Advertisement

Cancer and IgE pp 255-275 | Cite as

The Role of Th2-Mediated Anti-Tumor Immunity in Tumor Surveillance and Clearance

  • Ljubov SimsonEmail author
  • Julia I. Ellyard
  • Christopher R. Parish
Chapter

Abstract

The concept that the immune system has the potential to recognize tumor cells and either eliminate them (tumor immune surveillance) or select for immune-resistant variants (immunoediting) has gained a resurgence of interest by the scientific community in the last decade. To date, much of the research on the immune response to cancer has focused on the response of cytotoxic CD8+ T lymphocytes to tumor-specific antigens and the production of Th1 cytokines by CD4+ and CD8+ T cells. In contrast, Th2-mediated immunity has traditionally been viewed as enhancing tumor growth, both by promoting angiogenesis and by inhibiting cell-mediated immunity and subsequent tumor cell killing. Although components of Th2-mediated immunity have been shown to promote tumor growth, there is also an expanding body of evidence demonstrating the anti-tumor activity of CD4+ Th2 cells, particularly in collaboration with tumor-infiltrating granulocytes, such as eosinophils. In this chapter we examine all the key components of type 2 immunity and their effects on tumor growth. Based on this collective data, there exists great potential for the development of Th2-mediated immunotherapies that harness the anti-tumor activity of eosinophils, alternatively activated macrophages and the antigen–IgE–receptor axis.

Keywords

Mast Cell Classical Hodgkin Lymphoma Tumor Eradication Tumor Clearance Tumor Immune Surveillance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported by a National Health and Medical Research Council of Australia (NHMRC) Program grant. L.S. is a recipient of a NHMRC Peter Doherty Postdoctoral Fellowship and ACT Health and Medical Research Grant.

References

  1. 1.
    Dunn, G.P., L.J. Old, and R.D. Schreiber. 2004. The three Es of cancer immunoediting. Annu Rev Immunol 22:329–360.PubMedCrossRefGoogle Scholar
  2. 2.
    Tey, S.K., C.M. Bollard, and H.E. Heslop. 2006. Adoptive T-cell transfer in cancer immunotherapy. Immunol Cell Biol 84:281–289.PubMedCrossRefGoogle Scholar
  3. 3.
    Rammensee, H.G. 2006. Some considerations on the use of peptides and mRNA for therapeutic vaccination against cancer. Immunol Cell Biol 84:290–294.PubMedCrossRefGoogle Scholar
  4. 4.
    Urosevic, M., and R. Dummer. 2008. Human leukocyte antigen-G and cancer immunoediting. Cancer Res 68:627–630.PubMedCrossRefGoogle Scholar
  5. 5.
    Brigati, C., D.M. Noonan, A. Albini, and R. Benelli. 2002. Tumors and inflammatory infiltrates: friends or foes? Clin Exp Metastasis 19:247–258.PubMedCrossRefGoogle Scholar
  6. 6.
    Parish, C.R. 2003. Cancer immunotherapy: the past, the present and the future. Immunol Cell Biol 81:106–113.PubMedCrossRefGoogle Scholar
  7. 7.
    Sant, A.J., F.A. Chaves, S.A. Jenks, K.A. Richards, P. Menges, J.M. Weaver, and C.A. Lazarski. 2005. The relationship between immunodominance, DM editing, and the kinetic stability of MHC class II: peptide complexes. Immunol Rev 207:261–278.PubMedCrossRefGoogle Scholar
  8. 8.
    Hung, K., R. Hayashi, A. Lafond-Walker, C. Lowenstein, D. Pardoll, and H. Levitsky. 1998. The central role of CD4(+) T cells in the antitumor immune response. J Exp Med 188:2357–2368.PubMedCrossRefGoogle Scholar
  9. 9.
    Nishimura, T., K. Iwakabe, M. Sekimoto, Y. Ohmi, T. Yahata, M. Nakui, T. Sato, S. Habu, H. Tashiro, M. Sato, and A. Ohta. 1999. Distinct role of antigen-specific T helper type 1 (Th1) and Th2 cells in tumor eradication in vivo. J Exp Med 190:617–627.PubMedCrossRefGoogle Scholar
  10. 10.
    Ossendorp, F., E. Mengede, M. Camps, R. Filius, and C.J. Melief. 1998. Specific T helper cell requirement for optimal induction of cytotoxic T lymphocytes against major histocompatibility complex class II negative tumors. J Exp Med 187:693–702.PubMedCrossRefGoogle Scholar
  11. 11.
    Mautner, J., E.M. Jaffee, and D.M. Pardoll. 2005. Tumor-specific CD4+ T cells from a patient with renal cell carcinoma recognize diverse shared antigens. Int J Cancer 115:752–759.PubMedCrossRefGoogle Scholar
  12. 12.
    Mattes, J., M. Hulett, W. Xie, S. Hogan, M.E. Rothenberg, P. Foster, and C. Parish. 2003. Immunotherapy of cytotoxic T cell-resistant tumors by T helper 2 cells: an eotaxin and STAT6-dependent process. J Exp Med 197:387–393.PubMedCrossRefGoogle Scholar
  13. 13.
    Modesti, A., L. Masuelli, A. Modica, G. D’Orazi, S. Scarpa, M.C. Bosco, and G. Forni. 1993. Ultrastructural evidence of the mechanisms responsible for interleukin-4-activated rejection of a spontaneous murine adenocarcinoma. Int J Cancer 53:988–993.PubMedCrossRefGoogle Scholar
  14. 14.
    Musiani, P., A. Allione, A. Modica, P.L. Lollini, M. Giovarelli, F. Cavallo, F. Belardelli, G. Forni, and A. Modesti. 1996. Role of neutrophils and lymphocytes in inhibition of a mouse mammary adenocarcinoma engineered to release IL-2, IL-4, IL-7, IL-10, IFN-alpha, IFN-gamma, and TNF-alpha. Lab Invest 74:146–157.PubMedGoogle Scholar
  15. 15.
    Tepper, R.I., R.L. Coffman, and P. Leder. 1992. An eosinophil-dependent mechanism for the antitumor effect of interleukin-4. Science 257:548–551.PubMedCrossRefGoogle Scholar
  16. 16.
    Tepper, R.I., P.K. Pattengale, and P. Leder. 1989. Murine interleukin-4 displays potent anti-tumor activity in vivo. Cell 57:503–512.PubMedCrossRefGoogle Scholar
  17. 17.
    Mosmann, T.R., H. Cherwinski, M.W. Bond, M.A. Giedlin, and R.L. Coffman. 2005. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. 1986. J Immunol 175:5–14.PubMedGoogle Scholar
  18. 18.
    Becker, Y. 2006. Molecular immunological approaches to biotherapy of human cancers – a review, hypothesis and implications. Anticancer Res 26:1113–1134.PubMedGoogle Scholar
  19. 19.
    Shurin, M.R., L. Lu, P. Kalinski, A.M. Stewart-Akers, and M.T. Lotze. 1999. Th1/Th2 balance in cancer, transplantation and pregnancy. Springer Semin Immunopathol 21: 339–359.PubMedCrossRefGoogle Scholar
  20. 20.
    Ellyard, J.I., L. Simson, and C.R. Parish. 2007. Th2-mediated anti-tumour immunity: friend or foe? Tissue Antigens 70:1–11.PubMedCrossRefGoogle Scholar
  21. 21.
    Ito, N., Y. Suzuki, Y. Taniguchi, K. Ishiguro, H. Nakamura, and S. Ohgi. 2005. Prognostic significance of T helper 1 and 2 and T cytotoxic 1 and 2 cells in patients with non-small cell lung cancer. Anticancer Res 25:2027–2031.PubMedGoogle Scholar
  22. 22.
    Kidd, P. 2003. Th1/Th2 balance: the hypothesis, its limitations, and implications for health and disease. Altern Med Rev 8:223–246.PubMedGoogle Scholar
  23. 23.
    Simson, L., J.I. Ellyard, L.A. Dent, K.I. Matthaei, M.E. Rothenberg, P.S. Foster, M.J. Smyth, and C.R. Parish. 2007. Regulation of carcinogenesis by IL-5 and CCL11: a potential role for eosinophils in tumor immune surveillance. J Immunol 178:4222–4229.PubMedGoogle Scholar
  24. 24.
    Pericle, F., M. Giovarelli, M.P. Colombo, G. Ferrari, P. Musiani, A. Modesti, F. Cavallo, F. Di Pierro, F. Novelli, and G. Forni. 1994. An efficient Th2-type memory follows CD8+ lymphocyte-driven and eosinophil-mediated rejection of a spontaneous mouse mammary adenocarcinoma engineered to release IL-4. J Immunol 153:5659–5673.PubMedGoogle Scholar
  25. 25.
    Schuler, T., S. Kornig, and T. Blankenstein. 2003. Tumor rejection by modulation of tumor stromal fibroblasts. J Exp Med 198:1487–1493.PubMedCrossRefGoogle Scholar
  26. 26.
    Conticello, C., F. Pedini, A. Zeuner, M. Patti, M. Zerilli, G. Stassi, A. Messina, C. Peschle, and R. De Maria. 2004. IL-4 protects tumor cells from anti-CD95 and chemotherapeutic agents via up-regulation of antiapoptotic proteins. J Immunol 172:5467–5477.PubMedGoogle Scholar
  27. 27.
    Falkensammer, C., K. Johrer, H. Gander, R. Ramoner, T. Putz, A. Rahm, R. Greil, G. Bartsch, and M. Thurnher. 2006. IL-4 inhibits the TNF-alpha induced proliferation of renal cell carcinoma (RCC) and cooperates with TNF-alpha to induce apoptotic and cytokine responses by RCC: implications for antitumor immune responses. Cancer Immunol Immunother 55:1228–1237.PubMedCrossRefGoogle Scholar
  28. 28.
    Nagai, S., and M. Toi. 2000. Interleukin-4 and breast cancer. Breast Cancer 7:181–186.PubMedCrossRefGoogle Scholar
  29. 29.
    Taylor, C.W., T.M. Grogan, and S.E. Salmon. 1990. Effects of interleukin-4 on the in vitro growth of human lymphoid and plasma cell neoplasms. Blood 75:1114–1118.PubMedGoogle Scholar
  30. 30.
    Margolin, K., F.R. Aronson, M. Sznol, M.B. Atkins, R. Gucalp, R.I. Fisher, M. Sunderland, J.H. Doroshow, M.L. Ernest, J.W. Mier, J.P. Dutcher, E.R. Gaynor and G.R. Weiss. 1994. Phase II studies of recombinant human interleukin-4 in advanced renal cancer and malignant melanoma. J Immunother Emphasis Tumor Immunol 15:147–153.PubMedGoogle Scholar
  31. 31.
    Stadler, W.M., M.E. Rybak, and N.J. Vogelzang. 1995. A phase II study of subcutaneous recombinant human interleukin-4 in metastatic renal cell carcinoma. Cancer 76:1629–1633.PubMedCrossRefGoogle Scholar
  32. 32.
    Whitehead, R.P., J.M. Unger, J.W. Goodwin, M.J. Walker, J.A. Thompson, L.E. Flaherty, and V.K. Sondak. 1998. Phase II trial of recombinant human interleukin-4 in patients with disseminated malignant melanoma: a Southwest Oncology Group study. J Immunother 21:440–446.PubMedCrossRefGoogle Scholar
  33. 33.
    Tulpule, A., B. Joshi, N. DeGuzman, B.M. Espina, R. Mocharnuk, O. Prakash, D. Templeton, A.M. Levine, and P.S. Gill. 1997. Interleukin-4 in the treatment of AIDS-related Kaposi’s sarcoma. Ann Oncol 8:79–83.PubMedCrossRefGoogle Scholar
  34. 34.
    Caput, D., P. Laurent, M. Kaghad, J.M. Lelias, S. Lefort, N. Vita, and P. Ferrara. 1996. Cloning and characterization of a specific interleukin (IL)-13 binding protein structurally related to the IL-5 receptor alpha chain. J Biol Chem 271:16921–16926.PubMedCrossRefGoogle Scholar
  35. 35.
    Zhang, J.G., D.J. Hilton, T.A. Willson, C. McFarlane, B.A. Roberts, R.L. Moritz, R.J. Simpson, W.S. Alexander, D. Metcalf, and N.A. Nicola. 1997. Identification, purification, and characterization of a soluble interleukin (IL)-13-binding protein. Evidence that it is distinct from the cloned Il-13 receptor and Il-4 receptor alpha-chains. J Biol Chem 272:9474–9480.PubMedCrossRefGoogle Scholar
  36. 36.
    Lebel-Binay, S., B. Laguerre, F. Quintin-Colonna, H. Conjeaud, M. Magazin, B. Miloux, F. Pecceu, D. Caput, P. Ferrara, and D. Fradelizi. 1995. Experimental gene therapy of cancer using tumor cells engineered to secrete interleukin-13. Eur J Immunol 25:2340–2348.PubMedCrossRefGoogle Scholar
  37. 37.
    Ma, H.L., M.J. Whitters, B.A. Jacobson, D.D. Donaldson, M. Collins, and K. Dunussi-Joannopoulos. 2004. Tumor cells secreting IL-13 but not IL-13Ralpha2 fusion protein have reduced tumorigenicity in vivo. Int Immunol 16:1009–1017.PubMedCrossRefGoogle Scholar
  38. 38.
    Terabe, M., J.M. Park, and J.A. Berzofsky. 2004. Role of IL-13 in regulation of anti-tumor immunity and tumor growth. Cancer Immunol Immunother 53:79–85.PubMedCrossRefGoogle Scholar
  39. 39.
    Singer, M., J. Lefort, and B.B. Vargaftig. 2002. Granulocyte depletion and dexamethasone differentially modulate airways hyperreactivity, inflammation, mucus accumulation, and secretion induced by rmIL-13 or antigen. Am J Respir Cell Mol Biol 26:74–84.PubMedGoogle Scholar
  40. 40.
    Skinnider, B.F., U. Kapp, and T.W. Mak. 2002. The role of interleukin 13 in classical Hodgkin lymphoma. Leuk Lymphoma 43:1203–1210.PubMedCrossRefGoogle Scholar
  41. 41.
    Kawakami, K. 2005. Cancer gene therapy utilizing interleukin-13 receptor alpha2 chain. Curr Gene Ther 5:213–223.PubMedCrossRefGoogle Scholar
  42. 42.
    Kioi, M., S.R. Husain, D. Croteau, S. Kunwar, and R.K. Puri. 2006. Convection-enhanced delivery of interleukin-13 receptor-directed cytotoxin for malignant glioma therapy. Technol Cancer Res Treat 5:239–250.PubMedGoogle Scholar
  43. 43.
    Kawakami, K., M. Kawakami, P.J. Snoy, S.R. Husain, and R.K. Puri. 2001. In vivo overexpression of IL-13 receptor alpha2 chain inhibits tumorigenicity of human breast and pancreatic tumors in immunodeficient mice. J Exp Med 194: 1743–1754.PubMedCrossRefGoogle Scholar
  44. 44.
    Jarboe, J.S., K.R. Johnson, Y. Choi, R.R. Lonser, and J.K. Park. 2007. Expression of interleukin-13 receptor alpha2 in glioblastoma multiforme: implications for targeted therapies. Cancer Res 67:7983–7986.PubMedCrossRefGoogle Scholar
  45. 45.
    Dummer, W., B.C. Bastian, N. Ernst, C. Schanzle, A. Schwaaf, and E.B. Brocker. 1996. Interleukin-10 production in malignant melanoma: preferential detection of IL-10-secreting tumor cells in metastatic lesions. Int J Cancer 66:607–610.PubMedCrossRefGoogle Scholar
  46. 46.
    Salazar-Onfray, F., M.N. Lopez, and A. Mendoza-Naranjo. 2007. Paradoxical effects of cytokines in tumor immune surveillance and tumor immune escape. Cytokine Growth Factor Rev 18:171–182.PubMedCrossRefGoogle Scholar
  47. 47.
    Sharma, S., M. Stolina, Y. Lin, B. Gardner, P.W. Miller, M. Kronenberg, and S.M. Dubinett. 1999. T cell-derived IL-10 promotes lung cancer growth by suppressing both T cell and APC function. J Immunol 163:5020–5028.PubMedGoogle Scholar
  48. 48.
    Matsuda, M., F. Salazar, M. Petersson, G. Masucci, J. Hansson, P. Pisa, Q.J. Zhang, M.G. Masucci, and R. Kiessling. 1994. Interleukin 10 pretreatment protects target cells from tumor- and allo-specific cytotoxic T cells and downregulates HLA class I expression. J Exp Med 180:2371–2376.PubMedCrossRefGoogle Scholar
  49. 49.
    Commins, S., J.W. Steinke, and L. Borish. 2008. The extended IL-10 superfamily: IL-10, IL-19, IL-20, IL-22, IL-24, IL-26, IL-28, and IL-29. J Allergy Clin Immunol 121:1108–1111.PubMedCrossRefGoogle Scholar
  50. 50.
    Kreis, S., D. Philippidou, C. Margue, and I. Behrmann. 2008. IL-24: a classic cytokine and/or a potential cure for cancer? J Cell Mol Med 12:2505–2510.Google Scholar
  51. 51.
    Wang, M., Z. Tan, R. Zhang, S.V. Kotenko, and P. Liang. 2002. Interleukin 24 (MDA-7/MOB-5) signals through two heterodimeric receptors, IL-22R1/IL-20R2 and IL-20R1/IL-20R2. J Biol Chem 277:7341–7347.PubMedCrossRefGoogle Scholar
  52. 52.
    Sauane, M., R.V. Gopalkrishnan, D. Sarkar, Z.Z. Su, I.V. Lebedeva, P. Dent, S. Pestka, and P.B. Fisher. 2003. MDA-7/IL-24: novel cancer growth suppressing and apoptosis inducing cytokine. Cytokine Growth Factor Rev 14:35–51.PubMedCrossRefGoogle Scholar
  53. 53.
    Su, Z., L. Emdad, M. Sauane, I.V. Lebedeva, D. Sarkar, P. Gupta, C.D. James, A. Randolph, K. Valerie, M.R. Walter, P. Dent, and P.B. Fisher. 2005. Unique aspects of mda-7/IL-24 antitumor bystander activity: establishing a role for secretion of MDA-7/IL-24 protein by normal cells. Oncogene 24:7552–7566.PubMedCrossRefGoogle Scholar
  54. 54.
    Sarkar, D., I.V. Lebedeva, Z.Z. Su, E.S. Park, L. Chatman, N. Vozhilla, P. Dent, D.T. Curiel, and P.B. Fisher. 2007. Eradication of therapy-resistant human prostate tumors using a cancer terminator virus. Cancer Res 67:5434–5442.PubMedCrossRefGoogle Scholar
  55. 55.
    Zheng, M., D. Bocangel, B. Doneske, A. Mhashilkar, R. Ramesh, K.K. Hunt, S. Ekmekcioglu, R.B. Sutton, N. Poindexter, E.A. Grimm, and S. Chada. 2007. Human interleukin 24 (MDA-7/IL-24) protein kills breast cancer cells via the IL-20 receptor and is antagonized by IL-10. Cancer Immunol Immunother 56:205–215.PubMedCrossRefGoogle Scholar
  56. 56.
    Sauane, M., Z.Z. Su, P. Gupta, I.V. Lebedeva, P. Dent, D. Sarkar, and P.B. Fisher. 2008. Autocrine regulation of mda-7/IL-24 mediates cancer-specific apoptosis. Proc Natl Acad Sci USA 105:9763–9768.PubMedCrossRefGoogle Scholar
  57. 57.
    Lebedeva, I.V., D. Sarkar, Z.Z. Su, R.V. Gopalkrishnan, M. Athar, A. Randolph, K. Valerie, P. Dent, and P.B. Fisher. 2006. Molecular target-based therapy of pancreatic cancer. Cancer Res 66:2403–2413.PubMedCrossRefGoogle Scholar
  58. 58.
    Pataer, A., W. Hu, L. Xiaolin, S. Chada, J.A. Roth, K.K. Hunt, and S.G. Swisher. 2008. Adenoviral endoplasmic reticulum-targeted mda-7/interleukin-24 vector enhances human cancer cell killing. Mol Cancer Ther 7:2528–2535.PubMedCrossRefGoogle Scholar
  59. 59.
    Lee, J., W.H. Ho, M. Maruoka, R.T. Corpuz, D.T. Baldwin, J.S. Foster, A.D. Goddard, D.G. Yansura, R.L. Vandlen, W.I. Wood, and A.L. Gurney. 2001. IL-17E, a novel proinflammatory ligand for the IL-17 receptor homolog IL-17Rh1. J Biol Chem 276:1660–1664.PubMedCrossRefGoogle Scholar
  60. 60.
    Fort, M.M., J. Cheung, D. Yen, J. Li, S.M. Zurawski, S. Lo, S. Menon, T. Clifford, B. Hunte, R. Lesley, T. Muchamuel, S.D. Hurst, G. Zurawski, M.W. Leach, D.M. Gorman, and D.M. Rennick. 2001. IL-25 induces IL-4, IL-5, and IL-13 and Th2-associated pathologies in vivo. Immunity 15:985–995.PubMedCrossRefGoogle Scholar
  61. 61.
    Wang, Y.H., P. Angkasekwinai, N. Lu, K.S. Voo, K. Arima, S. Hanabuchi, A. Hippe, C.J. Corrigan, C. Dong, B. Homey, Z. Yao, S. Ying, D.P. Huston, and Y.J. Liu. 2007. IL-25 augments type 2 immune responses by enhancing the expansion and functions of TSLP-DC-activated Th2 memory cells. J Exp Med 204:1837–1847.PubMedCrossRefGoogle Scholar
  62. 62.
    Liu, C., E.S. Ferdinandi, G. Ely, and S.S. Joshi. 2000. Virulizin-2gamma, a novel immunotherapeutic agent, in treatment of human pancreatic cancer xenografts. Int J Oncol 16:1015–1020.PubMedGoogle Scholar
  63. 63.
    Benatar, T., M.Y. Cao, Y. Lee, H. Li, N. Feng, X. Gu, V. Lee, H. Jin, M. Wang, S. Der, J. Lightfoot, J.A. Wright, and A.H. Young. 2008. Virulizin((R)) induces production of IL-17E to enhance antitumor activity by recruitment of eosinophils into tumors. Cancer Immunol Immunother 57:1757–1769.Google Scholar
  64. 64.
    Du, C., N. Feng, H. Jin, V. Lee, M. Wang, J.A. Wright, and A.H. Young. 2003. Macrophages play a critical role in the anti-tumor activity of Virulizin. Int J Oncol 23:1341–1346.PubMedGoogle Scholar
  65. 65.
    Schmidt, K.E. 1952. [High grade blood eosinophilia associated with malignant tumors]. Arztl Wochensch 7:1184–1185.PubMedGoogle Scholar
  66. 66.
    Fujii, M., T. Yamashita, R. Ishiguro, M. Tashiro, and K. Kameyama. 2002. Significance of epidermal growth factor receptor and tumor associated tissue eosinophilia in the prognosis of patients with nasopharyngeal carcinoma. Auris Nasus Larynx 29:175–181.PubMedCrossRefGoogle Scholar
  67. 67.
    Furbert-Harris, P., D. Parish-Gause, I. Laniyan, K.A. Hunter, J. Okomo-Awich, T.R. Vaughn, K.C. Forrest, C. Howland, A. Abdelnaby, and O.A. Oredipe. 2003. Inhibition of prostate cancer cell growth by activated eosinophils. Prostate 57:165–175.PubMedCrossRefGoogle Scholar
  68. 68.
    Ishibashi, S., Y. Ohashi, T. Suzuki, S. Miyazaki, T. Moriya, S. Satomi, and H. Sasano. 2006. Tumor-associated tissue eosinophilia in human esophageal squamous cell carcinoma. Anticancer Res 26:1419–1424.PubMedGoogle Scholar
  69. 69.
    Iwasaki, K., M. Torisu, and T. Fujimura. 1986. Malignant tumor and eosinophils. I. Prognostic significance in gastric cancer. Cancer 58:1321–1327.PubMedCrossRefGoogle Scholar
  70. 70.
    Takanami, I., K. Takeuchi, and M. Gika. 2002. Immunohistochemical detection of eosinophilic infiltration in pulmonary adenocarcinoma. Anticancer Res 22:2391–2396.PubMedGoogle Scholar
  71. 71.
    Gleich, G.J., and C.R. Adolphson. 1986. The eosinophilic leukocyte: structure and function. Adv Immunol 39:177–253.PubMedCrossRefGoogle Scholar
  72. 72.
    Newton, D.L., and S.M. Rybak. 1998. Unique recombinant human ribonuclease and inhibition of Kaposi’s sarcoma cell growth. J Natl Cancer Inst 90:1787–1791.PubMedCrossRefGoogle Scholar
  73. 73.
    Nutten, S., J.P. Papin, G. Woerly, D.W. Dunne, J. MacGregor, F. Trottein, and M. Capron. 1999. Selectin and Lewis(x) are required as co-receptors in antibody-dependent cell-mediated cytotoxicity of human eosinophils to Schistosoma mansoni schistosomula. Eur J Immunol 29:799–808.PubMedCrossRefGoogle Scholar
  74. 74.
    Kataoka, S., Y. Konishi, Y. Nishio, K. Fujikawa-Adachi, and A. Tominaga. 2004. Antitumor activity of eosinophils activated by IL-5 and eotaxin against hepatocellular carcinoma. DNA Cell Biol 23:549–560.PubMedCrossRefGoogle Scholar
  75. 75.
    Moezzi, J., N. Gopalswamy, R.J. Haas, Jr., R.J. Markert, S. Suryaprasad, and M.S. Bhutani. 2000. Stromal eosinophilia in colonic epithelial neoplasms. Am J Gastroenterol 95:520–523.PubMedCrossRefGoogle Scholar
  76. 76.
    van Driel, W.J., P.C. Hogendoorn, F.W. Jansen, A.H. Zwinderman, J.B. Trimbos, and G.J. Fleuren. 1996. Tumor-associated eosinophilic infiltrate of cervical cancer is indicative for a less effective immune response. Hum Pathol 27:904–911.PubMedCrossRefGoogle Scholar
  77. 77.
    von Wasielewski, R., S. Seth, J. Franklin, R. Fischer, K. Hubner, M.L. Hansmann, V. Diehl, and A. Georgii. 2000. Tissue eosinophilia correlates strongly with poor prognosis in nodular sclerosing Hodgkin’s disease, allowing for known prognostic factors. Blood 95:1207–1213.Google Scholar
  78. 78.
    Puxeddu, I., D. Ribatti, E. Crivellato, and F. Levi-Schaffer. 2005. Mast cells and eosinophils: a novel link between inflammation and angiogenesis in allergic diseases. J Allergy Clin Immunol 116:531–536.PubMedCrossRefGoogle Scholar
  79. 79.
    Tataroglu, C., A. Kargi, S. Ozkal, N. Esrefoglu, and A. Akkoclu. 2004. Association of macrophages, mast cells and eosinophil leukocytes with angiogenesis and tumor stage in non-small cell lung carcinomas (NSCLC). Lung Cancer 43:47–54.PubMedCrossRefGoogle Scholar
  80. 80.
    Lewis, C.E., and J.W. Pollard. 2006. Distinct role of macrophages in different tumor microenvironments. Cancer Res 66:605–612.PubMedCrossRefGoogle Scholar
  81. 81.
    Corthay, A., D.K. Skovseth, K.U. Lundin, E. Rosjo, H. Omholt, P.O. Hofgaard, G. Haraldsen, and B. Bogen. 2005. Primary antitumor immune response mediated by CD4+ T cells. Immunity 22:371–383.PubMedCrossRefGoogle Scholar
  82. 82.
    Yim, C.Y., N.R. Bastian, J.C. Smith, J.B. Hibbs, Jr., and W.E. Samlowski. 1993. Macrophage nitric oxide synthesis delays progression of ultraviolet light-induced murine skin cancers. Cancer Res 53:5507–5511.PubMedGoogle Scholar
  83. 83.
    Gordon, S. 2003. Alternative activation of macrophages. Nat Rev Immunol 3:23–35.PubMedCrossRefGoogle Scholar
  84. 84.
    Stuehr, D.J., and C.F. Nathan. 1989. Nitric oxide. A macrophage product responsible for cytostasis and respiratory inhibition in tumor target cells. J Exp Med 169:1543–1555.PubMedCrossRefGoogle Scholar
  85. 85.
    Bingle, L., N.J. Brown, and C.E. Lewis. 2002. The role of tumour-associated macrophages in tumour progression: implications for new anticancer therapies. J Pathol 196:254–265.PubMedCrossRefGoogle Scholar
  86. 86.
    Klimp, A.H., E.G. de Vries, G.L. Scherphof, and T. Daemen. 2002. A potential role of macrophage activation in the treatment of cancer. Crit Rev Oncol Hematol 44:143–161.PubMedCrossRefGoogle Scholar
  87. 87.
    Johnson, W.J., Z. Steplewski, T.J. Matthews, T.A. Hamilton, H. Koprowski, and D.O. Adams. 1986. Cytolytic interactions between murine macrophages, tumor cells, and monoclonal antibodies: characterization of lytic conditions and requirements for effector activation. J Immunol 136:4704–4713.PubMedGoogle Scholar
  88. 88.
    Anthony, R.M., J.F. Urban, Jr., F. Alem, H.A. Hamed, C.T. Rozo, J.L. Boucher, N. Van Rooijen, and W.C. Gause. 2006. Memory T(H)2 cells induce alternatively activated macrophages to mediate protection against nematode parasites. Nat Med 12:955–960.PubMedCrossRefGoogle Scholar
  89. 89.
    Currie, G.A., L. Gyure, and L. Cifuentes. 1979. Microenvironmental arginine depletion by macrophages in vivo. Br J Cancer 39:613–620.PubMedCrossRefGoogle Scholar
  90. 90.
    Higuchi, M., N. Higashi, H. Taki, and T. Osawa. 1990. Cytolytic mechanisms of activated macrophages. Tumor necrosis factor and L-arginine-dependent mechanisms act synergistically as the major cytolytic mechanisms of activated macrophages. J Immunol 144:1425–1431.PubMedGoogle Scholar
  91. 91.
    Holcenberg, J.S. 1981. Enzyme therapy of cancer, future studies. Cancer Treat Rep 65(Suppl 4):61–65.PubMedGoogle Scholar
  92. 92.
    Park, I.S., S.W. Kang, Y.J. Shin, K.Y. Chae, M.O. Park, M.Y. Kim, D.N. Wheatley, and B.H. Min. 2003. Arginine deiminase: a potential inhibitor of angiogenesis and tumour growth. Br J Cancer 89:907–914.PubMedCrossRefGoogle Scholar
  93. 93.
    Singh, R., S. Pervin, A. Karimi, S. Cederbaum, and G. Chaudhuri. 2000. Arginase activity in human breast cancer cell lines: N(omega)-hydroxy-L-arginine selectively inhibits cell proliferation and induces apoptosis in MDA-MB-468 cells. Cancer Res 60:3305–3312.PubMedGoogle Scholar
  94. 94.
    Yeatman, T.J., G.L. Risley, and M.E. Brunson. 1991. Depletion of dietary arginine inhibits growth of metastatic tumor. Arch Surg 126:1376–1381; discussion 1381–1372.PubMedGoogle Scholar
  95. 95.
    Feun, L., and N. Savaraj. 2006. Pegylated arginine deiminase: a novel anticancer enzyme agent. Expert Opin Investig Drugs 15:815–822.PubMedCrossRefGoogle Scholar
  96. 96.
    Rodriguez, P.C., D.G. Quiceno, J. Zabaleta, B. Ortiz, A.H. Zea, M.B. Piazuelo, A. Delgado, P. Correa, J. Brayer, E.M. Sotomayor, S. Antonia, J.B. Ochoa, and A.C. Ochoa. 2004. Arginase I production in the tumor microenvironment by mature myeloid cells inhibits T-cell receptor expression and antigen-specific T-cell responses. Cancer Res 64:5839–5849.PubMedCrossRefGoogle Scholar
  97. 97.
    Pollard, J.W. 2004. Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer 4:71–78.PubMedCrossRefGoogle Scholar
  98. 98.
    Tan, T.T., and L.M. Coussens. 2007. Humoral immunity, inflammation and cancer. Curr Opin Immunol 19:209–216.PubMedCrossRefGoogle Scholar
  99. 99.
    Barbera-Guillem, E., M.B. Nelson, B. Barr, J.K. Nyhus, K.F. May, Jr., L. Feng, and J.W. Sampsel. 2000. B lymphocyte pathology in human colorectal cancer. Experimental and clinical therapeutic effects of partial B cell depletion. Cancer Immunol Immunother 48:541–549.PubMedCrossRefGoogle Scholar
  100. 100.
    Shah, S., A.A. Divekar, S.P. Hilchey, H.M. Cho, C.L. Newman, S.U. Shin, H. Nechustan, P.M. Challita-Eid, B.M. Segal, K.H. Yi, and J.D. Rosenblatt. 2005. Increased rejection of primary tumors in mice lacking B cells: inhibition of anti-tumor CTL and TH1 cytokine responses by B cells. Int J Cancer 117:574–586.PubMedCrossRefGoogle Scholar
  101. 101.
    Perricone, M.A., K.A. Smith, K.A. Claussen, M.S. Plog, D.M. Hempel, B.L. Roberts, J.A. St George, and J.M. Kaplan. 2004. Enhanced efficacy of melanoma vaccines in the absence of B lymphocytes. J Immunother 27:273–281.PubMedCrossRefGoogle Scholar
  102. 102.
    Barbera-Guillem, E., K.F. May, Jr., J.K. Nyhus, and M.B. Nelson. 1999. Promotion of tumor invasion by cooperation of granulocytes and macrophages activated by anti-tumor antibodies. Neoplasia 1:453–460.PubMedCrossRefGoogle Scholar
  103. 103.
    Aziz, M., T.K. Das, and A. Rattan. 1997. Role of circulating immune complexes in prognostic evaluation and management of genitourinary cancer patients. Indian J Cancer 34:111–120.PubMedGoogle Scholar
  104. 104.
    Das, T.K., M. Aziz, A. Rattan, and R. Sherwani. 1995. Prognostic significance of circulating immune complexes in malignant tumours of head and neck. J Indian Med Assoc 93:3–7.PubMedGoogle Scholar
  105. 105.
    Schmidt, R.E., and J.E. Gessner. 2005. Fc receptors and their interaction with complement in autoimmunity. Immunol Lett 100:56–67.PubMedCrossRefGoogle Scholar
  106. 106.
    Rowley, D.A., and R.M. Stach. 1998. B lymphocytes secreting IgG linked to latent transforming growth factor-beta prevent primary cytolytic T lymphocyte responses. Int Immunol 10:355–363.PubMedCrossRefGoogle Scholar
  107. 107.
    Dai, Q., W. Zheng, B.T. Ji, X.O. Shu, F. Jin, J.L. Zhu, and Y.T. Gao. 1995. Prior immunity-related medical conditions and pancreatic-cancer risk in Shanghai. Int J Cancer 63:337–340.PubMedCrossRefGoogle Scholar
  108. 108.
    Eriksson, N.E., A. Holmen, B. Hogstedt, Z. Mikoczy, and L. Hagmar. 1995. A prospective study of cancer incidence in a cohort examined for allergy. Allergy 50:718–722.PubMedCrossRefGoogle Scholar
  109. 109.
    McWhorter, W.P. 1988. Allergy and risk of cancer. A prospective study using NHANESI followup data. Cancer 62:451–455.PubMedCrossRefGoogle Scholar
  110. 110.
    Volkers, N. 1999. Wheezing, sneezing, and cancer risk - still an open door. J Natl Cancer Inst 91:1916–1918.PubMedCrossRefGoogle Scholar
  111. 111.
    Melbye, M., K.E. Smedby, T. Lehtinen, K. Rostgaard, B. Glimelius, L. Munksgaard, C. Schollkopf, C. Sundstrom, E.T. Chang, P. Koskela, H.O. Adami, and H. Hjalgrim. 2007. Atopy and risk of non-Hodgkin lymphoma. J Natl Cancer Inst 99:158–166.PubMedCrossRefGoogle Scholar
  112. 112.
    Wang, H., D. Rothenbacher, M. Low, C. Stegmaier, H. Brenner, and T.L. Diepgen. 2006. Atopic diseases, immunoglobulin E and risk of cancer of the prostate, breast, lung and colorectum. Int J Cancer 119:695–701.PubMedCrossRefGoogle Scholar
  113. 113.
    Wiemels, J.L., J.K. Wiencke, J. Patoka, M. Moghadassi, T. Chew, A. McMillan, R. Miike, G. Barger, and M. Wrensch. 2004. Reduced immunoglobulin E and allergy among adults with glioma compared with controls. Cancer Res 64:8468–8473.PubMedCrossRefGoogle Scholar
  114. 114.
    Karagiannis, S.N., M.G. Bracher, R.L. Beavil, A.J. Beavil, J. Hunt, N. McCloskey, R.G. Thompson, N. East, F. Burke, B.J. Sutton, D. Dombrowicz, F.R. Balkwill, and H.J. Gould. 2008. Role of IgE receptors in IgE antibody-dependent cytotoxicity and phagocytosis of ovarian tumor cells by human monocytic cells. Cancer Immunol Immunother 57:247–263.PubMedCrossRefGoogle Scholar
  115. 115.
    Gould, H.J., G.A. Mackay, S.N. Karagiannis, C.M. O’Toole, P.J. Marsh, B.E. Daniel, L.R. Coney, V.R. Zurawski, Jr., M. Joseph, M. Capron, M. Gilbert, G.F. Murphy, and R. Korngold. 1999. Comparison of IgE and IgG antibody-dependent cytotoxicity in vitro and in a SCID mouse xenograft model of ovarian carcinoma. Eur J Immunol 29:3527–3537.PubMedCrossRefGoogle Scholar
  116. 116.
    Reali, E., J.W. Greiner, A. Corti, H.J. Gould, F. Bottazzoli, G. Paganelli, J. Schlom, and A.G. Siccardi. 2001. IgEs targeted on tumor cells: therapeutic activity and potential in the design of tumor vaccines. Cancer Res 61:5517–5522.PubMedGoogle Scholar
  117. 117.
    Erb, K.J., J.W. Holloway, and G. Le Gros. 1996. Mast cells in the front line. Innate immunity. Curr Biol 6:941–942.PubMedCrossRefGoogle Scholar
  118. 118.
    Parish, W.E. 1967. Release of histamine and slow reacting substance with mast cell changes after challenge of human lung sensitized passively with reagin in vitro. Nature 215:738–739.PubMedCrossRefGoogle Scholar
  119. 119.
    Roche, W.R. 1985. Mast cells and tumour angiogenesis: the tumor-mediated release of an endothelial growth factor from mast cells. Int J Cancer 36:721–728.PubMedCrossRefGoogle Scholar
  120. 120.
    Ribatti, D., E. Crivellato, A.M. Roccaro, R. Ria, and A. Vacca. 2004. Mast cell contribution to angiogenesis related to tumour progression. Clin Exp Allergy 34:1660–1664.PubMedCrossRefGoogle Scholar
  121. 121.
    Beer, T.W., L.B. Ng, and K. Murray. 2008. Mast cells have prognostic value in Merkel cell carcinoma. Am J Dermatopathol 30:27–30.PubMedCrossRefGoogle Scholar
  122. 122.
    Keresztes, K., Z. Szollosi, Z. Simon, I. Tarkanyi, Z. Nemes, and A. Illes. 2007. Retrospective analysis of the prognostic role of tissue eosinophil and mast cells in Hodgkin’s lymphoma. Pathol Oncol Res 13:237–242.PubMedCrossRefGoogle Scholar
  123. 123.
    Sinnamon, M.J., K.J. Carter, L.P. Sims, B. Lafleur, B. Fingleton, and L.M. Matrisian. 2008. A protective role of mast cells in intestinal tumorigenesis. Carcinogenesis 29:880–886.PubMedCrossRefGoogle Scholar
  124. 124.
    Sad, S., R. Marcotte, and T.R. Mosmann. 1995. Cytokine-induced differentiation of precursor mouse CD8+ T cells into cytotoxic CD8+ T cells secreting Th1 or Th2 cytokines. Immunity 2:271–279.PubMedCrossRefGoogle Scholar
  125. 125.
    Noble, A., P.A. Macary, and D.M. Kemeny. 1995. IFN-gamma and IL-4 regulate the growth and differentiation of CD8+ T cells into subpopulations with distinct cytokine profiles. J Immunol 155:2928–2937.PubMedGoogle Scholar
  126. 126.
    Lowin, B., M. Hahne, C. Mattmann, and J. Tschopp. 1994. Cytolytic T-cell cytotoxicity is mediated through perforin and Fas lytic pathways. Nature 370:650–652.PubMedCrossRefGoogle Scholar
  127. 127.
    Dobrzanski, M.J., J.B. Reome, and R.W. Dutton. 2001. Role of effector cell-derived IL-4, IL-5, and perforin in early and late stages of type 2 CD8 effector cell-mediated tumor rejection. J Immunol 167:424–434.PubMedGoogle Scholar
  128. 128.
    Helmich, B.K., and R.W. Dutton. 2001. The role of adoptively transferred CD8 T cells and host cells in the control of the growth of the EG7 thymoma: factors that determine the relative effectiveness and homing properties of Tc1 and Tc2 effectors. J Immunol 166:6500–6508.PubMedGoogle Scholar
  129. 129.
    Dobrzanski, M.J., J.B. Reome, and R.W. Dutton. 1999. Therapeutic effects of tumor-reactive type 1 and type 2 CD8+ T cell subpopulations in established pulmonary metastases. J Immunol 162:6671–6680.PubMedGoogle Scholar
  130. 130.
    Rodolfo, M., C. Zilocchi, P. Accornero, B. Cappetti, I. Arioli, and M.P. Colombo. 1999. IL-4-transduced tumor cell vaccine induces immunoregulatory type 2 CD8 T lymphocytes that cure lung metastases upon adoptive transfer. J Immunol 163:1923–1928.PubMedGoogle Scholar
  131. 131.
    Ye, Z., C. Tang, S. Xu, B. Zhang, X. Zhang, T. Moyana, J. Yang, and J. Xiang. 2007. Type 1 CD8+ T cells are superior to type 2 CD8+ T cells in tumor immunotherapy due to their efficient cytotoxicity, prolonged survival and type 1 immune modulation. Cell Mol Immunol 4:277–285.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Ljubov Simson
    • 1
    Email author
  • Julia I. Ellyard
    • 2
  • Christopher R. Parish
    • 2
  1. 1.Centre for Biomedical, Molecular and Chemical ResearchUniversity of Canberra, ACTCanberraAustralia
  2. 2.Division of Immunology and GeneticsJohn Curtin School of Medical Research, Australian National UniversityCanberraAustralia

Personalised recommendations