxic lymphocyte associated protease granzyme B upon activation. Mol Immunol 44: 3462–3472PubMedGoogle Scholar
  89. 89.
    Strunk RC, Bloomberg GR (2006) Omalizumab for asthma. N Engl J Med 354: 2689–2695PubMedGoogle Scholar
  90. 90.
    Matta GM, Battaglio S, Dibello C, Napoli P, Baldi C, Ciccone G, Coscia M, Boccadoro M, Massaia M (2007) Polyclonal immunoglobulin E levels are correlated with hemoglobin values and overall survival in patients with multiple myeloma. Clin Cancer Res 13: 5348–5354PubMedGoogle Scholar
  91. 91.
    Ekstrom Smedby K, Vajdic CM, Falster M, Engels EA, Martinez-Maza O, Turner J, Hjalgrim H, Vineis P, Seniori Costantini A, Bracci PM, Holly EA, Willett E, Spinelli JJ, La Vecchia C, Zheng T, Becker N, De Sanjose S, Chiu BC, Dal Maso L, Cocco P, Maynadie M, Foretova L, Staines A, Brennan P, Davis S, Severson R, Cerhan JR, Breen EC, Birmann B, Grulich AE, Cozen W (2008) Autoimmune disorders and risk of non-Hodgkin lymphoma subtypes: A pooled analysis within the InterLymph Consortium. Blood 111: 4029–4038PubMedGoogle Scholar
  92. 92.
    Gordon J (1992) CD23 and B cell activation. Clin Exp Allergy 22: 199–204PubMedGoogle Scholar
  93. 93.
    Yawetz S, Cumberland WG, van der Meyden M, Martinez-Maza O (1995) Elevated serum levels of soluble CD23 (sCD23) precede the appearance of acquired immunodeficiency syndrome–associated non-Hodgkin’s lymphoma. Blood 85: 1843–1849PubMedGoogle Scholar
  94. 94.
    Schroeder JR, Saah AJ, Ambinder RF, Martinez-Maza O, Crabb Breen E, Variakojis D, Margolick JB, Jacobson LP, Rowe DT, Hoover DR (1999) Serum sCD23 level in patients with AIDS-related non-Hodgkin’s lymphoma is associated with absence of Epstein-Barr virus in tumor tissue. Clin Immunol 93: 239–244PubMedGoogle Scholar
  95. 95.
    Schroeder JR, Saah AJ, Hoover DR, Margolick JB, Ambinder RF, Martinez-Maza O, Breen EC, Jacobson LP, Variakojis D, Rowe DT, Armenian HK (1999) Serum soluble CD23 level correlates with subsequent development of AIDS-related non-Hodgkin’s lymphoma. Cancer Epidemiol Biomarkers Prev 8: 979–984PubMedGoogle Scholar
  96. 96.
    Hannig H, Buske C, Matz-Rensing K, Hunsmann G, Hiddemann W, Bodemer W (1998) Elevated serum level of soluble CD23 precedes development of B-non-Hodgkin’s lymphoma in SIV-infected Rhesus monkeys. Int J Cancer 77: 734–740PubMedGoogle Scholar
  97. 97.
    Kawabe T, Takami M, Hosoda M, Maeda Y, Sato S, Mayumi M, Mikawa H, Arai K, Yodoi J (1988) Regulation of Fc epsilon R2/CD23 gene expression by cytokines and specific ligands (IgE and anti-Fc epsilon R2 monoclonal antibody). Variable regulation depending on the cell types. J Immunol 141: 1376–1382PubMedGoogle Scholar
  98. 98.
    Ford JW, Kilmon MA, Haas KM, Shelburne AE, Chan-Li Y, Conrad DH (2006) In vivo murine CD23 destabilization enhances CD23 shedding and IgE synthesis. Cell Immunol 243: 107–117PubMedGoogle Scholar
  99. 99.
    Fournier S, Delespesse G, Rubio M, Biron G, Sarfati M (1992) CD23 antigen regulation and signaling in chronic lymphocytic leukemia. J Clin Invest 89: 1312–1321PubMedGoogle Scholar
  100. 100.
    Conrad DH, Ford JW, Sturgill JL, Gibb DR (2007) CD23: An overlooked regulator of allergic disease. Curr Allergy Asthma Rep 7: 331–337PubMedGoogle Scholar
  101. 101.
    Yamada T, Zhu D, Zhang K, Saxon A (2003) Inhibition of interleukin-4-induced class switch recombination by a human immunoglobulin Fc gamma-Fc epsilon chimeric protein. J Biol Chem 278: 32818–32824PubMedGoogle Scholar
  102. 102.
    Oettgen HC, Geha RS (2001) IgE regulation and roles in asthma pathogenesis. J Allergy Clin Immunol 107: 429–440PubMedGoogle Scholar
  103. 103.
    Smedby KE, Hjalgrim H, Askling J, Chang ET, Gregersen H, Porwit-MacDonald A, Sundstrom C, Akerman M, Melbye M, Glimelius B, Adami HO (2006) Autoimmune and chronic inflammatory disorders and risk of non-Hodgkin lymphoma by subtype. J Natl Cancer Inst 98: 51–60PubMedGoogle Scholar
  104. 104.
    Romagnani S (2008) Human Th17 cells. Arthritis Res Ther 10: 206PubMedGoogle Scholar
  105. 105.
    Annunziato F, Cosmi L, Santarlasci V, Maggi L, Liotta F, Mazzinghi B, Parente E, Fili L, Ferri S, Frosali F, Giudici F, Romagnani P, Parronchi P, Tonelli F, Maggi E, Romagnani S (2007) Phenotypic and functional features of human Th17 cells. J Exp Med 204: 1849–1861PubMedGoogle Scholar
  106. 106.
    Annunziato F, Cosmi L, Liotta F, Maggi E, Romagnani S (2008) The phenotype of human Th17 cells and their precursors, the cytokines that mediate their differentiation and the role of Th17 cells in inflammation. Int Immunol 20: 1361–1368PubMedGoogle Scholar
  107. 107.
    Korn T, Oukka M, Kuchroo V, Bettelli E (2007) Th17 cells: Effector T cells with inflammatory properties. Semin Immunol 19: 362–371PubMedGoogle Scholar
  108. 108.
    Katsifis GE, Moutsopoulos NM, Wahl SM (2007) T lymphocytes in Sjogren’s syndrome: Contributors to and regulators of pathophysiology. Clin Rev Allergy Immunol 32: 252–264PubMedGoogle Scholar
  109. 109.
    Stockinger B, Veldhoen M (2007) Differentiation and function of Th17 T cells. Curr Opin Immunol 19: 281–286PubMedGoogle Scholar
  110. 110.
    Weaver CT, Harrington LE, Mangan PR, Gavrieli M, Murphy KM (2006) Th17: An effector CD4 T cell lineage with regulatory T cell ties. Immunity 24: 677–688PubMedGoogle Scholar
  111. 111.
    Ouyang W, Kolls JK, Zheng Y (2008) The biological functions of T helper 17 cell effector cytokines in inflammation. Immunity 28: 454–467PubMedGoogle Scholar
  112. 112.
    Legouffe E, Rodriguez C, Picot MC, Richard B, Klein B, Rossi JF, Commes T (1998) C-reactive protein serum level is a valuable and simple prognostic marker in non Hodgkin’s lymphoma. Leuk Lymphoma 31: 351–357PubMedGoogle Scholar
  113. 113.
    Pluda JM, Venzon DJ, Tosato G, Lietzau J, Wyvill K, Nelson DL, Jaffe ES, Karp JE, Broder S, Yarchoan R (1993) Parameters affecting the development of non-Hodgkin’s lymphoma in patients with severe human immunodeficiency virus infection receiving antiretroviral therapy. J Clin Oncol 11: 1099–1107PubMedGoogle Scholar
  114. 114.
    Breen EC, van der Meijden M, Cumberland W, Kishimoto T, Detels R, Martinez-Maza O (1999) The development of AIDS-associated Burkitt’s/small noncleaved cell lymphoma is preceded by elevated serum levels of interleukin-6. Clin Immunol 92: 293–299PubMedGoogle Scholar
  115. 115.
    el-Far M, Fouda M, Yahya R, el-Baz H (2004) Serum IL-10 and IL-6 levels at diagnosis as independent predictors of outcome in non-Hodgkin’s lymphoma. J Physiol Biochem 60: 253–258PubMedGoogle Scholar
  116. 116.
    Pedersen LM, Klausen TW, Davidsen UH, Johnsen HE (2005) Early changes in serum IL-6 and VEGF levels predict clinical outcome following first-line therapy in aggressive non-Hodgkin’s lymphoma. Ann Hematol 84: 510–516PubMedGoogle Scholar
  117. 117.
    Niitsu N, Okamato M, Nakamine H, Yoshino T, Tamaru J, Nakamura S, Higashihara M, Hirano M (2002) Simultaneous elevation of the serum concentrations of vascular endothelial growth factor and interleukin-6 as independent predictors of prognosis in aggressive non-Hodgkin’s lymphoma. Eur J Haematol 68: 91–100PubMedGoogle Scholar
  118. 118.
    Fayad L, Cabanillas F, Talpaz M, McLaughlin P, Kurzrock R (1998) High serum interleukin-6 levels correlate with a shorter failure-free survival in indolent lymphoma. Leuk Lymphoma 30: 563–571PubMedGoogle Scholar
  119. 119.
    Kato H, Kinoshita T, Suzuki S, Nagasaka T, Hatano S, Murate T, Saito H, Hotta T (1998) Production and effects of interleukin-6 and other cytokines in patients with non-Hodgkin’s lymphoma. Leuk Lymphoma 29: 71–79PubMedGoogle Scholar
  120. 120.
    Voorzanger N, Touitou R, Garcia E, Delecluse HJ, Rousset F, Joab I, Favrot MC, Blay JY (1996) Interleukin (IL)-10 and IL-6 are produced in vivo by non-Hodgkin’s lymphoma cells and act as cooperative growth factors. Cancer Res 56: 5499–5505PubMedGoogle Scholar
  121. 121.
    Kato H, Kinoshita T, Suzuki S, Nagasaka T, Murate T, Saito H, Hotta T (1996) Elevated serum interleukin-6 (IL-6) is derived from neoplastic lymphoid cells in patients with B-cell non-Hodgkin’s lymphoma: Correlation with extent of IL-6 expression and serum concentration. Br J Haematol 92: 1014–1021PubMedGoogle Scholar
  122. 122.
    Suematsu S, Matsuda T, Aozasa K, Akira S, Nakano N, Ohno S, Miyazaki J, Yamamura K, Hirano T, Kishimoto T (1989) IgG1 plasmacytosis in interleukin-6 transgenic mice. Proc Natl Acad Sci USA 86: 7547–7551PubMedGoogle Scholar
  123. 123.
    Wang SS, Cozen W, Cerhan JR, Colt JS, Morton LM, Engels EA, Davis S, Severson RK, Rothman N, Chanock SJ, Hartge P (2007) Immune mechanisms in non-Hodgkin lymphoma: Joint effects of the TNF G308A and IL10 T3575A polymorphisms with non-Hodgkin lymphoma risk factors. Cancer Res 67: 5042–5054PubMedGoogle Scholar
  124. 124.
    Purdue MP, Lan Q, Kricker A, Grulich AE, Vajdic CM, Turner J, Whitby D, Chanock S, Rothman N, Armstrong BK (2007) Polymorphisms in immune function genes and risk of non-Hodgkin lymphoma: Findings from the New South Wales non-Hodgkin Lymphoma Study. Carcinogenesis 28: 704–712PubMedGoogle Scholar
  125. 125.
    Wang SS, Cerhan JR, Hartge P, Davis S, Cozen W, Severson RK, Chatterjee N, Yeager M, Chanock SJ, Rothman N (2006) Common genetic variants in proinflammatory and other immunoregulatory genes and risk for non-Hodgkin lymphoma. Cancer Res 66: 9771–9780PubMedGoogle Scholar
  126. 126.
    Rothman N, Skibola CF, Wang SS, Morgan G, Lan Q, Smith MT, Spinelli JJ, Willett E, De Sanjose S, Cocco P, Berndt SI, Brennan P, Brooks-Wilson A, Wacholder S, Becker N, Hartge P, Zheng T, Roman E, Holly EA, Boffetta P, Armstrong B, Cozen W, Linet M, Bosch FX, Ennas MG, Holford TR, Gallagher RP, Rollinson S, Bracci PM, Cerhan JR, Whitby D, Moore PS, Leaderer B, Lai A, Spink C, Davis S, Bosch R, Scarpa A, Zhang Y, Severson RK, Yeager M, Chanock S, Nieters A (2006) Genetic variation in TNF and IL10 and risk of non-Hodgkin lymphoma: A report from the InterLymph Consortium. Lancet Oncol 7: 27–38PubMedGoogle Scholar
  127. 127.
    Sappino AP, Seelentag W, Pelte MF, Alberto P, Vassalli P (1990) Tumor necrosis factor/cachectin and lymphotoxin gene expression in lymph nodes from lymphoma patients. Blood 75: 958–962PubMedGoogle Scholar
  128. 128.
    Macia J, Gomez X, Esquerda A, Perez B, Callao V, Marzo C (1996) Value of the determination of TNF-alpha in the plasma of patients with non-Hodgkins lymphoma. Leuk Lymphoma 20: 481–486PubMedGoogle Scholar
  129. 129.
    Warzocha K, Salles G, Bienvenu J, Bastion Y, Dumontet C, Renard N, Neidhardt-Berard EM, Coiffier B (1997) Tumor necrosis factor ligand-receptor system can predict treatment outcome in lymphoma patients. J Clin Oncol 15: 499–508PubMedGoogle Scholar
  130. 130.
    Warzocha K, Ribeiro P, Bienvenu J, Roy P, Charlot C, Rigal D, Coiffier B, Salles G (1998) Genetic polymorphisms in the tumor necrosis factor locus influence non-Hodgkin’s lymphoma outcome. Blood 91: 3574–3581PubMedGoogle Scholar
  131. 131.
    Lissoni P, Bolis S, Mandala M, Viviani S, Pogliani E, Barni S (1999) Blood concentrations of tumor necrosis factor-alpha in malignant lymphomas and their decrease as a predictor of disease control in response to low-dose subcutaneous immunotherapy with interleukin-2. Int J Biol Markers 14: 167–171PubMedGoogle Scholar
  132. 132.
    Seidemann K, Zimmermann M, Book M, Meyer U, Burkhardt B, Welte K, Reiter A, Stanulla M (2005) Tumor necrosis factor and lymphotoxin alfa genetic polymorphisms and outcome in pediatric patients with non-Hodgkin’s lymphoma: Results from Berlin-Frankfurt-Munster Trial NHL-BFM 95. J Clin Oncol 23: 8414–8421PubMedGoogle Scholar
  133. 133.
    Spink CF, Keen LJ, Mensah FK, Law GR, Bidwell JL, Morgan GJ (2006) Association between non-Hodgkin lymphoma and haplotypes in the TNF region. Br J Haematol 133: 293–300PubMedGoogle Scholar
  134. 134.
    Bel Hadj Jrad B, Chatti A, Laatiri A, Ahmed SB, Romdhane A, Ajimi S, Chouchane L (2007) Tumor necrosis factor promoter gene polymorphism associated with increased susceptibility to non-Hodgkin’s lymphomas. Eur J Haematol 78: 117–122PubMedGoogle Scholar
  135. 135.
    Nowak J, Kalinka-Warzocha E, Juszczynski P, Bilinski P, Mika-Witkowska R, Zajko M, Bienvenu J, Coiffier B, Salles G, Warzocha K (2007) Association of human leukocyte antigen ancestral haplotype 8.1 with adverse outcome of non-Hodgkin’s lymphoma. Genes, Chromosomes & Cancer 46: 500–507Google Scholar
  136. 136.
    Skibola CF, Curry JD, Nieters A (2007) Genetic susceptibility to lymphoma. Haematologica 92: 960–969PubMedGoogle Scholar
  137. 137.
    Suematsu S, Hibi M, Sugita T, Saito M, Murakami M, Matsusaka T, Matsuda T, Hirano T, Taga T, Kishimoto T (1990) Interleukin 6 (IL-6) and its receptor (IL-6R) in myeloma/plasmacytoma. Curr Top Microbiol Immunol 166: 13–22PubMedGoogle Scholar
  138. 138.
    Ma CS, Chew GY, Simpson N, Priyadarshi A, Wong M, Grimbacher B, Fulcher DA, Tangye SG, Cook MC (2008) Deficiency of Th17 cells in hyper IgE syndrome due to mutations in STAT3. J Exp Med 205: 1551–1557PubMedGoogle Scholar
  139. 139.
    Milner JD, Brenchley JM, Laurence A, Freeman AF, Hill BJ, Elias KM, Kanno Y, Spalding C, Elloumi HZ, Paulson ML, Davis J, Hsu A, Asher AI, O’Shea J, Holland SM, Paul WE, Douek DC (2008) Impaired T(H)17 cell differentiation in subjects with autosomal dominant hyper-IgE syndrome. Nature 452: 773–776PubMedGoogle Scholar
  140. 140.
    Schnyder-Candrian S, Togbe D, Couillin I, Mercier I, Brombacher F, Quesniaux V, Fossiez F, Ryffel B, Schnyder B (2006) Interleukin-17 is a negative regulator of established allergic asthma. J Exp Med 203: 2715–2725PubMedGoogle Scholar
  141. 141.
    Wang YH, Liu YJ (2008) The IL-17 cytokine family and their role in allergic inflammation. Curr Opin Immunol 20: 697–702PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Otoniel Martínez-Maza
    • 1
  • Alan Duane Moreno
    • 2
  • Wendy Cozen
    • 1
    Email author
  1. 1.Departments of Preventive Medicine and Pathology, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesUSA
  2. 2.Departments of Obstetrics and Gynecology and Department of Microbiology, Immunology, and Molecular GeneticsJonsson Comprehensive Cancer Center, AIDS Institute, David Geffen School of Medicine University of CaliforniaLos AngelesUSA

Personalised recommendations