mRNA Biomarkers in Melanoma

  • Giovanna ChiorinoEmail author
  • Maria Scatolini
Part of the Current Clinical Pathology book series (CCPATH)


Over the past decade, microarray-based high-throughput gene expression analysis has been employed in an effort to understand the molecular alterations involved in tumorigenesis and disease progression in melanoma. A gene expression array is a small glass-platform containing tens of thousands of sequences corresponding to specific mRNA transcripts. The most recent generation of microarray platforms are able to probe gene expression across the whole genome (Figs 7.1 and 7.2). These are generally applied to either (1) distinct classes of samples (i.e., primary melanoma and melanoma metastasis) in order to identify genes with class-specific expression patterns or (2) apparently unrelated samples to discover previously unknown classes that are characterized by similar expression profiles. If clinical follow-up is available, gene expression signatures may provide new prognostic markers.


Melanoma Cell Line Gene Expression Signature Primary Melanoma Melanoma Progression Melanocytic Nevus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Hoek KS. DNA microarray analyses of melanoma gene expression: a decade in the mines. Pigment Cell Res. 2007;20:466–84.PubMedCrossRefGoogle Scholar
  2. 2.
    Hoek KS. Melanoma progression, gene expression and DNA microarrays. G Ital Dermatol Venereol. 2009;144:39–49.PubMedGoogle Scholar
  3. 3.
    Koh SS, Opel ML, Wei JP, et al. Molecular classifi­cation of melanomas and nevi using gene expression microarray signatures and formalin-fixed and paraffin-embedded tissue. Mod Pathol. 2009;22: 538–46.PubMedCrossRefGoogle Scholar
  4. 4.
    Conway C, Mitra A, Jewell R, et al. Gene expression profiling of paraffin-embedded primary melanoma using the DASL assay identifies increased osteopontin expression as predictive of reduced relapse-free survival. Clin Cancer Res. 2009;15: 6939–46.PubMedCrossRefGoogle Scholar
  5. 5.
    Smith AP, Hoek K, Becker D. Whole-genome expression profiling of the melanoma progression pathway reveals marked molecular differences between nevi/melanoma in situ and advanced-stage melanomas. Cancer Biol Ther. 2005;4:1018–29.PubMedCrossRefGoogle Scholar
  6. 6.
    Scatolini M, Mello-Grand M, Grosso E, et al. Altered molecular pathways in melanocytic lesions. Int J Cancer. 2010;126:1869–81.PubMedGoogle Scholar
  7. 7.
    Hoek KS, Rimm DL, Williams KR, et al. Expression profiling reveals novel pathways in the transformation of melanocytes to melanomas. Cancer Res. 2004;64: 5270–82.PubMedCrossRefGoogle Scholar
  8. 8.
    Ryu B, Kim DS, Deluca AM, et al. Comprehensive expression profiling of tumor cell lines identifies molecular signatures of melanoma progression. PLoS One. 2007;2:e594.PubMedCrossRefGoogle Scholar
  9. 9.
    Haqq C, Nosrati M, Sudilovsky D, et al. The gene expression signatures of melanoma progression. Proc Natl Acad Sci USA. 2005;102:6092–7.PubMedCrossRefGoogle Scholar
  10. 10.
    Kashani-Sabet M, Rangel J, Torabian S, et al. A multi-marker assay to distinguish malignant melanomas from benign nevi. Proc Natl Acad Sci USA. 2009;106: 6268–72.PubMedCrossRefGoogle Scholar
  11. 11.
    Talantov D, Mazumder A, Yu JX, et al. Novel genes associated with malignant melanoma but not benign melanocytic lesions. Clin Cancer Res. 2005;11: 7234–42.PubMedCrossRefGoogle Scholar
  12. 12.
    Riker AI, Enkemann SA, Fodstad O, et al. The gene expression profiles of primary and metastatic melanoma yields a transition point of tumor progression and metastasis. BMC Med Genomics. 2008;1:13.PubMedCrossRefGoogle Scholar
  13. 13.
    DermTech International. Available at Accessed 2 Sept 2010.
  14. 14.
    Bittner M, Meltzer P, Chen Y, et al. Molecular classification of cutaneous malignant melanoma by gene expression profiling. Nature. 2000;406:536–40.PubMedCrossRefGoogle Scholar
  15. 15.
    Roesch A, Vogt T, Stolz W, et al. Discrimination between gene expression patterns in the invasive ­margin and the tumour core of malignant melanomas. Melanoma Res. 2003;13:503–9.PubMedCrossRefGoogle Scholar
  16. 16.
    Hoek KS, Schlegel NC, Brafford P, et al. Metastatic potential of melanomas defined by specific gene expression profiles with no BRAF signature. Pigment Cell Res. 2006;19:290–302.PubMedCrossRefGoogle Scholar
  17. 17.
    Jaeger J, Koczan D, Thiesen HJ, et al. Gene expression signatures for tumor progression, tumor subtype, and tumor thickness in laser-microdissected melanoma tissues. Clin Cancer Res. 2007;13:806–15.PubMedCrossRefGoogle Scholar
  18. 18.
    Jeffs AR, Glover AC, Slobbe LJ, et al. A gene expression signature of invasive potential in metastatic melanoma cells. PLoS One. 2009;4:e8461.PubMedCrossRefGoogle Scholar
  19. 19.
    Eichhoff OM, Zipser MC, Xu M, et al. The immunohistochemistry of invasive and proliferative phenotype switching in melanoma: a case report. Melanoma Res. 2010;20:349–55.PubMedCrossRefGoogle Scholar
  20. 20.
    Winnepenninckx V, Lazar V, Michiels S, et al. Gene expression profiling of primary cutaneous melanoma and clinical outcome. J Natl Cancer Inst. 2006;98: 472–82.PubMedCrossRefGoogle Scholar
  21. 21.
    Kauffmann A, Rosselli F, Lazar V, et al. High expression of DNA repair pathways is associated with metastasis in melanoma patients. Oncogene. 2008;27:565–73.PubMedCrossRefGoogle Scholar
  22. 22.
    Jewell R, Conway C, Mitra A, et al. Patterns of expression of DNA repair genes and relapse from melanoma. Clin Cancer Res. 2010;16:5211–21.PubMedCrossRefGoogle Scholar
  23. 23.
    Zhou Y, Dai DL, Martinka M, et al. Osteopontin expression correlates with melanoma invasion. J Invest Dermatol. 2005;124:1044–52.PubMedCrossRefGoogle Scholar
  24. 24.
    Rangel J, Nosrati M, Torabian S, et al. Osteopontin as a molecular prognostic biomarker for melanoma. Cancer. 2008;112:144–50.PubMedCrossRefGoogle Scholar
  25. 25.
    Kashani-Sabet M, Venna S, Nosrati M, et al. A multimarker prognostic assay for primary cutaneous melanoma. Clin Cancer Res. 2009;15:6987–92.PubMedCrossRefGoogle Scholar
  26. 26.
    Mandruzzato S, Callegaro A, Turcatel G, et al. A gene expression signature associated with survival in metastatic melanoma. J Transl Med. 2006;4:50.PubMedCrossRefGoogle Scholar
  27. 27.
    John T, Black MA, Toro TT, et al. Predicting clinical outcome through molecular profiling in stage III melanoma. Clin Cancer Res. 2008;14:5173–80.PubMedCrossRefGoogle Scholar
  28. 28.
    Bogunovic D, O’Neill DW, Belitskaya-Levy I, et al. Immune profile and mitotic index of metastatic melanoma lesions enhance clinical staging in predicting patient survival. Proc Natl Acad Sci USA. 2009;106: 20429–34.PubMedCrossRefGoogle Scholar
  29. 29.
    Jönsson G, Busch C, Knappskog S, et al. Gene expression profiling-based identification of molecular subtypes in stage IV melanomas with different clinical outcome. Clin Cancer Res. 2010;16:3356–67.PubMedCrossRefGoogle Scholar
  30. 30.
    Su DM, Zhang Q, Wang X, et al. Two types of human malignant melanoma cell lines revealed by expression patterns of mitochondrial and survival-apoptosis genes: implications for malignant melanoma therapy. Mol Cancer Ther. 2009;8:1292–304.PubMedCrossRefGoogle Scholar
  31. 31.
    Augustine CK, Jung SH, Sohn I, et al. Gene expression signatures as a guide to treatment strategies for in-transit metastatic melanoma. Mol Cancer Ther. 2010;9:779–90.PubMedCrossRefGoogle Scholar
  32. 32.
    Ren S, Liu S, Howell Jr P, et al. The impact of genomics in understanding human melanoma progression and metastasis. Cancer Control. 2008;15:202–15.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Cancer Genomics Laboratory“Edo ed Elvo Tempia” FoundationBiellaItaly

Personalised recommendations