Advertisement

Dyslipidemias pp 465-481 | Cite as

Cholesterol Absorption Inhibitor Ezetimibe: Risk–Benefits and Role in Treating Dyslipidemias

  • Shizuya YamashitaEmail author
  • Daisaku Masuda
  • Akifumi Matsuyama
Chapter
Part of the Contemporary Endocrinology book series (COE)

Abstract

Ezetimibe, a novel lipid-lowering compound, selectively inhibits intestinal cholesterol absorption by binding to Niemann-Pick C1-Like 1 (NPC1L1). Ezetimibe reduces the hepatic influx of cholesterol via chylomicron remnants, enhances the hepatic expression of low-density lipoproteins (LDL) receptor, and thus reducing LDL-cholesterol (LDL-C) levels. Ezetimibe also attenuates the development of atherosclerosis in various animal models. The administration of ezetimibe decreases the fasting levels of LDL-C in patients with primary hypercholesterolemia as well as plant sterols in patients with sitosterolemia. A significantly greater reduction in LDL-C levels is achieved in patients treated with ezetimibe plus statin combination compared with statin monotherapy.

Ezetimibe was reported to decrease fasting triglycerides (TG) levels as well as postprandial TG-rich lipoprotein and remnants significantly in patients with combined hyperlipidemia and those with hypertriglyceridemia (TG ≥ 150 mg/dl); however, its underlying mechanism of action on TG-rich lipoprotein metabolism has not yet been elucidated. Ezetimibe administration can attenuate postprandial hyperlipidemia by reducing the production of chylomicrons (CMs) from the small intestines and decreasing the absorption of free fatty acids (FFA).

More recently, ezetimibe has been reported to attenuate nonalcoholic fatty liver disease (NAFLD) or nonalcoholic steatohepatitis (NASH) in animal models and humans. Since the influx of chylomicron remnants and FFA into the liver is decreased by ezetimibe, it is plausible that it may attenuate hepatic lipid deposition. The antiatherosclerotic effects of ezetimibe have been demonstrated in a variety of animal models and more recently in some clinical trials. In the recent Study of Heart and Renal Protection (SHARP) Trial, the combination of simvastatin and ezetimibe was shown to be effective for major atherosclerotic events in patients with chronic kidney disease. Taken together, ezetimibe may possess additional pleiotropic roles in addition to lipid-lowering effects.

Keywords

NPC1L1 Intestinal cholesterol transporter Inhibitor LDL receptor Familial hypercholesterolemia (FH) Ezetimibe Remnants Triglycerides-rich lipoproteins Apolipoprotein B-48 Hyperlipidemia Postprandial hyperlipidemia Insulin resistance Atherosclerosis Chronic kidney disease (CKD) Nonalcoholic fatty liver disease (NAFLD) Nonalcoholic steatohepatitis (NASH) 

Notes

Acknowledgments

The authors gratefully acknowledge the excellent technical assistance and office work extended by Kaori Hizu-Shioyama, Risa Wada, and Kyoko Ozawa. This work was supported by a Grant-in-Aid for Scientific Research (No. 13671191) to S. Yamashita from the Japanese Ministry of Education, Science, Sports and Culture and in part by the Program for Promotion of Fundamental Studies in Health Sciences of the National Institute of Biomedical Innovation (NIBIO), Foundation for Biomedical Research and Innovation for Akifumi Matsuyama, Daisaku Masuda, Shizuya Yamashita.

References

  1. 1.
    Altmann SW, Davis HR Jr, Zhu LJ, et al. Niemann-pick C1 like 1 protein is critical for intestinal cholesterol absorption. Science. 2004;303:1201–4.CrossRefPubMedGoogle Scholar
  2. 2.
    Huff MW, Pollex RL, Hegele RA. NPC1L1: evolution from pharmacological target to physiological sterol transporter. Arterioscler Thromb Vasc Biol. 2006;26:2433–8.CrossRefPubMedGoogle Scholar
  3. 3.
    Davies JP, Scott C, Oishi K, et al. Inactivation of NPC1L1 causes multiple lipid transport defects and protects against diet-induced hypercholesterolemia. J Biol Chem. 2005;280:12710–20.CrossRefPubMedGoogle Scholar
  4. 4.
    Davis HR Jr, Hoss LM, Tetzloff G, et al. Deficiency of Niemann-Pick C1 like 1 prevents atherosclerosis in apoE (-/-) mice. Arterioscler Thromb Vasc Biol. 2007;27:841–9.CrossRefPubMedGoogle Scholar
  5. 5.
    Garcia-Calvo M, Lisnock J, Bull HG, et al. The target of ezetimibe is Niemann-Pick C1-like 1 (NPC1L1). Proc Natl Acad Sci U S A. 2005;102:8132–7.CrossRefPubMedCentralPubMedGoogle Scholar
  6. 6.
    Ge L, Wang J, Qi W, et al. The cholesterol absorption inhibitor ezetimibe acts by blocking the sterol-induced internalization of NPC1L1. Cell Metab. 2008;7:508–19.CrossRefPubMedGoogle Scholar
  7. 7.
    Wang J, Chu BB, Ge L, et al. Membrane topology of human NPC1L1, a key protein in enterohepatic cholesterol absorption. J Lipid Res. 2009;50:1653–62.CrossRefPubMedCentralPubMedGoogle Scholar
  8. 8.
    Weinglass AB, Kohler M, Schulte U, et al. Extracellular loop C of NPC1L1 is important for binding to ezetimibe. Proc Natl Acad Sci U S A. 2008;105:11140–5.CrossRefPubMedCentralPubMedGoogle Scholar
  9. 9.
    Wang L-J, Song B-L. Niemann-Pick C1-like 1 and cholesterol uptake. Biochim Biophys Acta. 2012;1821:964–72.CrossRefPubMedGoogle Scholar
  10. 10.
    Davis HR Jr, Compton DS, Hoos L, et al. Ezetimibe, a potent cholesterol absorption inhibitor, inhibits the development of atherosclerosis in apoE knockout mice. Arterioscler Thromb Vasc Biol. 2001;21:2032–8.CrossRefPubMedGoogle Scholar
  11. 11.
    Knopp RH, Dujovne CA, Le Beaut A, et al. Evaluation of the efficacy, safety, and tolerability of ezetimibe in primary hypercholesterolaemia: a pooled analysis from two controlled phase II clinical studies. Int J Clin Pract. 2003;57:363–8.PubMedGoogle Scholar
  12. 12.
    Salen G, von Bergmann K, Lutjohann D, et al. Ezetimibe effectively reduces plasma plant sterols in patients with sitosterolemia. Circulation. 2004;109:966–71.CrossRefPubMedCentralPubMedGoogle Scholar
  13. 13.
    Tsubakio-Yamamoto K, Nishida M, Nakagawa-Toyama Y, et al. Current therapy for patients with sitosterolemia–effect of ezetimibe on plant sterol metabolism. J Atheroscler Thromb. 2010;17:891–900.CrossRefPubMedGoogle Scholar
  14. 14.
    Mikhailidis DP, Lawson RW, McCormick AL, et al. Comparative efficacy of the addition of ezetimibe to statin vs statin titration in patients with hypercholesterolaemia: systematic review and meta-analysis. Curr Med Res Opin. 2011;27:1191–210.CrossRefPubMedGoogle Scholar
  15. 15.
    Saito Y, Yamada N, Nakatani K, et al. Phase III clinical study of ezetimibe—double-blind comparative study with colestilan. J Clin Ther Med. 2007;23:493–522.Google Scholar
  16. 16.
    Masuda D, Nakagawa-Toyama Y, Nakatani K, et al. Ezetimibe improves postprandial hyperlipidaemia in patients with type IIb hyperlipidaemia. Eur J Clin Invest. 2009;39:689–98.CrossRefPubMedGoogle Scholar
  17. 17.
    Sandoval JC, Nakagawa-Toyama Y, Masuda D, et al. Molecular mechanisms of ezetimibe-induced attenuation of postprandial hypertriglyceridemia. J Atheroscler Thromb. 2010;17:914–24.CrossRefPubMedGoogle Scholar
  18. 18.
    Van Heek M, France CF, Compton DS, et al. In vivo metabolism-based discovery of a potent cholesterol absorption inhibitor, SCH58235, in the rat and rhesus monkey through the identification of the active metabolites of SCH48461. J Pharmacol Exp Ther. 1997;283:157–63.PubMedGoogle Scholar
  19. 19.
    Clader JW. The discovery of ezetimibe: a view from outside the receptor. J Med Chem. 2004;47:1–9.CrossRefPubMedGoogle Scholar
  20. 20.
    Altmann SW, Davis HR Jr, Yao X, et al. The identification of intestinal scavenger receptor class B, type I (SR-BI) by expression cloning and its role in cholesterol absorption. Biochim Biophys Acta. 2002;1580:77–93.CrossRefPubMedGoogle Scholar
  21. 21.
    Iyer SP, Yao X, Crona JH, et al. Characterization of the putative native and recombinant rat sterol transporter Niemann-Pick C1 Like 1 (NPC1L1) protein. Biochim Biophys Acta. 2005;1722:282–92.CrossRefPubMedGoogle Scholar
  22. 22.
    Tang W, Ma Y, Yu L. Plasma cholesterol is hyperresponsive to statin in ABCG5/ABCG8 transgenic mice. Hepatology. 2006;44:1259–66.CrossRefPubMedGoogle Scholar
  23. 23.
    Telford DE, Sutherland BG, Edwards JY, et al. The molecular mechanisms underlying the reduction of LDL apoB-100 by ezetimibe plus simvastatin. J Lipid Res. 2007;48:699–708.CrossRefPubMedGoogle Scholar
  24. 24.
    Davis HR Jr, Zhu LJ, Hoos LM, et al. Niemann-Pick C1 Like 1 (NPC1L1) is the intestinal phytosterol and cholesterol transporter and a key modulator of whole-body cholesterol homeostasis. J Biol Chem. 2004;279:33586–92.CrossRefPubMedGoogle Scholar
  25. 25.
    Temel RE, Lee RG, Kelley KL, et al. Intestinal cholesterol absorption is substantially reduced in mice deficient in both ABCA1 and ACAT2. J Lipid Res. 2005;46:2423–31.CrossRefPubMedGoogle Scholar
  26. 26.
    Liu R, Iqbal J, Yeang C, et al. Phospholipid transfer protein-deficient mice absorb less cholesterol. Arterioscler Thromb Vasc Biol. 2007;27:2014–21.CrossRefPubMedGoogle Scholar
  27. 27.
    Tremblay AJ, Lamarche B, Lemelin V, et al. Atorvastatin increases intestinal expression of NPC1L1 in hyperlipidemic men. J Lipid Res. 2011;52:558–65.CrossRefPubMedCentralPubMedGoogle Scholar
  28. 28.
    Miettinen TA, Gylling H, Lindbohm N, et al. Serum noncholesterol sterols during inhibition of cholesterol synthesis by statins. J Lab Clin Med. 2003;141:131–7.CrossRefPubMedGoogle Scholar
  29. 29.
    Lally S, Owens D, Tomkin GH. Genes that affect cholesterol synthesis, cholesterol absorption, and chylomicron assembly: the relationship between the liver and intestine in control and streptozotosin diabetic rats. Metabolism. 2007;56:430–8.CrossRefPubMedGoogle Scholar
  30. 30.
    Duan LP, Wang HH, Ohashi A, et al. Role of intestinal sterol transporters Abcg5, Abcg8, and Npc1l1 in cholesterol absorption in mice: gender and age effects. Am J Physiol Gastrointest Liver Physiol. 2006;290:G269-76.CrossRefPubMedGoogle Scholar
  31. 31.
    Davis HR, Altman SW. Niemann-Pick C1 Like 1 (NPC1L1) an intestinal sterol transporter. Biochim Biophys Acta. 2009;1791:679–83.CrossRefPubMedGoogle Scholar
  32. 32.
    Cohen JC, Pertsemlidis A, Fahmi S, et al. Multiple rare variants in NPC1L1 associated with reduced sterol absorption and plasma low-density lipoprotein levels. Proc Natl Acad Sci U S A. 2006;103:1810–5.CrossRefPubMedCentralPubMedGoogle Scholar
  33. 33.
    Simon JS, Karnoub MC, Devlin DJ, et al. Sequence variation in NPC1L1 and association with improved LDL-cholesterol lowering in response to ezetimibe treatment. Genomics. 2005;86:648–56.CrossRefPubMedGoogle Scholar
  34. 34.
    Teslovich TM, Musunuru K, Smith AV, et al. Biological, clinical and population relevance of 95 loci for blood lipids. Nature. 2010;466:707–13.CrossRefPubMedCentralPubMedGoogle Scholar
  35. 35.
    Pramfalk C, Jiang Z-Y, Parini P. Hepatic Niemann-Pick C1-like 1. Curr Opin Lipidol. 2011;22:225–30.CrossRefPubMedGoogle Scholar
  36. 36.
    Temel RE, Tang W, Ma Y, et al. Hepatic Niemann-Pick C1-like 1 regulates biliary cholesterol concentration and is a target of ezetimibe. J Clin Invest. 2007;117:1968–78.CrossRefPubMedCentralPubMedGoogle Scholar
  37. 37.
    Anderson RA, Joyce C, Davis M, et al. Identification of a form of acyl-CoA: cholesterol acyltransferase specific to liver and intestine in nonhuman primates. J Biol Chem. 1998;273:26747–54.CrossRefPubMedGoogle Scholar
  38. 38.
    Fujioka Y, Ishikawa Y. Remnant lipoproteins as strong key particles to atherogenesis. J Atheroscler Thromb. 2009;16:145–54.CrossRefPubMedGoogle Scholar
  39. 39.
    Masuda D, Sakai N, Sugimoto T, et al. Fasting serum apolipoprotein B-48 can be a marker of postprandial hyperlipidemia. J Atheroscler Thromb. 2011;18:1062–70.CrossRefPubMedGoogle Scholar
  40. 40.
    van Heek M, Farley C, Compton DS, et al. Comparison of the activity and disposition of the novel cholesterol absorption inhibitor, SCH58235, and its glucuronide, SCH60663. Br J Pharmacol. 2000;129:1748–54.CrossRefPubMedCentralPubMedGoogle Scholar
  41. 41.
    van Heek M, Compton DS, Davis HR. The cholesterol absorption inhibitor, ezetimibe, decreases diet-induced hypercholesterolemia in monkeys. Eur J Pharmacol. 2001;415:79–84.CrossRefPubMedGoogle Scholar
  42. 42.
    Davis HR. Ezetimibe: first in a new class of cholesterol absorption inhibitors. International Congress Series, Atherosclerosis XIII. Proceedings of the 13th International Atherosclerosis Symposium, Edited by Matsuzawa Y, Kita T, Nagai R, and Teramoto T, Vol. 1262. Elsevier BV: Amsterdam; 2004. pp. 243–246Google Scholar
  43. 43.
    Weinglass AB, Kohler M, Schulte U, et al. Extracellular loop of NPC1L1 is important for binding to ezetimibe. Proc Natl Acad Sci U S A. 2008;105:11140–5.CrossRefPubMedCentralPubMedGoogle Scholar
  44. 44.
    Sudhop T, Lutjohann D, Kodal A, et al. Inhibition of intestinal cholesterol absorption by ezetimibe in humans. Circulation. 2002;106:1943–8.CrossRefPubMedGoogle Scholar
  45. 45.
    Dujovne CA, Ettinger MP, McNeer JF, et al. Efficacy and safety of a potent new selective cholesterol absorption inhibitor, ezetimibe, in patients with primary hypercholesterolemia. Am J Cardiol. 2002;90:1092–7.CrossRefPubMedGoogle Scholar
  46. 46.
    Knopp RH, Gitter H, Truitt T, et al. Effects of ezetimibe, a new cholesterol absorption inhibitor, on plasma lipids in patients with primary hypercholesterolemia. Eur Heart J. 2003;24:729–41.CrossRefPubMedGoogle Scholar
  47. 47.
    Knopp RH, Dujovne CA, Le Beaut A, et al. Evaluation of the efficacy, safety, and tolerability of ezetimibe in primary hypercholesterolaemia: a pooled analysis from two controlled phase III clinical studies. Int J Clin Pract. 2003;57:363–8.PubMedGoogle Scholar
  48. 48.
    Gagne C, Gaudet D, Bruckert E, et al. Efficacy and safety of ezetimibe coadministered with atorvastatin or simvastatin in patients with homozygous familial hypercholesterolemia. Circulation. 2002;105:2469–75.CrossRefPubMedGoogle Scholar
  49. 49.
    Yamamoto A, Harada-Shiba M, Endo M, et al. The effect of ezetimibe on serum lipids and lipoproteins in patients with homozygous familial hypercholesterolemia undergoing LDL-apheresis therapy. Atherosclerosis. 2006;186:126–31.CrossRefPubMedGoogle Scholar
  50. 50.
    Davis HR Jr, Tershakovec AM, Tomassini JE, et al. Intestinal sterol transporters and cholesterol absorption inhibition. Curr Opin Lipidol. 2011;22:467–78.CrossRefPubMedGoogle Scholar
  51. 51.
    Pearson TA, Denke MA, et al. A community-based, randomized trial of ezetimibe added to statin therapy to attain NCEP ATP III goals for LDL cholesterol in hypercholesterolemic patients: the ezetimibe add-on to statin for effectiveness (EASE) trial. Mayo Clin Proc. 2005;80:587–95.CrossRefPubMedGoogle Scholar
  52. 52.
    Sweeney ME, Johnson RR. Ezetimibe: an update on the mechanism of action, pharmacokinetics and recent clinical trials. Expert Opin Drug Metab Toxicol. 2007;3:441–50.CrossRefPubMedGoogle Scholar
  53. 53.
    Tsunoda T, Nozue T, Yamada M, et al. Effects of ezetimibe on atherogenic lipoproteins and glucose metabolism in patients with diabetes and glucose intolerance. Diabetes Res Clin Pract. 2013;100:46–52.CrossRefPubMedGoogle Scholar
  54. 54.
    Salen G, Starc T, Sisk CM, et al. Intestinal cholesterol absorption inhibitor ezetimibe added to cholestyramine for sitosterolemia andxanthomatosis. Gastroenterology. 2006;130:1853–7.CrossRefPubMedGoogle Scholar
  55. 55.
    Staprans I, Pan XM, Rapp JH, et al. Ezetimibe inhibits the incorporation of dietary oxidized cholesterol into lipoproteins. J Lipid Res. 2006;47:2575–80.CrossRefPubMedGoogle Scholar
  56. 56.
    Zilversmit DB. Atherogenesis: a postprandial phenomenon. Circulation. 1979;60:473–85.CrossRefPubMedGoogle Scholar
  57. 57.
    Hiramitsu S, Miyagishima K, Ishii J, et al. The effect of ezetimibe on lipid and glucose metabolism after a fat and glucose load. J Cardiol. 2012;60:395–400.CrossRefPubMedGoogle Scholar
  58. 58.
    Kikuchi K, Nezu U, Inazumi K, et al. Double-blind randomized clinical trial of the effects of ezetimibe on postprandial hyperlipidemia and hyperglycemia. J Atheroscler Thromb. 2012;19:1093–101.CrossRefPubMedGoogle Scholar
  59. 59.
    Yunoki K, Nakamura K, Miyoshi T, et al. Ezetimibe improves postprandial hyperlipidemia and its induced endothelial dysfunction. Atherosclerosis. 2011;217:486–91.CrossRefPubMedGoogle Scholar
  60. 60.
    Davis HR Jr, Lowe RS, Neff DR. Effects of ezetimibe on atherosclerosis in preclinical models. Atherosclerosis. 2011;215:266–78.CrossRefPubMedGoogle Scholar
  61. 61.
    Dietrich T, Hucko T, Bourayou R, et al. High resolution magnetic resonance imaging in atherosclerotic mice treated with ezetimibe. Int J Cardiovasc Imaging. 2009;25:827–36.CrossRefPubMedGoogle Scholar
  62. 62.
    Braun A, Yesilaltay A, Acton S, et al. Inhibition of intestinal absorption of cholesterol by ezetimibe or bile acids by SC-435 alters lipoprotein metabolism and extends the lifespan of SR-BI/apoE double knockout mice. Atherosclerosis. 2008;198:77–84.CrossRefPubMedCentralPubMedGoogle Scholar
  63. 63.
    Bura KS, Lord C, Marshall S, et al. Intestinal SR-BI does not impact cholesterol absorption or transintestinal cholesterol efflux in mice. J Lipid Research. 2013;54:1567–77.CrossRefGoogle Scholar
  64. 64.
    Davis HR, Compton DS, Hoos LM, et al. Ezetimibe reduces plasma cholesterol and inhibits the development of atherosclerosis in apo E knockout mice with and without LDL receptors. Circulation. 2000;102(18; Suppl. S):186. [Abstract 899].Google Scholar
  65. 65.
    Park H, Shima T, Yamaguchi K, et al. Efficacy of long-term ezetimibe therapy in patients with nonalcoholic fatty liver disease. J Gastroenterol. 2011;46:101–7.CrossRefPubMedGoogle Scholar
  66. 66.
    Yoneda M, Fujita K, Imajo K, et al. Induction of microsomal triglyceride transfer protein expression is a candidate mechanism by which ezetimibe therapy might exert beneficial effects in patients with nonalcoholic steatohepatitis. J Gastroenterol. 2011;46:415–6.CrossRefPubMedGoogle Scholar
  67. 67.
    Chan DC, Watts GF, Gan SK, et al. Effect of ezetimibe on hepatic fat, inflammatory markers, and apolipoprotein B-100 kinetics in insulin-resistant obese subjects on a weight loss diet. Diabetes Care. 2010;33:1134–9.CrossRefPubMedCentralPubMedGoogle Scholar
  68. 68.
    Bays HE, Moore PB, Drehobl MA, et al. Effectiveness and tolerability of ezetimibe in patients with primary hypercholesterolemia: pooled analysis of two phase II studies. Clin Ther. 2001;23:1209–30.CrossRefPubMedGoogle Scholar
  69. 69.
    Dujovne CA, Bays H, Davidson MH, et al. Reduction of LDL-C in patients with primary hypercholesterolemia by SCH 48461: results of a multicenter dose-ranging study. J Clin Pharmacol. 2001;41:70–8.CrossRefPubMedGoogle Scholar
  70. 70.
    Baruch L, Gupta B, Lieberman-Blum SS, et al. Ezetimibe 5 and 10 mg for lowering LDL-C: potential billion-dollar savings with improved tolerability. Am J Manag Care. 2008;14:637–41.PubMedGoogle Scholar
  71. 71.
    Toth PP, Catapano A, Tomassini JE, et al. Update on the efficacy and safety of combination ezetimibe plus statin therapy. Clin Lipidol. 2010;5:655–84.CrossRefGoogle Scholar
  72. 72.
    Kashani A, Sallam T, Bheemreddy S, et al. Review of side-effect profile of combination ezetimibe and statin therapy in randomized clinical trials. Am J Cardiol. 2008;101:1606–13.CrossRefPubMedGoogle Scholar
  73. 73.
    Robinson JG, Davidson MH, Shah A, et al. Efficacy and safety of ezetimibe and ezetimibe + statin therapy in patients aged < 65, 65–74, and 75 years and older. Aging Health. 2007;3:691–705.CrossRefGoogle Scholar
  74. 74.
    Baigent C, Landray MJ, Reith C, et al. The effects of lowering LDL cholesterol with simvastatin plus ezetimibe in patients with chronic kidney disease (Study of Heart and Renal Protection): a randomised placebo-controlled trial. Lancet. 2011;377:2181–92.CrossRefPubMedCentralPubMedGoogle Scholar
  75. 75.
    Rossebø AB, Pedersen TR, Boman K, et al. Intensive lipid lowering with simvastatin and ezetimibe in aortic stenosis. N Engl J Med. 2008;359:1343–56.CrossRefPubMedGoogle Scholar
  76. 76.
    Peto R, Emberson J, Landray M, et al. Analyses of cancer data from three ezetimibe trials. N Engl J Med. 2008;359:1357–66.CrossRefPubMedGoogle Scholar
  77. 77.
    Kastelein JJ, Akdim F, Stroes ES, et al. Simvastatin with or without ezetimibe in familial hypercholesterolemia. N Engl J Med. 2008;358:1431–43.CrossRefPubMedGoogle Scholar
  78. 78.
    Fleg JL, Mete M, Howard BV, et al. Effect of statins alone versus statins plus ezetimibe on carotid atherosclerosis in type 2 diabetes: the SANDS (Stop Atherosclerosis in Native Diabetics Study) trial. J Am Coll Cardiol. 2008;52:2198–205.CrossRefPubMedCentralPubMedGoogle Scholar
  79. 79.
    Cholesterol Treatment Trialists’ (CTT) Collaboration, et al. Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of data from 170,000 participants in 26 randomised trials. Lancet. 2010;376:1670–81.CrossRefGoogle Scholar
  80. 80.
    Villines TC, Stanek EJ, Devine PJ, et al. The ARBITER 6-HALTS Trial (Arterial Biology for the Investigation of the Treatment Effects of Reducing Cholesterol 6-HDL and LDL Treatment Strategies in Atherosclerosis): final results and the impact of medication adherence, dose, and treatment duration. J Am Coll Cardiol. 2010;55:2721–6.CrossRefPubMedGoogle Scholar
  81. 81.
    Cannon CP, Giugliano RP, Blazing MA, et al. Rationale and design of IMPROVE-IT (IMProved Reduction of Outcomes: Vytorin Efficacy International Trial): comparison of ezetimbe/simvastatin versus simvastatin monotherapy on cardiovascular outcomes in patients with acute coronary syndromes. Am Heart J. 2008;156:826–32.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press 2015

Authors and Affiliations

  • Shizuya Yamashita
    • 1
    Email author
  • Daisaku Masuda
    • 2
  • Akifumi Matsuyama
    • 3
  1. 1.Department of Community Medicine, Department of Cardiovascular MedicineOsaka University Graduate School of MedicineSuitaJapan
  2. 2.Department of Cardiovascular MedicineOsaka University Graduate School of MedicineSuitaJapan
  3. 3.Platform of Therapeutics for Rare DiseaseNational Institute of Biomedical InnovationIbarakiJapan

Personalised recommendations