Dyslipidemias pp 137-154 | Cite as

Dyslipidemia in Chronic Kidney Disease and Nephrotic Syndrome

  • Nosratola D. VaziriEmail author
Part of the Contemporary Endocrinology book series (COE)


The prevailing pandemic of type 2 diabetes and hypertension has led to a dramatic rise in the incidence of chronic kidney disease worldwide. Chronic kidney disease and proteinuria are associated with cardiovascular disease and profound alteration of lipid metabolism and serum lipid and lipoprotein profile. The associated lipid disorders play a major role in progression of renal and cardiovascular disease in this population. The nature and mechanisms of lipid abnormalities in kidney disease vary depending on the presence and severity of proteinuria, renal failure, renal replacement modalities (hemodialysis, peritoneal dialysis, and renal transplantation), dietary and drug regimens, and preexistent genetic disorders of lipid metabolism.


Inflammation Cardiovascular disease Progression of kidney disease Hemodialysis Peritoneal dialysis Nephrotic syndrome Proteinuria Renal transplantation Atherosclerosis Statins 


  1. 1.
    Baxter JH, Goodman HC, Havel RJ. Serum lipid and lipoprotein alterations in nephrosis. J Clin Invest. 1960;39:455–65.PubMedCentralPubMedGoogle Scholar
  2. 2.
    Schreiner GE. The nephrotic syndrome. In: Strauss MB, Welt LG, editors. Diseases of the kidney. London: Churchill; 1963. p. 335–444.Google Scholar
  3. 3.
    Hartroft WS. Fat emboli in glomerular capillaries of choline deficient rats and of patients with diabetic glomerulosclerosis. Am J Pathol. 1955;31:381–90.PubMedCentralPubMedGoogle Scholar
  4. 4.
    Daniels WB. Plasma lipoids in renal disease. Brit J Exp Pathol. 1925;6:283–90.Google Scholar
  5. 5.
    Losowsky MS, Kenward DH. Lipid metabolism in acute and chronic renal failure. J Lab Clin Med. 1968;71:736–43.PubMedGoogle Scholar
  6. 6.
    Bagdade JD, Porte D, Bierman EL. Hypertriglyceridemia: a metabolic consequence of chronic renal failure. New Engl J Med. 1968;279:181–5.PubMedGoogle Scholar
  7. 7.
    Brons M, Christensen NC, Horder M. Hyperlipoproteinemia in patients with chronic renal failure. Acta Med Scand. 1972;192:119–23.PubMedGoogle Scholar
  8. 8.
    Antonis A, Bersohn J. The influence of diet on serumtriglycerides in South African white and Bantu prisoners. Lancet. 1961;1:3–9.PubMedGoogle Scholar
  9. 9.
    Glueck CJ, Levy RI, Fredrickson DS. Immunoreactive insulin, glucose tolerance and carbohydrate inducibility in Types II, III, IV, and V hyperlipoproteinaemia. Diabetes. 1969;18:739–47.PubMedGoogle Scholar
  10. 10.
    Kaysen GA, de Sain-van der Velden MG. New insights into lipid metabolism in the nephrotic syndrome. Kidney Int Suppl. 1999;71:S18–21.PubMedGoogle Scholar
  11. 11.
    Vaziri ND. Molecular mechanisms of lipid dysregulation in nephrotic syndrome. (Nephrology Forum) Kidney Int. 2003;63:1964–76.PubMedGoogle Scholar
  12. 12.
    Joven J, Villabona C, Vilella E, Masana L, Albertí R, Vallés M. Abnormalities of lipoprotein metabolism in patients with the nephrotic syndrome. N Engl J Med. 1990;323(9):579–84.PubMedGoogle Scholar
  13. 13.
    de Sain-van der Velden MG, Kaysen GA, Barrett HA, et al. Increased VLDL in nephrotic patients results from a decreased. catabolism while increased LDL results from increased synthesis. Kidney Int. 1998;53:994–1001.Google Scholar
  14. 14.
    Garber DW, Gottlieb BA, Marsh JB, Sparks CE, et al. Catabolism of very low density lipoproteins in experimental nephrosis. J Clin Invest. 1984;74:1375–83.PubMedCentralPubMedGoogle Scholar
  15. 15.
    Warwick GL, Packard CJ, Demant T, et al. Metabolism of apolipoprotein B-containing lipoproteins in subjects with nephrotic range proteinuria. Kidney Int. 1991;40:129–38.PubMedGoogle Scholar
  16. 16.
    Kaysen GA, Mehendru L, Pan XM, et al. Both peripheral chylomicron catabolism and hepatic uptake of remnants are defective in nephrosis. Am J Physiol. 1992;263:F335–41.PubMedGoogle Scholar
  17. 17.
    Davies RW, Staprans I, Hutchison FN, Kaysen GA. Proteinuria, not altered albumin metabolism, affects hyperlipidemia in the nephrotic rat. J Clin Invest. 1990;86(2):600–5.PubMedCentralPubMedGoogle Scholar
  18. 18.
    Shearer GC, Stevenson FT, Atkinson DN, Jones H, Staprans I, Kaysen GA. Hypoalbuminemia and proteinuria contribute separately to reduced lipoprotein catabolism in the nephrotic syndrome. Kidney Int. 2001;59(1):179–89.PubMedGoogle Scholar
  19. 19.
    Levy E, Ziv E, Bar-On H, Shafrir E. Experimental nephrotic syndrome: removal and tissue distribution of chylomicrons and very-low-density lipoproteins of normal and nephrotic origin. Biochim Biophys Acta. 1990;1043:259–66.PubMedGoogle Scholar
  20. 20.
    Sato T, Liang K, Vaziri ND. Downregulation of lipoprotein lipase and VLDL receptor in rats with focal glomerulosclerosis. Kidney Int. 2002;61:157–62.PubMedGoogle Scholar
  21. 21.
    Liang K, Vaziri ND. Gene expression of lipoprotein lipase in experimental nephrosis. J Lab Clin Med. 1997;130(4):387–94.PubMedGoogle Scholar
  22. 22.
    Liang K, Vaziri ND. Down-regulation of hepatic lipase expression in experimental nephrotic syndrome. Kidney Int. 1997;51(6):1933–7.PubMedGoogle Scholar
  23. 23.
    Sato T, Liang K, Vaziri ND. Protein restriction and AST-120 improve lipoprotein lipase, hepatic lipase and VLDL receptor in focal glomeruloscleros. Kidney Int. 2003;64:1780–6.PubMedGoogle Scholar
  24. 24.
    Liang K, Vaziri ND. Acquired VLDL receptor deficiency in experimental nephrosis. Kidney Int. 1997;51:1761–5.PubMedGoogle Scholar
  25. 25.
    Deighan CJ, Caslake MJ, McConnell M, Boulton-Jones JM, Packard CJ. Patients with nephrotic-range proteinuria have apolipoprotein C and E deficient VLDL1. Kidney Int. 2000;58(3):1238–46.PubMedGoogle Scholar
  26. 26.
    Wang L, Shearer GC, Budamagunta MS, Voss JC, Molfino A, Kaysen GA. Proteinuria decreases tissue lipoprotein receptor levels resulting in altered lipoprotein structure and increasing lipid levels. Kidney Int. 2012;82(9):990–9.PubMedGoogle Scholar
  27. 27.
    Furukawa S, Hirano T, Mamo JC, Nagano S, Takahashi T. Catabolic defect of triglyceride is associated with abnormal very-low-density lipoprotein in experimental nephrosis. Metabolism. 1990;39(1):101–7.PubMedGoogle Scholar
  28. 28.
    Shearer GC, Couser WG, Kaysen GA. Nephrotic livers secrete normal VLDL that acquire structural and functional defects following interaction with HDL. Kidney Int. 2004;65(1):228–37.PubMedGoogle Scholar
  29. 29.
    Zhou Y, Zhang X, Chen L, Wu J, Dang H, Wei M, Fan Y, Zhang Y, Zhu Y, Wang N, Breyer MD, Guan Y. Expression profiling of hepatic genes associated with lipid metabolism in nephrotic rats. Am J Physiol Renal Physiol. 2008;295(3):F662–71.Google Scholar
  30. 30.
    Vaziri ND, Kim C, Kim S, Phan D, Liang K. Upregulation of hepatic Acyl CoA diglycerol acyltransferase (DGAT)-1 expression in nephrotic syndrome. Kidney Int. 2004;66:262–7.PubMedGoogle Scholar
  31. 31.
    Han S, Vaziri ND, Gollapudi P, Kwok V, Moradi H. Hepatic fatty acid and cholesterol metabolism in nephrotic syndrome. Am J Transl Res. 2013;5(2):246–53.PubMedCentralPubMedGoogle Scholar
  32. 32.
    Warwick GL, Caslake MJ, Boulton-Jones JM, et al. Low-density lipoprotein metabolism in the nephrotic syndrome. Metabolism. 1990;39:187–92.PubMedGoogle Scholar
  33. 33.
    Vaziri ND, Sato T, Liang K. Molecular mechanism of altered cholesterol metabolism in focal glomerulosclerosis. Kidney Int. 2003;63:1756–63.PubMedGoogle Scholar
  34. 34.
    Kim CH, Kim HJ, Mitsuhashi M, Vaziri ND. Hepatic tissue Sterol Regulatory Element-Binding Protein-2 (SREBP-2) and LDL receptor in Nephrotic Syndrome. Metabolism. 2007;56:1377–82.PubMedGoogle Scholar
  35. 35.
    Vaziri ND, Liang K. Downregulation of hepatic LDL receptor expression in experimental nephrosis. Kidney Int. 1996;50:887–93.PubMedGoogle Scholar
  36. 36.
    Vaziri ND, Liang KH. Hepatic HMG-CoA reductase gene expression during the course of puromycin-induced nephrosis. Kidney Int. 1995;48:1979–85.PubMedGoogle Scholar
  37. 37.
    Vaziri ND, Liang KH. Upregulation of Acyl-Coenzyme A: Cholesterol acyltransferase (ACAT) in nephrotic syndrome. Kidney Int. 2002;61:1769–75.PubMedGoogle Scholar
  38. 38.
    Liu S, Vaziri ND. Role of PCSK9 and IDOL in the pathogenesis of acquired LDL receptor deficiency and hypercholesterolemiain nephrotic syndrome. Nephrol Dial Transplant. 2014;29:538–43.PubMedGoogle Scholar
  39. 39.
    Vaziri ND, Liang K, Parks JS. Acquired Lecithin: Cholesterol acyltransferase (LCAT) deficiency in nephrotic syndrome. Am J Physiol (Renal Physiol). 2001;49:F823–9.Google Scholar
  40. 40.
    Zhao Y, Marcel YL. Serum albumin is a significant intermediate in cholesterol transfer between cells and lipoproteins. Biochemistry. 1996;35:7174–80.PubMedGoogle Scholar
  41. 41.
    Moulin P, Appel GB, Ginsberg HN, Tall AR. Increased concentration of plasma cholesteryl ester transfer protein in nephrotic syndrome: role in dyslipidemia. J Lipid Res. 1992;33(12):1817–22.PubMedGoogle Scholar
  42. 42.
    Braschi S, Masson D, Rostoker G, Florentin E, Athias A, Martin C, Jacotot B, Gambert P, Lallemant C, Lagrost L. Role of lipoprotein-bound NEFAs in enhancing the specific activity of plasma CETP in the nephrotic syndrome. Arterioscler Thromb Vasc Biol. 1997;17(11):2559–67.PubMedGoogle Scholar
  43. 43.
    Zhang C, Yao M, Wang X, Zhuang Y, Xia Z, Yang Y, Li Y, Liu X, Li K, Wang J. Effect of hypoalbuminemia on the increased serum cholesteryl ester transfer protein concentration in children with idiopathic nephrotic syndrome. Clin Biochem. 2007;40(12):869–75.PubMedGoogle Scholar
  44. 44.
    Liang K, Vaziri ND. Downregulation of hepatic high-density lipoprotein receptor, SR-B1 in nephrotic syndrome. Kidney Int. 1999;56:621–6.PubMedGoogle Scholar
  45. 45.
    Vaziri ND, Gollapudi p, Han S, Farahmand G, Moradi H. Upregulation of hepatic HDL endocytic receptor and PDZK-1 dependent downregulation of HDL docking receptor in nephrotic syndrome. Nephrol Dial Transplant. 2011;103(6):524–33.Google Scholar
  46. 46.
    Kronenberg F, Lingenhel A, Lhotta K, Rantner B, Kronenberg MF, König P, Thiery J, Koch M, von Eckardstein A, Dieplinger H. Lipoprotein(a) and low-density lipoprotein-derived cholesterol in nephrotic syndrome: impact on lipid-lowering therapy? Kidney Int. 2004;66(1):348–54.PubMedGoogle Scholar
  47. 47.
    Wanner C, Rader D, Bartens W, Krämer J, Brewer HB, Schollmeyer P, Wieland H. Elevated plasma lipoprotein(a) in patients with the nephrotic syndrome. Ann Intern Med. 1993;119(4):263–9.PubMedGoogle Scholar
  48. 48.
    Kronenberg F. Dyslipidemia and nephrotic syndrome: recent advances. J Ren Nutr. 2005;15(2):195–203.PubMedGoogle Scholar
  49. 49.
    Kronenberg F, Utermann G, Dieplinger H. Lipoprotein(a) in renal disease. Am J Kidney Dis. 1996;27(1):1–25.PubMedGoogle Scholar
  50. 50.
    Vaziri ND. Dyslipidemia of chronic renal failure: the nature, mechanisms and potential consequences. Am J Physiol, Renal Physiol. 2006;290:262–72.Google Scholar
  51. 51.
    Vaziri ND. Lipotoxicity and impaired HDL-mediated reverse cholesterol/lipid transport in chronic kidney disease. J Renal Nutrition. 2010;20:S35–43.Google Scholar
  52. 52.
    Attman PO, Samuelsson O, Johansson AC, Moberly JB, Alaupovic P. Dialysis modalities and dyslipidemia. Kidney Int Suppl. 2003;84:S110–2.PubMedGoogle Scholar
  53. 53.
    Deighan CJ, Caslake MJ, McConnell M, Boulton-Jones JM, Packard CJ. Atherogenic lipoprotein phenotype in end-stage renal failure: origin and extent of small dense low-density lipoprotein formation. Am J Kidney Dis. 2000;35:852–62.PubMedGoogle Scholar
  54. 54.
    Moradi H, Pahl MV, Elahimehr R, Vaziri ND. Impaired antioxidant activity of HDL in chronic kidney disease. Transl Res. 2009;153:77–85.PubMedGoogle Scholar
  55. 55.
    Vaziri ND, Moradi H, Pahl MV, Fogelman AM, Navab M. In vitro stimulation of HDL anti-inflammatory activity and inhibition of LDL pro-inflammatory activity in the plasma of patients with end-stage renal disease by an apoA-1 mimetic peptide. Kidney Int. 2009;76(4):437–44.PubMedCentralPubMedGoogle Scholar
  56. 56.
    Vaziri ND, Navab M, Fogelman AM. HDL metabolism and activity in chronic kidney disease. Nat Rev Nephrol. 2010;6(5):287–96.PubMedGoogle Scholar
  57. 57.
    Himmelfarb J, Stenvinkel P, Ikizler TA, Hakim RM. The elephant in uremia: oxidant stress as a unifying concept of cardiovascular disease in uremia. Kidney Int. 2002;62:1524–38PubMedGoogle Scholar
  58. 58.
    Vaziri ND. Oxidative stress in chronic renal failure: the nature, mechanism and consequences. Seminars in Nephrol. 2004;24:469–73Google Scholar
  59. 59.
    Moradi H, Ganji S, Kamanna Vj, Pahl MV ND. Vaziri. Increased monocyte adhesion-promoting capacity of plasma in end-stage renal disease—response to antioxidant therapy. Clin Nephrol. 2010;74(4):273–81.PubMedGoogle Scholar
  60. 60.
    Akmal M, Kasim SE, Soliman AR, Massry SG. Excess parathyroid hormone adversely affects lipid metabolism in chronic renal failure. Kidney Int. 1990;37:854–8.PubMedGoogle Scholar
  61. 61.
    Chan MK, Persaud J, Varghese Z, Moorhead JF. Pathogenic roles of post-heparin lipases in lipid abnormalities in hemodialysis patients. Kidney Int. 1984;25:812–8.PubMedGoogle Scholar
  62. 62.
    Sakurai T, Oka T, Hasegawa H, Igaki N, Miki S, Goto T. Comparison of lipids, apoproteins and associated enzyme activities between diabetic and nondiabetic end-stage renal disease. Nephron. 1992;61:409–14.PubMedGoogle Scholar
  63. 63.
    Vaziri ND, Liang K. Down-regulation of tissue lipoprotein lipase expression in experimental chronic renal failure. Kidney Int. 1996;50:1928–35.PubMedGoogle Scholar
  64. 64.
    Vaziri ND, Yuan J, Ni Z, Nicholas SB, Norris KC. Lipoprotein lipase deficiency in chronic kidney disease is compounded by downregulation of endothelial GPIHBP1 expression. Clin Exp Nephrol. 2012;16:238–43.PubMedCentralPubMedGoogle Scholar
  65. 65.
    Vaziri ND, Wang XQ, Liang K. Secondary hyperparathyroidism downregulates lipoprotein lipase expression in chronic renal failure. Am J Physiol Renal Physiol. 1997;273:F925–30.Google Scholar
  66. 66.
    Roullet JB, Lacour B, Yvert JP, Drueke T. Correction by insulin of disturbed TG-rich LP metabolism in rats with chronic renal failure. Am J Physiol Endocrinol Metab. 1986;250:E373–6.Google Scholar
  67. 67.
    Bagdade J, Casaretto A, Albers J. Effects of chronic uremia, hemodialysis, and renal transplantation on plasma lipids and lipoproteins in man. J Lab Clin Med. 1976;87:38–48.PubMedGoogle Scholar
  68. 68.
    Vaziri ND, Norris K. Lipid disorders and their relevance to outcomes in chronic kidney disease. Blood Purif. 2011;31(1–3):189–96.PubMedGoogle Scholar
  69. 69.
    Klin M, Smogorzewski M, Ni Z, Zhang G, Massry SG. Abnormalities in hepatic lipase in chronic renal failure: role of excess parathyroid hormone. J Clin Invest. 1996;97:2167–73.PubMedCentralPubMedGoogle Scholar
  70. 70.
    Kim C, Vaziri ND. Downregulation of hepatic LDL receptor-related protein (LRP) in chronic renal failure. Kidney Int. 2005;67:1028–32.PubMedGoogle Scholar
  71. 71.
    Vaziri ND, Liang K. Down-regulation of VLDL receptor expression in chronic experimental renal failure. Kidney Int. 1997;51:913–9.PubMedGoogle Scholar
  72. 72.
    Vaziri ND. Role of dyslipidemia in impairment of energy metabolism, oxidative stress, inflammation and cardiovascular disease in chronic kidney disease. Clin Exp Nephrol. 2013. doi:10.1007/s10157-013-0847-z.Google Scholar
  73. 73.
    Epstein M, Vaziri ND. Role of statins in the management of dyslipidemia of chronic kidney disease; current concepts and emerging treatment paradigms. Nat Rev Nephrol. 2012;8(4):214–23.PubMedGoogle Scholar
  74. 74.
    Attman PO, Samuelsson O, Alaupovic P. Lipoprotein metabolism and renal failure. Am J Kidney Dis. 1993;21:573–92.PubMedGoogle Scholar
  75. 75.
    Honda H, Ueda M, Kojima S, Mashiba S, Michihata T, Takahashi K, Shishido K, Akizawa T. Oxidized high-density lipoprotein as a risk factor for cardiovascular events in prevalent hemodialysis patients. Atherosclerosis. 2012;220:493–501.PubMedGoogle Scholar
  76. 76.
    Holzer M, Birner-Gruenberger R, Stojakovic T, El-Gamal D, Binder V, Wadsack C, Heinemann A, Marsche G. Uremia alters HDL composition and function. J Am Soc Nephrol. 2011;22(9):1631–41.PubMedCentralPubMedGoogle Scholar
  77. 77.
    Okubo K, Ikewaki K, Sakai S, Tada N, Kawaguchi Y, Mochizuki S. Abnormal HDL apolipoprotein A-I and A-II kinetics in hemodialysis patients: a stable isotope study. J Am Soc Nephrol. 2004;15(4):1008–15.PubMedGoogle Scholar
  78. 78.
    Vaziri ND, Deng G, Liang K. Hepatic HDL receptor, SR-B1 and Apo A-I expression in chronic renal failure. Nephrol Dial Transplant. 1999;14:1462–6.PubMedGoogle Scholar
  79. 79.
    Kamanna VS, Kashyap ML, Pai R, et al. Uremic serum subfraction inhibits apolipoprotein A-I production by a human hepatoma cell line. J Am Soc Nephrol. 1994;5:193–200.PubMedGoogle Scholar
  80. 80.
    Moradi H, Said HM, Vaziri ND. Post-transcriptional nature of uremia-induced down-regulation of hepatic apolipoprotein A-I production. Transl Res. 2013. doi:pii: S1931-5244(12)00403-3. 10.1016/j.trsl.2012.11.001.Google Scholar
  81. 81.
    Pruijm M, Schmidtko J, Aho A, Pagano S, Roux-Lombard P, Teta D, Burnier M, Vuilleumier N. High prevalence of anti-apolipoprotein/a-1 autoantibodies in maintenance hemodialysis and association with dialysis vintage. Ther Apher Dial. 2012;16(6):588–94.PubMedGoogle Scholar
  82. 82.
    Miida T, Miyazaki O, Hanyu O, Nakamura Y, Hirayama S, Narita I, Gejyo F, Ei I, Tasaki K, Kohda Y, Ohta T, Yata S, Fukamachi I, Okada M. LCAT-dependent conversion of prebeta1-HDL into alpha-migrating HDL is severely delayed in hemodialysis patients. J Am Soc Nephrol. 2003;14(3):732–8.PubMedGoogle Scholar
  83. 83.
    Guarnieri GF, Moracchiello M, Campanacci L, et al. Lecithin-cholesterol acyltransferase (LCAT) activity in chronic uremia. Kidney Int Suppl. 1978;8:S26–30.PubMedGoogle Scholar
  84. 84.
    Vaziri ND, Liang K, Parks JS. Downregulation of lecithin: Cholesterol acyltransferase (LCAT) in chronic renal failure. Kidney Int. 2001;59:2192–6.PubMedGoogle Scholar
  85. 85.
    Liang K, Kim C, Vaziri ND. HMG-CoA reductase inhibition reverses LCAT and LDL receptor deficiencies and improves HDL in rats with chronic renal failure. Am J Physiol Renal Physiol. 2005;288:F539–44.PubMedGoogle Scholar
  86. 86.
    Yamamoto S, Yancey PG, Ikizler TA, Jerome WG, Kaseda R, Cox B, Bian A, Shintani A, Fogo AB, Linton MF, Fazio S, Kon V. Dysfunctional High-Density Lipoprotein in Patients On Chronic Hemodialysis. J Am Coll Cardiol. 2012. doi:pii: S0735-1097(12)04651-7.Google Scholar
  87. 87.
    Vaziri ND, Liang K, Parks JS. Down-regulation of hepatic lecithin: cholesterol acyltransferase gene expression in chronic renal failure. Kidney Int. 2001;59:2192–6. (BPU345176).PubMedGoogle Scholar
  88. 88.
    Liang K, Vaziri ND. Upregulation of Acyl-CoA: Cholesterol acyltransferase (ACAT) in chronic renal failure. Am J Physiol Endocrinol Metab. 2002;283:E676–81.PubMedGoogle Scholar
  89. 89.
    Moradi H, Yuan J, Ni Z, Norris K, Vaziri ND. Reverse cholesterol transport pathway in experimental chronic kidney disease. Am J Nephrol. 2009;30:147–54.PubMedCentralPubMedGoogle Scholar
  90. 90.
    Kim HJ, Moradi H, Vaziri ND. Renal mass reduction results in accumulation of lipids and dysregulation of lipid regulatory proteins in the remnant kidney. Am J Physiol Renal Physiol. 2009;296(6):F1297–306.PubMedCentralPubMedGoogle Scholar
  91. 91.
    Shao B, Oda MN, Oram JF, Heinecke JW. Myeloperoxidase: an inflammatory enzyme for generating dysfunctional high density lipoprotein. Curr Opin Cardiol. 2006;21:322–8.PubMedGoogle Scholar
  92. 92.
    Kalantar-Zadeh K, Kopple JD, Kamranpour N, Fogelman AM, Navab M. HDL inflammatory index correlates with poor outcome in hemodialysis patients. Kidney Int. 2007;72:1149–56.PubMedGoogle Scholar
  93. 93.
    Kimura H, Miyazaki R, Suzuki S, Gejyo F, Yoshida H. Cholesteryl ester transfer protein as a protective factor against vascular disease in hemodialysis patients. Am J of Kidney Dis. 2001;38:70–6.Google Scholar
  94. 94.
    Pahl MV, Ni Z, Sepassi L, Vaziri ND. Plasma phosphlipid transfer protein, cholesteryl ester transfer protein and lecithin: cholesterol aacyltransferase in end-stage renal disease. NDT. 2009;24(8):2541–6.PubMedCentralPubMedGoogle Scholar
  95. 95.
    Dantoine TF, Debord J, Charmes JP, Merle L, Marquet P, Lachatre G, Leroux-Robert C. Decrease of serum paraoxonase activity in chronic renal failure. J Am Soc Nephrol. 1998;9:2082–8.PubMedGoogle Scholar
  96. 96.
    Weichhart T, Kopecky C, Kubicek M, Haidinger M, Döller D, Katholnig K, Suarna C, Eller P, Tölle M, Gerner C, Zlabinger GJ, van der Giet M, Hörl WH, Stocker R, Säemann MD. Serum amyloid A in uremic HDL promotes inflammation. J Am Soc Nephrol. 2012;23:934–47.PubMedCentralPubMedGoogle Scholar
  97. 97.
    Ansell BJ, Navab M, Hama S, Kamranpour N, Fonarow G, Hough G, Rahmani S, Mottahedeh R, Dave R, Reddy ST, Fogelman AM. Inflammatory/anti-inflammatory properties of high-density lipoprotein distinguish patients from control subjects better than high-denisty lipoprotein cholesterol levels and are favorably affected by simvastatin treatment. Circulation. 2003;108:2751–6.PubMedGoogle Scholar
  98. 98.
    Ansell BJ, Fonarow GC, Fogelman AM. The paradox of dysfunctional high-density lipoprotein. Curr Opin Lipidol. 2007;18:427–34.PubMedGoogle Scholar
  99. 99.
    Frischmann ME, Kronenberg F, Trenkwalder E, Schaefer JR, Schweer H, Dieplinger B, Koenig P, Ikewaki K, Dieplinger H. In vivo turnover study demonstrates diminished clearance of lipoprotein(a) in hemodialysis patients. Kidney Int. 2007;71(10):1036–43.PubMedGoogle Scholar
  100. 100.
    Trenkwalder E, Gruber A, König P, Dieplinger H, Kronenberg F. Increased plasma concentrations of LDL-unbound apo(a) in patients with end-stage renal disease. Kidney Int. 1997;52(6):1685–92.PubMedGoogle Scholar
  101. 101.
    Attman PO, Samuelsson OG, Moberly J, Johansson AC, Ljungman S, Weiss LG, et al. Apolipoprotein B-containing lipoproteins in renal failure: the relation to mode of dialysis. Kidney Int. 1999;55(4):1536–42.PubMedGoogle Scholar
  102. 102.
    Shoji T, Nishizawa Y, Nishitani H, Yamakawa M, Morii H. Roles of hypoalbuminemia and lipoprotein lipase on hyperlipoproteinemia in continuous ambulatory peritoneal dialysis. Metabolism. 1991;40(10):1002–8.PubMedGoogle Scholar
  103. 103.
    Horkko S, Huttunen K, Laara E, Kervinen K, Kesaniemi YA. Effects of three treatment modes on plasma lipids and lipoproteins in uraemic patients. Ann Med. 1994;26(4):271–82.PubMedGoogle Scholar
  104. 104.
    Llopart R, Donate T, Oliva JA, Roda M, Rousaud F, Gonzalez-Sastre F, et al. Triglyceride-rich lipoprotein abnormalities in CAPD-treated patients. Nephrol Dial Transplant. 1995;10(4):537–40.PubMedGoogle Scholar
  105. 105.
    Siamopoulos KC, Elisaf MS, Bairaktari HT, Pappas MB, Sferopoulos GD, Nikolakakis NG. Lipid parameters including lipoprotein (a) in patients undergoing CAPD and hemodialysis. Perit Dial Int. 1995;15(8):342–7.PubMedGoogle Scholar
  106. 106.
    Moberly JB, Attman PO, Samuelsson O, Johansson AC, Knight-Gibson C, Alaupovic P. Alterations in lipoprotein composition in peritoneal dialysis patients. Perit Dial Int. 2002;22(2):220–8.PubMedGoogle Scholar
  107. 107.
    Prinsen BH, Rabelink TJ, Romijn JA, et al. A broad-based metabolic approach to study VLDL apoB100 metabolism in patients with ESRD and patients treated with peritoneal dialysis. Kidney Int. 2004;65:1064–75.PubMedGoogle Scholar
  108. 108.
    Babazono T, Nakamoto H, Kasai K, et al. Effects of icodextrin on glycemic and lipid profiles in diabetic patients undergoing peritoneal dialysis. Am J Nephrol. 2007;27:409–41.PubMedGoogle Scholar
  109. 109.
    Paraskevas KI. Statin therapy in peritoneal dialysis patients: effects beyond lipid lowering. Int Urol Nephrol. 2008;40:165–70.PubMedGoogle Scholar
  110. 110.
    Kobashigawa JA, Kasiske BL. Hyperlipidemia in solid organ transplantation. Transplantation. 1997;63:331–8.PubMedGoogle Scholar
  111. 111.
    Castro R, Queiros J, Fonseca I, Pimentel JP, Henriques AC, Sarmento AM, et al. Therapy of post-renal transplantation hyperlipidaemia: comparative study with simvastatin and fish oil. Nephrol Dial Transplant. 1997;12:2140–3.PubMedGoogle Scholar
  112. 112.
    Moore R, Hernandez D, Valantine H. Calcineurin inhibitors and post-transplant hyperlipidaemias. Drug Saf. 2001;24:755–66.PubMedGoogle Scholar
  113. 113.
    Tse KC, Lam MF, Yip PS, Li FK, Lai KN, Chan TM. A long-term study on hyperlipidemia in stable renal transplant recipients. Clin Transplant. 2004;18:274–80.Google Scholar
  114. 114.
    Trence DL. Management of patients on chronic glucocorticoidi therapy: an endocrine perspective. Prim Care. 2003;30:593–605.PubMedGoogle Scholar
  115. 115.
    Vaziri ND, Liang K, Azad H. Effect of cyclosporine on HMG-CoA reductase, cholesterol 7 a -hydroxylase, LDL receptor, HDL receptor, VLDL receptor and lipoprotein lipase expressions. J Pharmacol Exp Ther. 2000;294:778–83.PubMedGoogle Scholar
  116. 116.
    Artz MA, Boots JM, Ligtenberg G, et al. Improved cardiovascular risk profile and renal function in renal transplant patients after randomized conversion from cyclosporine to tacrolimus. J Am Soc Nephrol. 2003;14:1880–8.PubMedGoogle Scholar
  117. 117.
    Sever PS, Dahlof B, Poulter NR, Wedel H, Beevers G, Caulfield M, et al. Prevention of coronary and stroke events with atorvastatin in hypertensive patients who have average or lower-than-average cholesterol concentrations, in the Anglo-Scandinavian Cardiac Outcomes Trial—Lipid Lowering Arm (ASCOT-LLA): a multicentre randomised controlled trial. Lancet. 2003;361(9364):1149–58.PubMedGoogle Scholar
  118. 118.
    Heart Protection Study Collaborative Group. MRC/BHF Heart Protection Study of cholesterol lowering with simvastatin in 20,536 high-risk individuals: a randomised placebo-controlled trial. Lancet. 2002;360(9326):7–22. 109.Google Scholar
  119. 119.
    Tonelli M, Isles C, Curhan GC, Tonkin A, Pfeffer MA, Shepherd J, et al. Effect of pravastatin on cardiovascular events in people with chronic kidney disease. Circulation. 2004;110(12):1557–63.PubMedGoogle Scholar
  120. 120.
    Tonelli M, Moye L, Sacks FM, Kiberd B, Curhan G. Pravastatin for secondary prevention of cardiovascular events in persons with mild chronic renal insufficiency. Ann Intern Med. 2003;138(2):98–104.PubMedGoogle Scholar
  121. 121.
    Strippoli GF, Navaneethan SD, Johnson DW, Perkovic V, Pellegrini F, Nicolucci A, et al. Effects of statins in patients with chronic kidney disease: meta-analysis and meta-regression of randomised controlled trials. Bmj. 2008;336(7645):645–51.PubMedCentralPubMedGoogle Scholar
  122. 122.
    Baigent C, Landray MJ, Reith C, et al. The effects of lowering LDL cholesterol with simvastatin plus ezetimibe in patients with chronic kidney disease (Study of Heart and Renal Protection): a randomized placebo-controlled trial. Lancet. 2011;377:2181–92.PubMedCentralPubMedGoogle Scholar
  123. 123.
    Asselbergs FW, Diercks GF, Hillege HL, van Boven AJ, Janssen WM, Voors AA, et al. Effects of fosinopril and pravastatin on cardiovascular events in subjects with microalbuminuria. Circulation. 2004;110(18):2809–16.PubMedGoogle Scholar
  124. 124.
    Collins R, Armitage J, Parish S, Sleigh P, Peto R. Heart Protection Study Collaborative Group. MRC/BHF Heart Protection Study of cholesterol-lowering with simvastatin in 5963 people with diabetes: a randomized placebo-controlled trial. Lancet. 2003;361:2005–16.PubMedGoogle Scholar
  125. 125.
    Athyros VG, Mikhailidis DP, Papageorgiou AA, Symeonidis AN, Pehlivanidis AN, Bouloukos VI, et al. The effect of statins versus untreated dyslipidaemia on renal function in patients with coronary heart disease. A subgroup analysis of the Greek atorvastatin and coronary heart disease evaluation (GREACE) study. J Clin Pathol. 2004;57(7):728–34.PubMedCentralPubMedGoogle Scholar
  126. 126.
    Shepherd J, Kastelein JJ, Bittner V, Deedwania P, Breazna A, Dobson S, et al. Effect of intensive lipid lowering with atorvastatin on renal function in patients with coronary heart disease: the Treating to New Targets (TNT) study. Clin J Am Soc Nephrol. 2007;2(6):1131–9.PubMedGoogle Scholar
  127. 127.
    Tonelli M, Moye L, Sacks FM, Cole T, Curhan GC. Effect of pravastatin on loss of renal function in people with moderate chronic renal insufficiency and cardiovascular disease. J Am Soc Nephrol. 2003;14(6):1605–161.PubMedGoogle Scholar
  128. 128.
    Fried LF, Orchard TJ, Kasiske BL. Effect of lipid reduction on the progression of renal disease: a meta-analysis. Kidney Int. 2001;59(1):260–9.PubMedGoogle Scholar
  129. 129.
    Sandhu S, Wiebe N, Fried LF, Tonelli M. Statins for improving renal outcomes: a meta-analysis. J Am Soc Nephrol. 2006 Jul;17(7):2006–16.PubMedGoogle Scholar
  130. 130.
    Douglas K, O’Malley PG, Jackson JL. Meta-analysis: the effect of statins on albuminuria. Ann Intern Med. 2006;145(2):117–24.PubMedGoogle Scholar
  131. 131.; Scholar
  132. 132.
    Deslypere JP, Delanghe J, Vermeulen A. Proteinuria as complication of simvastatin treatment. Lancet. 1990;336(8728):1453.PubMedGoogle Scholar
  133. 133.
    Verhulst A, D’Haese PC, De Broe ME. Inhibitors of HMG-CoA reductase reduce receptor-mediated endocytosis in human kidney proximal tubular cells. J Am Soc Nephrol. 2004;15(9):2249–57.PubMedGoogle Scholar
  134. 134.
    Wanner C, Krane V, Marz W, et al. Atorvastatin in patients with type 2 diabetes mellitus undergoing hemodialysis. N Engl J Med. 2005;353:238–48.PubMedGoogle Scholar
  135. 135.
    Fellstrom BC, Jardine AG, Schmieder RE, et al. Rosuvastatin and cardiovascular events in patients undergoing hemodialysis. N Engl J Med. 2009;360:1395–407.PubMedGoogle Scholar
  136. 136.
    Baigent C, Keech A, Kearney PM, Blackwell L, Buck G, Pollicino C, Kirby A, Sourjina T, Peto R, Collins R, Simes R; Cholesterol Treatment Trialists’ (CTT) Collaborators. Efficacy and safety of cholesterol-lowering treatment: prospective meta-analysis of data from 90,056 participants in 14 randomized trials of statins. Lancet. 2005;366:1267–78.PubMedGoogle Scholar
  137. 137.
    März W, Genser B, Drechsler C, Krane V, Grammer TB, Ritz E, Stojakovic T, Scharnagl H, Winkler K, Holme I, Holdaas H, Wanner C; German Diabetes and Dialysis Study Investigators. Atorvastatin and low-density lipoprotein cholesterol in type 2 diabetes mellitus patients on hemodialysis. Clin J Am Soc Nephrol. 2011;6(6):1316–25.PubMedCentralPubMedGoogle Scholar
  138. 138.
    Calabrò P, Yeh ET. The pleiotropic effects of statins. Curr Opin Cardiol. 2005;20:541–6.PubMedGoogle Scholar
  139. 139.
    Haslinger B, Goedde MF, Toet KH, et al. Simvastatin increases fibrinolytic activity in human peritoneal mesothelial cells independent of cholesterol lowering. Kidney Int. 2002;62:1611–9.PubMedGoogle Scholar
  140. 140.
    Holdaas H, Fellstrom B, Cole E, Nyberg G, Olsson AG, Pedersen TR, et al. Long-term cardiac outcomes in renal transplant recipients receiving fluvastatin: the ALERT extension study. Am J Transplant. 2005;5:2929–36.PubMedGoogle Scholar
  141. 141.
    Tonelli M, Collins D, Robins S, Bloomfield H, Curhan GC. Effect of gemfibrozil on change in renal function in men with moderate chronic renal insufficiency and coronary disease. Am J Kidney Dis. 2004;44:832–9.PubMedGoogle Scholar
  142. 142.
    Tonelli M, Collins D, Robins S, Bloomfield H, Curhan GC; Veterans’ Affairs High-Density Lipoprotein Intervention Trial (VA-HIT) Investigators. Gemfibrozil for secondary prevention of cardiovascular events in mild to moderate chronic renal insufficiency. Kidney Int. 2004;66:1123–30.PubMedGoogle Scholar
  143. 143.
    Otvos JD, Collins D, Freedman DS. LDL and HDL particle subclasses predict coronary events and are changed favorably by gemfibrozil therapy in the Veterans Affairs HDL Intervention Trial (VA-HIT). Circulation. 2006;113:1556–63.PubMedGoogle Scholar
  144. 144.
    Jun M, Zhu B, Tonelli M, et al. Effects of fibrates in kidney disease, a review and meta-analysis. J Am Coll Cardiol. 2012. doi:10.1016/j.jacc.2012.07.049.Google Scholar
  145. 145.
    Kidney Disease Outcomes Quality Initiative (K/DOQI) Group. K/DOQI clinical practice guidelines for management of dyslipidemias in patients with kidney disease. Am J Kidney Dis. 2003;41:I–IV (quiz 42–33).Google Scholar
  146. 146.
    Jacobson TA, Zimmerman FH. Fibrates in combination with statins in the management of dyslipidemia. J Clin Hypertens (Greenwich). 2006;8(1):35–41.Google Scholar
  147. 147.
    Vaziri ND, Liang K. Acyl-CoA cholesterol acyltransferase inhibition ameliorates proteinuria, hyperlipidemia, LCAT, SRB-1 and LDL receptor deficiencies in nephrotic syndrome. Circulation. 2004;110:419–25.PubMedGoogle Scholar
  148. 148.
    Vaziri ND, Liang K. ACAT inhibition reverses LCAT deficiency and improves plasma HDL in chronic renal failure. Am J Physiol Renal Physiol. 2004;287:F1038–43.PubMedGoogle Scholar
  149. 149.
    Tardif JC, Grégoire J, L’Allier PL, Anderson TJ, Bertrand O, Reeves F, Title LM, Alfonso F, Schampaert E, Hassan A, McLain R, Pressler ML, Ibrahim R, Lespérance J, Blue J, Heinonen T, Rodés-Cabau J, Avasimibe and Progression of Lesions on UltraSound (A-PLUS) Investigators. Effects of the acyl coenzyme A:cholesterol acyltransferase inhibitor avasimibe on human atherosclerotic lesions. Circulation. 2004;110(21):3372–7.PubMedGoogle Scholar

Copyright information

© Humana Press 2015

Authors and Affiliations

  1. 1.Division of Nephrology and HypertensionUniversity of California Irvine Medical Center, MedicineOrangeUSA

Personalised recommendations