Advertisement

Dyslipidemias pp 383-402 | Cite as

Dietary Supplements for Cholesterol Management

  • Jaime P. AlmandozEmail author
Chapter
Part of the Contemporary Endocrinology book series (COE)

Abstract

Dietary supplements are widely marketed and available to health-care consumers who wish to lower their cholesterol levels. As dietary supplements are not considered drugs, there is a lack of regulation in their production and also a deficiency of appropriately designed trials demonstrating their efficacy and safety when used alone or in combination with prescription medications. However, using supplements in place of or in addition to prescribed cholesterol-lowering therapies may be more aligned with the patient’s value system or health-care philosophy. Dietary supplements, such as red yeast rice (RYR), have been shown to have the same mode of action as prescription cholesterol-lowering therapies like 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors. While others, like soluble dietary fiber (SDF), have multiple proposed modes of action. Reasonable data exist to support the use of dietary supplements—in addition to lifestyle modification—as an alternative, or add-on therapy, in those who are unable or unwilling to take conventional lipid-lowering agents.

Keywords

Dietary supplement Lipid-lowering plant extract Hypercholesterolemia Low-density lipoprotein cholesterol Statin intolerance 

References

  1. 1.
    Zeisel SH. Regulation of “nutraceuticals”. Science. 1999;285:1853–5.PubMedGoogle Scholar
  2. 2.
    Astin JA. Why patients use alternative medicine: results of a national study. JAMA. 1998;279:1548–53.PubMedGoogle Scholar
  3. 3.
    Marcus DM, Grollman AP. Botanical medicines-the need for new regulations. N Engl J Med. 2002;347:2073–6.PubMedGoogle Scholar
  4. 4.
    Newmaster SG, Grguric M, Shanmughanandhan D, Ramalingam S, Ragupathy S. DNA barcoding detects contamination and substitution in North American herbal products. BMC Med. 2013;11:222.PubMedCentralPubMedGoogle Scholar
  5. 5.
    Bailey RL, Gahche JJ, Lentino CV, Dwyer JT, Engel JS, Thomas PR, Betz JM, Sempos CT, Picciano MF. Dietary supplement use in the United States, 2003–2006. J Nutr. 2011;141:261–6.PubMedCentralPubMedGoogle Scholar
  6. 6.
    Wu C-H, Wang C-C, Kennedy J. Changes in herb and dietary supplement use in the US adult population: a comparison of the 2002 and 2007 National Health Interview Surveys. Clin Ther. 2011;33:1749–58.PubMedGoogle Scholar
  7. 7.
    Qato DM, Alexander GC, Conti RM, Johnson M, Schumm P, Lindau ST. Use of prescription and over-the-counter medications and dietary supplements among older adults in the United States. JAMA. 2008;300:2867–78.PubMedCentralPubMedGoogle Scholar
  8. 8.
    Musselman ME, Pettit RS, Derenski KL. A review and update of red yeast rice. J Evid Based Complementary Altern Med. 2012;17:33–9.Google Scholar
  9. 9.
    Endo A. Monacolin K, a new hypocholesterolemic agent that specifically inhibits 3-hydroxy-3-methylglutaryl coenzyme A reductase. J Antibiot (Tokyo). 1980;33:334–6.Google Scholar
  10. 10.
    Alberts AW, Chen J, Kuron G, Hunt V, Huff J, Hoffman C, Rothrock J, Lopez M, Joshua H, Harris E, et al. Mevinolin: a highly potent competitive inhibitor of hydroxymethylglutaryl-coenzyme A reductase and a cholesterol-lowering agent. Proc Natl Acad Sci U S A. 1980;77:3957–61.PubMedCentralPubMedGoogle Scholar
  11. 11.
    Ma J, Li Y, Ye Q, Li J, Hua Y, Ju D, Zhang D, Cooper R, Chang M. Constituents of red yeast rice, a traditional Chinese food and medicine. J Agric Food Chem. 2000;48:5220–5.PubMedGoogle Scholar
  12. 12.
    Journoud M, Jones PJ. Red yeast rice: a new hypolipidemic drug. Life Sci. 2004;74:2675–83.PubMedGoogle Scholar
  13. 13.
    Gordon RY, Cooperman T, Obermeyer W, Becker DJ. Marked variability of monacolin levels in commercial red yeast rice products: buyer beware! Arch Intern Med. 2010;170:1722–7.PubMedGoogle Scholar
  14. 14.
    Donmez-Altuntas H, Dumlupinar G, Imamoglu N, Hamurcu Z, Liman BC. Effects of the mycotoxin citrinin on micronucleus formation in a cytokinesis-block genotoxicity assay in cultured human lymphocytes. J Appl Toxicol. 2007;27:337–41.PubMedGoogle Scholar
  15. 15.
    Kuroda K, Ishii Y, Takasu S, Kijima A, Matsushita K, Watanabe M, Takahashi H, Sugita-Konishi Y, Sakai H, Yanai T, et al. Cell cycle progression, but not genotoxic activity, mainly contributes to citrinin-induced renal carcinogenesis. Toxicology. 2013;311:216–24.PubMedGoogle Scholar
  16. 16.
    McCarthy M. FDA bans red yeast rice product. Lancet. 1998;351:1637.Google Scholar
  17. 17.
    Mark DA. All red yeast rice products are not created equal-or legal. Am J Cardiol. 2010;106:448.PubMedGoogle Scholar
  18. 18.
    Heber D, Yip I, Ashley JM, Elashoff DA, Elashoff RM, Go VL. Cholesterol-lowering effects of a proprietary Chinese red-yeast-rice dietary supplement. Am J Clin Nutr. 1999;69:231–6.PubMedGoogle Scholar
  19. 19.
    Becker DJ, Gordon RY, Halbert SC, French B, Morris PB, Rader DJ. Red yeast rice for dyslipidemia in statin-intolerant patients: a randomized trial. Ann Intern Med. 2009;150(830–839):W147–W839.Google Scholar
  20. 20.
    Lu Z, Kou W, Du B, Wu Y, Zhao S, Brusco OA, Morgan JM, Capuzzi DM, Chinese Coronary Secondary Prevention Study G., Li S. Effect of Xuezhikang, an extract from red yeast Chinese rice, on coronary events in a Chinese population with previous myocardial infarction. Am J Cardiol. 2008;101:1689–93.PubMedGoogle Scholar
  21. 21.
    Mueller PS. Symptomatic myopathy due to red yeast rice. Ann Intern Med. 2006;145:474–5.PubMedGoogle Scholar
  22. 22.
    Smith DJ, Olive KE. Chinese red rice-induced myopathy. South Med J. 2003;96:1265–7.PubMedGoogle Scholar
  23. 23.
    Prasad GV, Wong T, Meliton G, Bhaloo S. Rhabdomyolysis due to red yeast rice (Monascus purpureus) in a renal transplant recipient. Transplantation. 2002;74:1200–1.PubMedGoogle Scholar
  24. 24.
    Grieco A, Miele L, Pompili M, Biolato M, Vecchio FM, Grattagliano I, Gasbarrini G. Acute hepatitis caused by a natural lipid-lowering product: when “alternative” medicine is no “alternative” at all. J Hepatol. 2009;50:1273–7.PubMedGoogle Scholar
  25. 25.
    Wigger-Alberti W, Bauer A, Hipler UC, Elsner P. Anaphylaxis due to Monascus purpureus-fermented rice (red yeast rice). Allergy. 1999;54:1330–1.PubMedGoogle Scholar
  26. 26.
    Food and Drug Administartion, HHS. Food labeling: health claims; soluble fiber from certain foods and risk of coronary heart disease. Interim final rule. Fed Regist. 2008;73:9938–47.Google Scholar
  27. 27.
    Lund E, Gee J, Brown J, Wood P, Johnson I. Effect of oat gum on the physical properties of the gastrointestinal contents and on the uptake of D-galactose and cholesterol by rat small intestine in vitro. Br J Nutr. 1989;62:91–101.PubMedGoogle Scholar
  28. 28.
    Haikal Z, Play B, Landrier JF, Giraud A, Ghiringhelli O, Lairon D, Jourdheuil-Rahmani D. NPC1L1 and SR-BI are involved in intestinal cholesterol absorption from small-size lipid donors. Lipids. 2008;43:401–8.PubMedGoogle Scholar
  29. 29.
    Lia A, Hallmans G, Sandberg AS, Sundberg B, Aman P, Andersson H. Oat beta-glucan increases bile acid excretion and a fiber-rich barley fraction increases cholesterol excretion in ileostomy subjects. Am J Clin Nutr. 1995;62:1245–51.PubMedGoogle Scholar
  30. 30.
    Ellegard L, Andersson H. Oat bran rapidly increases bile acid excretion and bile acid synthesis: an ileostomy study. Eur J Clin Nutr. 2007;61:938–45.PubMedGoogle Scholar
  31. 31.
    Pastors JG, Blaisdell PW, Balm TK, Asplin CM, Pohl SL. Psyllium fiber reduces rise in postprandial glucose and insulin concentrations in patients with non-insulin-dependent diabetes. Am J Clin Nutr. 1991;53:1431–5.PubMedGoogle Scholar
  32. 32.
    Lakshmanan MR, Nepokroeff CM, Ness GC, Dugan RE, Porter JW. Stimulation by insulin of rat liver β-hydroxy-β-methylglutaryl coenzyme A reductase and cholesterol-synthesizing activities. Biochem Biophys Res Commun. 1973;50:704–10.PubMedGoogle Scholar
  33. 33.
    Chandalia M, Garg A, Lutjohann D, von Bergmann K, Grundy SM, Brinkley LJ. Beneficial effects of high dietary fiber intake in patients with type 2 diabetes mellitus. N Engl J Med. 2000;342:1392–8.PubMedGoogle Scholar
  34. 34.
    Weickert MO, Pfeiffer AFH. Metabolic effects of dietary fiber consumption and prevention of diabetes. J Nutr. 2008;138:439–42.PubMedGoogle Scholar
  35. 35.
    Immerstrand T, Andersson KE, Wange C, Rascon A, Hellstrand P, Nyman M, Cui SW, Bergenstahl B, Tragardh C, Oste R. Effects of oat bran, processed to different molecular weights of beta-glucan, on plasma lipids and caecal formation of SCFA in mice. Br J Nutr. 2010;104:364–73.PubMedGoogle Scholar
  36. 36.
    Hara H, Haga S, Aoyama Y, Kiriyama S. Short-chain fatty acids suppress cholesterol synthesis in rat liver and intestine. J Nutr. 1999;129:942–8.PubMedGoogle Scholar
  37. 37.
    Brennan CS, Cleary LJ. The potential use of cereal (1→3,1→4)-β-d-glucans as functional food ingredients. J Cereal Sci. 2005;42:1–13.Google Scholar
  38. 38.
    Brown L, Rosner B, Willett WW, Sacks FM. Cholesterol-lowering effects of dietary fiber: a meta-analysis. Am J Clin Nutr. 1999;69:30–42.PubMedGoogle Scholar
  39. 39.
    Othman RA, Moghadasian MH, Jones PJ. Cholesterol-lowering effects of oat β-glucan. Nutr Rev. 2011;69:299–309.PubMedGoogle Scholar
  40. 40.
    Onning G, Wallmark A, Persson M, Akesson B, Elmstahl S, Oste R. Consumption of oat milk for 5 weeks lowers serum cholesterol and LDL cholesterol in free-living men with moderate hypercholesterolemia. Ann Nutr Metab. 1999;43:301–9.PubMedGoogle Scholar
  41. 41.
    Kerckhoffs DA, Hornstra G, Mensink RP. Cholesterol-lowering effect of β-glucan from oat bran in mildly hypercholesterolemic subjects may decrease when β-glucan is incorporated into bread and cookies. Am J Clin Nutr. 2003;78:221–7.PubMedGoogle Scholar
  42. 42.
    Würsch P, Pi-Sunyer FX. The role of viscous soluble fiber in the metabolic control of diabetes: a review with special emphasis on cereals rich in β-glucan. Diabetes Care. 1997;20:1774–80.PubMedGoogle Scholar
  43. 43.
    Fischer MH, Yu N, Gray GR, Ralph J, Anderson L, Marlett JA. The gel-forming polysaccharide of psyllium husk (Plantago ovata Forsk). Carbohydr Res. 2004;339:2009–17.PubMedGoogle Scholar
  44. 44.
    Garvin JE, Forman DT, Eiseman WR, Phillips CR. Lowering of human serum cholesterol by an oral hydrophilic colloid. Exp Biol Med. 1965;120:744–6.Google Scholar
  45. 45.
    Wei ZH, Wang H, Chen XY, Wang BS, Rong ZX, Wang BS, Su BH, Chen HZ. Time- and dose-dependent effect of psyllium on serum lipids in mild-to-moderate hypercholesterolemia: a meta-analysis of controlled clinical trials. Eur J Clin Nutr. 2009;63:821–7.PubMedGoogle Scholar
  46. 46.
    Anderson JW, Allgood LD, Lawrence A, Altringer LA, Jerdack GR, Hengehold DA, Morel JG. Cholesterol-lowering effects of psyllium intake adjunctive to diet therapy in men and women with hypercholesterolemia: meta-analysis of 8 controlled trials. Am J Clin Nutr. 2000;71:472–9.PubMedGoogle Scholar
  47. 47.
    Moreyra AE, Wilson AC, Koraym A. Effect of combining psyllium fiber with simvastatin in lowering cholesterol. Arch Intern Med. 2005;165:1161.PubMedGoogle Scholar
  48. 48.
    Khalili B, Bardana EJ Jr., Yunginger JW. Psyllium-associated anaphylaxis and death: a case report and review of the literature. Ann Allergy Asthma Immunol. 2003;91:579–84.PubMedGoogle Scholar
  49. 49.
    Vaswani S, Hamilton R, Valentine M, Adkinson N. Psyllium laxative-induced anaphylaxis, asthma, and rhinitis. Allergy. 1996;51:266–8.PubMedGoogle Scholar
  50. 50.
    Cartier A, Malo JL, Dolovich J. Occupational asthma in nurses handling psyllium. Clin Allergy. 1987;17:1–6.PubMedGoogle Scholar
  51. 51.
    González Canga A, Fernández Martinez N, Sahagún Prieto A, García Vieitez J, Díez Liébana M, Díez Láiz R, Sierra Vega M. Dietary fiber and its interaction with drugs. Nutr Hosp. 2010;25:535–9.PubMedGoogle Scholar
  52. 52.
    Kris-Etherton PM, Zhao G, Binkoski AE, Coval SM, Etherton TD. The effects of nuts on coronary heart disease risk. Nutr Rev. 2001;59:103–11.PubMedGoogle Scholar
  53. 53.
    Abbey M, Noakes M, Belling GB, Nestel PJ. Partial replacement of saturated fatty acids with almonds or walnuts lowers total plasma cholesterol and low-density-lipoprotein cholesterol. Am J Clin Nutr. 1994;59:995–9.PubMedGoogle Scholar
  54. 54.
    Sabate J, Fraser GE, Burke K, Knutsen SF, Bennett H, Lindsted KD. Effects of walnuts on serum lipid levels and blood pressure in normal men. N Engl J Med. 1993;328:603–7.PubMedGoogle Scholar
  55. 55.
    Spiller GA, Jenkins DA, Bosello O, Gates JE, Cragen LN, Bruce B. Nuts and plasma lipids: an almond-based diet lowers LDL-C while preserving HDL-C. J Am Coll Nutr. 1998;17:285–90.PubMedGoogle Scholar
  56. 56.
    Garg ML, Blake RJ, Wills RBH. Macadamia nut consumption lowers plasma total and LDL cholesterol levels in hypercholesterolemic men. J Nutr. 2003;133:1060–3.PubMedGoogle Scholar
  57. 57.
    Guasch-Ferré M, Bulló M, Martínez-González MÁ, Ros E, Corella D, Estruch R, Fitó M, Arós F, Wärnberg J, Fiol M. Frequency of nut consumption and mortality risk in the PREDIMED nutrition intervention trial. BMC Med. 2013;11:164.PubMedCentralPubMedGoogle Scholar
  58. 58.
    Estruch R, Ros E, Salas-Salvadó J, Covas M-I, Corella D, Arós F, Gómez-Gracia E, Ruiz-Gutiérrez V, Fiol M, Lapetra J, et al. Primary prevention of cardiovascular disease with a mediterranean diet. N Engl J Med. 2013;368:1279–90.PubMedGoogle Scholar
  59. 59.
    Zambon D, Sabate J, Munoz S, Campero B, Casals E, Merlos M, Laguna JC, Ros E. Substituting walnuts for monounsaturated fat improves the serum lipid profile of hypercholesterolemic men and women. A randomized crossover trial. Ann Intern Med. 2000;132:538–46.PubMedGoogle Scholar
  60. 60.
    Jenkins DJA, Kendall CWC, Marchie A, Parker TL, Connelly PW, Qian W, Haight JS, Faulkner D, Vidgen E, Lapsley KG, et al. Dose response of almonds on coronary heart disease risk factors: blood lipids, oxidized low-density lipoproteins, lipoprotein(a), homocysteine, and pulmonary nitric oxide: a randomized, controlled, crossover trial. Circulation. 2002;106:1327–32.PubMedGoogle Scholar
  61. 61.
    Sabaté J, Oda K, Ros E. Nut consumption and blood lipid levels: a pooled analysis of 25 intervention trials. Arch Intern Med. 2010;170:821.PubMedGoogle Scholar
  62. 62.
    Bloedon LT, Szapary PO. Flaxseed and cardiovascular risk. Nutr Rev. 2004;62:18–27.PubMedGoogle Scholar
  63. 63.
    Morris DH. Essential nutrients and other functional compounds in flaxseed. Nutr Today. 2001;36:159–62.Google Scholar
  64. 64.
    Lucas EA, Lightfoot SA, Hammond LJ, Devareddy L, Khalil DA, Daggy BP, Smith BJ, Westcott N, Mocanu V, Soung DY. Flaxseed reduces plasma cholesterol and atherosclerotic lesion formation in ovariectomized Golden Syrian hamsters. Atherosclerosis. 2004;173:223–9.PubMedGoogle Scholar
  65. 65.
    Pellizzon MA, Billheimer JT, Bloedon LT, Szapary PO, Rader DJ. Flaxseed reduces plasma cholesterol levels in hypercholesterolemic mouse models. J Am Coll Nutr. 2007;26:66–75.PubMedGoogle Scholar
  66. 66.
    Vijaimohan K, Jainu M, Sabitha KE, Subramaniyam S, Anandhan C, Shyamala Devi CS. Beneficial effects of alpha linolenic acid rich flaxseed oil on growth performance and hepatic cholesterol metabolism in high fat diet fed rats. Life Sci. 2006;79:448–54.PubMedGoogle Scholar
  67. 67.
    Prasad K. Hypocholesterolemic and antiatherosclerotic effect of flax lignan complex isolated from flaxseed. Atherosclerosis. 2005;179:269–75.PubMedGoogle Scholar
  68. 68.
    Cohn JS, Kamili A, Wat E, Chung RWS, Tandy S. Reduction in intestinal cholesterol absorption by various food components: mechanisms and implications. Atheroscler Suppl. 2010;11:45–8.PubMedGoogle Scholar
  69. 69.
    Sanghvi A, Divven WF, Seltman H. Proceedings of the symposium on drugs affecting lipid metabolism. Inhibition of rat liver cholesterol 7-alpha hydroxylase and aceyl CoA: cholesterol aceyl transferase activities by entrodiol and enterolactone. 1984. pp. 311–22.Google Scholar
  70. 70.
    Chan JK, Bruce VM, McDonald BE. Dietary alpha-linolenic acid is as effective as oleic acid and linoleic acid in lowering blood cholesterol in normolipidemic men. Am J Clin Nutr. 1991;53:1230–4.PubMedGoogle Scholar
  71. 71.
    Dodin S, Lemay A, Jacques H, Légaré F, Forest J-C, Mâsse B. The effects of flaxseed dietary supplement on lipid profile, bone mineral density, and symptoms in menopausal women: a randomized, double-blind, wheat germ placebo-controlled clinical trial. J Clin Endocrinol Metab. 2005;90:1390–7.PubMedGoogle Scholar
  72. 72.
    Arjmandi BH, Khan DA, Juma S, Drum ML, Venkatesh S, Sohn E, Wei L, Derman R. Whole flaxseed consumption lowers serum LDL-cholesterol and lipoprotein(a) concentrations in postmenopausal women. Nutr Res. 1998;18:1203–14.Google Scholar
  73. 73.
    Demark-Wahnefried W, Polascik TJ, George SL, Switzer BR, Madden JF, Ruffin MT, Snyder DC, Owzar K, Hars V, Albala DM. Flaxseed supplementation (not dietary fat restriction) reduces prostate cancer proliferation rates in men presurgery. Cancer Epidemiol Biomarkers Prev. 2008;17:3577–87.PubMedCentralPubMedGoogle Scholar
  74. 74.
    Zhang W, Wang X, Liu Y, Tian H, Flickinger B, Empie MW, Sun SZ. Dietary flaxseed lignan extract lowers plasma cholesterol and glucose concentrations in hypercholesterolaemic subjects. Br J Nutr. 2008;99:1301–9.PubMedGoogle Scholar
  75. 75.
    Pan A, Sun J, Chen Y, Ye X, Li H, Yu Z, Wang Y, Gu W, Zhang X, Chen X. Effects of a flaxseed-derived lignan supplement in type 2 diabetic patients: a randomized, double-blind, cross-over trial. PLoS One. 2007;2:e1148.PubMedCentralPubMedGoogle Scholar
  76. 76.
    Harper CR, Edwards MC, Jacobson TA. Flaxseed oil supplementation does not affect plasma lipoprotein concentration or particle size in human subjects. J Nutr. 2006;136:2844–8.PubMedGoogle Scholar
  77. 77.
    Paschos GK, Zampelas A, Panagiotakos DB, Katsiougiannis S, Griffin BA, Votteas V, Skopouli FN. Effects of flaxseed oil supplementation on plasma adiponectin levels in dyslipidemic men. Eur J Nutr. 2007;46:315–20.PubMedGoogle Scholar
  78. 78.
    Jenkins DJ, Kendall CW, Vidgen E, Agarwal S, Rao AV, Rosenberg RS, Diamandis EP, Novokmet R, Mehling CC, Perera T, et al. Health aspects of partially defatted flaxseed, including effects on serum lipids, oxidative measures, and ex vivo androgen and progestin activity: a controlled crossover trial. Am J Clin Nutr. 1999;69:395–402.PubMedGoogle Scholar
  79. 79.
    Pan A, Yu D, Demark-Wahnefried W, Franco OH, Lin X. Meta-analysis of the effects of flaxseed interventions on blood lipids. Am J Clin Nutr. 2009;90:288–97.PubMedCentralPubMedGoogle Scholar
  80. 80.
    Alonso L, Marcos ML, Blanco JG, Navarro JA, Juste S, del Mar Garcés M, Pérez R, Carretero PJ. Anaphylaxis caused by linseed (flaxseed) intake. J Allergy Clin Immunol. 1996;98:469–70.PubMedGoogle Scholar
  81. 81.
    Gall H. Food-dependent exercise-induced anaphylaxis to flaxseed. Allergol Int. 2000;49:219–21.Google Scholar
  82. 82.
    Leóna F, Rodríguez M, Cuevas M. Anaphylaxis to linum. Allergol Immunopathol. 2003;31:47–9.Google Scholar
  83. 83.
    Endres JG, Soy protein products: characteristics, nutritional aspects and utilization. AOCS press, Champaign, Illinois. 2001.Google Scholar
  84. 84.
    Nagata C, Takatsuka N, Kurisu Y, Shimizu H. Decreased serum total cholesterol concentration is associated with high intake of soy products in Japanese men and women. J Nutr 1998;128:209–13.Google Scholar
  85. 85.
    Zhang X, Shu XO, Gao Y-T, Yang G, Li Q, Li H, Jin F, Zheng W. Soy food consumption is associated with lower risk of coronary heart disease in Chinese women. J Nutr. 2003;133:2874–8.PubMedGoogle Scholar
  86. 86.
    Carroll KK, Kurowska EM. Soy consumption and cholesterol reduction: review of animal and human studies. J Nutr. 1995;125:594S–597S.PubMedGoogle Scholar
  87. 87.
    Sirtori CR, Agradi E, Conti F, Mantero O, Gatti E. Soybean-protein diet in the treatment of type-II hyperlipoproteinaemia. Lancet. 1977;1:275–7.PubMedGoogle Scholar
  88. 88.
    Descovich GC, Gaddi A, Mannino G, Cattin L, Senin U, Caruzzo C, Fragiacomo C, Sirtori M, Ceredi C, Benassi MS, et al. Multicentre study of soybean protein diet for outpatient hypercholesterolæmic patients. Lancet. 1980;316:709–12.Google Scholar
  89. 89.
    Erdman JW, Committee, f.t.A.N. Soy protein and cardiovascular disease: a statement for healthcare professionals from the nutrition committee of the AHA. Circulation. 2000;102:2555–9.Google Scholar
  90. 90.
    Sidhu G, Oakenfull D. A mechanism for the hypocholesterolaemic activity of saponins. Br J Nutr. 1986;55:643–9.PubMedGoogle Scholar
  91. 91.
    Fumagalli R, Soleri L, Farina R, Musanti R, Mantero O, Noseda G, Gatti E, Sirtori CR. Fecal cholesterol excretion studies in type II hypercholesterolemic patients treated with the soybean protein diet. Atherosclerosis. 1982;43:341–53.PubMedGoogle Scholar
  92. 92.
    O’Deli BL, Savage JE. Effect of phytic acid on zinc availability. Exp Biol Med. 1960;103:304–6.Google Scholar
  93. 93.
    Klevay L. The role of copper and zinc in cholesterol metabolism. In: Draper H, editor. Advances in nutritional research. US: Springer; 1977. pp. 227–52.Google Scholar
  94. 94.
    Lovati MR, Manzoni C, Gianazza E, Arnoldi A, Kurowska E, Carroll KK, Sirtori CR. Soy protein peptides regulate cholesterol homeostasis in hep G2 cells. J Nutr. 2000;130:2543–9.PubMedGoogle Scholar
  95. 95.
    Manzoni C, Duranti M, Eberini I, Scharnag H, März W, Castiglioni S, Lovati MR. Subcellular localization of soybean 7S globulin in HepG2 Cells and LDL receptor up-regulation by Its α′ constituent subunit. J Nutr. 2003;133:2149–55.PubMedGoogle Scholar
  96. 96.
    Lovati M, Manzoni C, Canavesi A, Sirtori M, Vaccarino V, Marchi M, Gaddi G, Sirtori C. Soybean protein diet increases low density lipoprotein receptor activity in mononuclear cells from hypercholesterolemic patients. J Clin Invest. 1987;80:1498.PubMedCentralPubMedGoogle Scholar
  97. 97.
    Sacks FM, Lichtenstein A, Van Horn L, Harris W, Kris-Etherton P, Winston M, Committee, f.t.A.H.A.N. Soy protein, isoflavones, and cardiovascular health: an American Heart Association Science Advisory for professionals from the Nutrition Committee. Circulation. 2006;113:1034–44.Google Scholar
  98. 98.
    Anderson JW, Johnstone BM, Cook-Newell ME. Meta-analysis of the effects of soy protein intake on serum lipids. N Engl J Med. 1995;333:276–82.PubMedGoogle Scholar
  99. 99.
    Jenkins DJA, Mirrahimi A, Srichaikul K, Berryman CE, Wang L, Carleton A, Abdulnour S, Sievenpiper JL, Kendall CWC, Kris-Etherton PM. Soy protein reduces serum cholesterol by both intrinsic and food displacement mechanisms. J Nutr. 2010;140:2302S–11S.PubMedGoogle Scholar
  100. 100.
    Cordle CT. Soy protein allergy: incidence and relative severity. J Nutr. 2004;134:1213S–9S.PubMedGoogle Scholar
  101. 101.
    Foucard T, Malmheden Yman I. A study on severe food reactions in Sweden—is soy protein an underestimated cause of food anaphylaxis? Allergy. 1999;54:261–5.PubMedGoogle Scholar
  102. 102.
    Munro IC, Harwood M, Hlywka JJ, Stephen AM, Doull J, Flamm WG, Adlercreutz H. Soy isoflavones: a safety review. Nutr Rev. 2003;61:1–33.Google Scholar
  103. 103.
    Rahman K. Historical perspective on garlic and cardiovascular disease. J Nutr. 2001;131:977S–979S.PubMedGoogle Scholar
  104. 104.
    Rahman K, Lowe GM. Garlic and cardiovascular disease: a critical review. J Nutr. 2006;136:736S–740S.PubMedGoogle Scholar
  105. 105.
    Sendl A, Schliack M, Löser R, Stanislaus F, Wagner H. Inhibition of cholesterol synthesis in vitro by extracts and isolated compounds prepared from garlic and wild garlic. Atherosclerosis. 1992;94:79–85.Google Scholar
  106. 106.
    Gebhardt R. Multiple inhibitory effects of garlic extracts on cholesterol biosynthesis in hepatocytes. Lipids. 1993;28:613–9.PubMedGoogle Scholar
  107. 107.
    Liu L, Yeh Y-Y. Inhibition of cholesterol biosynthesis by organosulfur compounds derived from garlic. Lipids. 2000;35:197–203.PubMedGoogle Scholar
  108. 108.
    Tattelman E. Health effects of garlic. Am Fam Physician. 2005;72:103–6.PubMedGoogle Scholar
  109. 109.
    Yeh YY, Liu L. Cholesterol-lowering effect of garlic extracts and organosulfur compounds: human and animal studies. J Nutr. 2001;131:989S–993S.PubMedGoogle Scholar
  110. 110.
    Singh DK, Porter TD. Inhibition of sterol 4alpha-methyl oxidase is the principal mechanism by which garlic decreases cholesterol synthesis. J Nutr. 2006;136:759S–764S.PubMedGoogle Scholar
  111. 111.
    Mader FH. Treatment of hyperlipidaemia with garlic-powder tablets. Evidence from the German Association of General Practitioners’ multicentric placebo-controlled double-blind study. Arzneimittelforschung. 1990;40:1111–6.PubMedGoogle Scholar
  112. 112.
    Zhang X-H, Lowe D, Giles P, Fell S, Connock MJ, Maslin DJ. Gender may affect the action of garlic oil on plasma cholesterol and glucose levels of normal subjects. J Nutr. 2001;131:1471–8.PubMedGoogle Scholar
  113. 113.
    Macan H, Uykimpang R, Alconcel M, Takasu J, Razon R, Amagase H, Niihara Y. Aged garlic extract may be safe for patients on warfarin therapy. J Nutr. 2006;136:793–5S.Google Scholar
  114. 114.
    Lau BHS, Lam F, Wang-Cheng R. Effect of an odor-modified garlic preparation on blood lipids. Nutr Res. 1987;7:139–49.Google Scholar
  115. 115.
    Gadkari J, Joshi V. Effect of ingestion of raw garlic on serum cholesterol level, clotting time and fibrinolytic activity in normal subjects. J Postgrad Med. 1991;37:128.Google Scholar
  116. 116.
    Ried K, Toben C, Fakler P. Effect of garlic on serum lipids: an updated meta-analysis. Nutr Rev. 2013;71:282–99.PubMedGoogle Scholar
  117. 117.
    Tang L-Q, Wei W, Chen L-M, Liu S. Effects of berberine on diabetes induced by alloxan and a high-fat/high-cholesterol diet in rats. J Ethnopharmacol. 2006;108:109–15.PubMedGoogle Scholar
  118. 118.
    Lee YS, Kim WS, Kim KH, Yoon MJ, Cho HJ, Shen Y, Ye JM, Lee CH, Oh WK, Kim CT, et al. Berberine, a natural plant product, activates AMP-activated protein kinase with beneficial metabolic effects in diabetic and insulin-resistant states. Diabetes. 2006;55:2256–64.PubMedGoogle Scholar
  119. 119.
    Ko BS, Choi SB, Park SK, Jang JS, Kim YE, Park S. Insulin sensitizing and insulinotropic action of berberine from Cortidis rhizoma. Biol Pharm Bull. 2005;28:1431–7.PubMedGoogle Scholar
  120. 120.
    Yin J, Hu R, Chen M, Tang J, Li F, Yang Y, Chen J. Effects of berberine on glucose metabolism in vitro. Metabolism. 2002;51:1439–43.PubMedGoogle Scholar
  121. 121.
    Yin J, Gao Z, Liu D, Liu Z, Ye J. Berberine improves glucose metabolism through induction of glycolysis. Am J Physiol Endocrinol Metab. 2008;294:E148–E56.PubMedCentralPubMedGoogle Scholar
  122. 122.
    Zhang Y, Li X, Zou D, Liu W, Yang J, Zhu N, Huo L, Wang M, Hong J, Wu P, et al. Treatment of type 2 diabetes and dyslipidemia with the natural plant alkaloid berberine. J Clin Endocrinol Metab. 2008;93:2559–65.PubMedGoogle Scholar
  123. 123.
    Brusq JM, Ancellin N, Grondin P, Guillard R, Martin S, Saintillan Y, Issandou M. Inhibition of lipid synthesis through activation of AMP kinase: an additional mechanism for the hypolipidemic effects of berberine. J Lipid Res. 2006;47:1281–8.PubMedGoogle Scholar
  124. 124.
    Kong W, Wei J, Abidi P, Lin M, Inaba S, Li C, Wang Y, Wang Z, Si S, Pan H, et al. Berberine is a novel cholesterol-lowering drug working through a unique mechanism distinct from statins. Nat Med. 2004;10:1344–51.PubMedGoogle Scholar
  125. 125.
    Lee S, Lim H-J, Park J-H, Lee K-S, Jang Y, Park H-Y. Berberine-induced LDLR up-regulation involves JNK pathway. Biochem Biophys Res Commun. 2007;362:853–7.PubMedGoogle Scholar
  126. 126.
    Cameron J, Ranheim T, Kulseth MA, Leren TP, Berge KE. Berberine decreases PCSK9 expression in HepG2 cells. Atherosclerosis. 2008;201:266–73.PubMedGoogle Scholar
  127. 127.
    Hu Y, Ehli EA, Kittelsrud J, Ronan PJ, Munger K, Downey T, Bohlen K, Callahan L, Munson V, Jahnke M, et al. Lipid-lowering effect of berberine in human subjects and rats. Phytomedicine. 2012;19:861–7.PubMedGoogle Scholar
  128. 128.
    Yin J, Xing H, Ye J. Efficacy of berberine in patients with type 2 diabetes mellitus. Metabolism. 2008;57:712–7.PubMedCentralPubMedGoogle Scholar
  129. 129.
    Derosa G, D’Angelo A, Bonaventura A, Bianchi L, Romano D, Maffioli P. Effects of berberine on lipid profile in subjects with low cardiovascular risk. Expert Opin Biol Ther. 2013;13:475–82.PubMedGoogle Scholar
  130. 130.
    Kong WJ, Wei J, Zuo ZY, Wang YM, Song DQ, You XF, Zhao LX, Pan HN, Jiang JD. Combination of simvastatin with berberine improves the lipid-lowering efficacy. Metabolism. 2008;57:1029–37.PubMedGoogle Scholar
  131. 131.
    Dong H, Wang N, Zhao L, Lu F. Berberine in the treatment of type 2 diabetes mellitus: a systemic review and meta-analysis. Evid Based Complement Alternat Med. 2012;2012:591654.Google Scholar
  132. 132.
    Zhao W, Xue R, Zhou ZX, Kong WJ, Jiang JD. Reduction of blood lipid by berberine in hyperlipidemic patients with chronic hepatitis or liver cirrhosis. Biomed Pharmacother. 2008;62:730–1.PubMedGoogle Scholar
  133. 133.
    Lau CW, Yao XQ, Chen ZY, Ko WH, Huang Y. Cardiovascular actions of berberine. Cardiovasc Drug Rev. 2001;19:234–44.PubMedGoogle Scholar
  134. 134.
    Marin-Neto JA, Maciel BC, Secches AL, Gallo Junior L. Cardiovascular effects of berberine in patients with severe congestive heart failure. Clin Cardiol. 1988;11:253–60.PubMedGoogle Scholar
  135. 135.
    Cannillo M, Frea S, Fornengo C, Toso E, Mercurio G, Battista S, Gaita F. Berberine behind the thriller of marked symptomatic bradycardia. World J Cardiol. 2013;5:261–4.PubMedCentralPubMedGoogle Scholar
  136. 136.
    Satyavati GV. Gum guggul (Commiphora mukul)-the success story of an ancient insight leading to a modern discovery. Indian J Med Res. 1988;87:327–35.PubMedGoogle Scholar
  137. 137.
    Ulbricht C, Basch E, Szapary P, Hammerness P, Axentsev S, Boon H, Kroll D, Garraway L, Vora M, Woods J, et al. Guggul for hyperlipidemia: a review by the Natural Standard Research Collaboration. Complement Ther Med. 2005;13:279–90.PubMedGoogle Scholar
  138. 138.
    Nityanand S, Kapoor NK. Cholesterol lowering activity of the various fractions of the guggal. Indian J Exp Biol. 1973;11:395–6.PubMedGoogle Scholar
  139. 139.
    Urizar NL, Liverman AB, Dodds DT, Silva FV, Ordentlich P, Yan Y, Gonzalez FJ, Heyman RA, Mangelsdorf DJ, Moore DD. A natural product that lowers cholesterol as an antagonist ligand for FXR. Science. 2002;296:1703–6.PubMedGoogle Scholar
  140. 140.
    Singh V, Kaul S, Chander R, Kapoor NK. Stimulation of low density lipoprotein receptor activity in liver membrane of guggulsterone treated rats. Pharmacol Res. 1990;22:37–44.PubMedGoogle Scholar
  141. 141.
    Sheela CG, Augusti KT. Effects of S-allyl cysteine sulfoxide isolated from Allium sativum Linn and gugulipid on some enzymes and fecal excretions of bile acids and sterols in cholesterol fed rats. Indian J Exp Biol. 1995;33:749–51.PubMedGoogle Scholar
  142. 142.
    Panda S, Kar A. Gugulu (Commiphora mukul) induces triiodothyronine production: possible involvement of lipid peroxidation. Life Sci. 1999;65:PL137–41.Google Scholar
  143. 143.
    Wu J, Xia C, Meier J, Li S, Hu X, Lala DS. The hypolipidemic natural product guggulsterone acts as an antagonist of the bile acid receptor. Mol Endocrinol. 2002;16:1590–7.PubMedGoogle Scholar
  144. 144.
    Nityanand S, Srivastava JS, Asthana OP. Clinical trials with gugulipid. A new hypolipidaemic agent. J Assoc Physicians India. 1989;37:323–8.PubMedGoogle Scholar
  145. 145.
    Kuppurajan K, Rajagopalan SS, Rao TK, Sitaraman R. Effect of guggulu (Commiphora mukul-Engl.) on serum lipids in obese, hypercholesterolemic and hyperlipemic cases. J Assoc Physicians India. 1978;26:367–73.PubMedGoogle Scholar
  146. 146.
    Szapary PO, Wolfe ML, Bloedon LT, Cucchiara AJ, DerMarderosian AH, Cirigliano MD, Rader DJ. Guggulipid for the treatment of hypercholesterolemia: a randomized controlled trial. JAMA. 2003;290:765–72.PubMedGoogle Scholar
  147. 147.
    Arora RB, Kapoor V, Gupta SK, Sharma RC. Isolation of a crystalline steroidal compound from Commiphora mukul & its anti-inflammatory activity. Indian J Exp Biol. 1971;9:403–4.PubMedGoogle Scholar
  148. 148.
    Bianchi A, Cantu P, Firenzuoli F, Mazzanti G, Menniti-Ippolito F, Raschetti R. Rhabdomyolysis caused by Commiphora mukul, a natural lipid-lowering agent. Ann Pharmacother. 2004;38:1222–5.PubMedGoogle Scholar
  149. 149.
    Gouni-Berthold I, Berthold HK. Policosanol: clinical pharmacology and therapeutic significance of a new lipid-lowering agent. Am Heart J. 2002;143:356–65.PubMedGoogle Scholar
  150. 150.
    Menendez R, Fernandez SI, Del Rio A, Gonzalez RM, Fraga V, Amor AM, Mas RM. Policosanol inhibits cholesterol biosynthesis and enhances low density lipoprotein processing in cultured human fibroblasts. Biol Res. 1994;27:199–203.PubMedGoogle Scholar
  151. 151.
    Menendez R, Amor AM, Gonzalez RM, Fraga V, Mas R. Effect of policosanol on the hepatic cholesterol biosynthesis of normocholesterolemic rats. Biol Res. 1996;29:253–7.PubMedGoogle Scholar
  152. 152.
    Menendez R, Arruzazabala L, Mas R, Del Rio A, Amor AM, Gonzalez RM, Carbajal D, Fraga V, Molina V, Illnait J. Cholesterol-lowering effect of policosanol on rabbits with hypercholesterolaemia induced by a wheat starch-casein diet. Br J Nutr. 1997;77:923–32.PubMedGoogle Scholar
  153. 153.
    Menendez R, Mas R, Amor AM, Gonzalez RM, Fernandez JC, Rodeiro I, Zayas M, Jimenez S. Effects of policosanol treatment on the susceptibility of low density lipoprotein (LDL) isolated from healthy volunteers to oxidative modification in vitro. Br J Clin Pharmacol. 2000;50:255–62.PubMedCentralPubMedGoogle Scholar
  154. 154.
    Arruzazabala ML, Valdes S, Mas R, Fernandez L, Carbajal D. Effect of policosanol successive dose increases on platelet aggregation in healthy volunteers. Pharmacol Res. 1996;34:181–5.PubMedGoogle Scholar
  155. 155.
    Batista J, Stüsser R, Penichet M, Uguet E. Doppler-ultrasound pilot study of the effects of long-term policosanol therapy on carotid-vertebral atherosclerosis. Curr Ther Res. 1995;56:906–14.Google Scholar
  156. 156.
    Stusser R, Batista J, Padron R, Sosa F, Pereztol O. Long-term therapy with policosanol improves treadmill exercise-ECG testing performance of coronary heart disease patients. Int J Clin Pharmacol Ther. 1998;36:469–73.PubMedGoogle Scholar
  157. 157.
    Pons P, Más R, Illnait J, Fernández L, Rodriguez M, Robaina C, Fernández JC. Efficacy and safety of policosanol in patients with primary hypercholesterolemia. Curr Ther Res. 1992;52:507–13.Google Scholar
  158. 158.
    Pons P, Rodriguez M, Robaina C, Illnait J, Mas R, Fernandez L, Fernandez JC. Effects of successive dose increases of policosanol on the lipid profile of patients with type II hypercholesterolaemia and tolerability to treatment. Int J Clin Pharmacol Res. 1994;14:27–33.PubMedGoogle Scholar
  159. 159.
    Canetti M, Moreira M, Mas R, Illnait J, Fernandez L, Fernandez J, Diaz E, Castano G. A two-year study on the efficacy and tolerability of policosanol in patients with type II hyperlipoproteinaemia. Int J Clin Pharmacol Res. 1995;15:159–65.PubMedGoogle Scholar
  160. 160.
    Hernández F, Illnait J, Más R, Castaño G, Fernández L, González M, Cordovi N, Fernández J. Effect of policosanol on serum lipids and lipoproteins in healthy volunteers. Curr Ther Res. 1992;51:568–75.Google Scholar
  161. 161.
    Crespo N, Alvarez R, Más R, Illnait J, Fernández L, Fernández JC. Effects of policosanol on patients with non-insulin-dependent diabetes mellitus and hypercholesterolemia: a pilot study. Curr Ther Res. 1997;58:44–51.Google Scholar
  162. 162.
    Más R, Castaño G, Illnait J, Fernández L, Fernández J, Alemán C, Pontigas V, Lescay M. Effects of policosanol in patients with type II hypercholesterolemia and additional coronary risk factors. Clin Pharmacol Ther. 1999;65:439–47.PubMedGoogle Scholar
  163. 163.
    Castano G, Mas R, Fernandez L, Fernandez JC, Illnait J, Lopez LE, Alvarez E. Effects of policosanol on postmenopausal women with type II hypercholesterolemia. Gynecol Endocrinol. 2000;14:187–95.PubMedGoogle Scholar
  164. 164.
    Greyling A, De Witt C, Oosthuizen W, Jerling JC. Effects of a policosanol supplement on serum lipid concentrations in hypercholesterolaemic and heterozygous familial hypercholesterolaemic subjects. Br J Nutr. 2006;95:968–75.PubMedGoogle Scholar
  165. 165.
    Dulin MF, Hatcher LF, Sasser HC, Barringer TA. Policosanol is ineffective in the treatment of hypercholesterolemia: a randomized controlled trial. Am J Clin Nutr. 2006;84:1543–8.PubMedGoogle Scholar
  166. 166.
    Cubeddu LX, Cubeddu RJ, Heimowitz T, Restrepo B, Lamas GA, Weinberg GB. Comparative lipid-lowering effects of policosanol and atorvastatin: a randomized, parallel, double-blind, placebo-controlled trial. Am Heart J. 2006;152:982.e981–982.e985.Google Scholar
  167. 167.
    Joy JF, Haber SL. Clinical uses of artichoke leaf extract. Am J Health Syst Pharm. 2007;64:1904, 1906–9.Google Scholar
  168. 168.
    Kraft K. Artichoke leaf extract—recent findings reflecting effects on lipid metabolism, liver and gastrointestinal tracts. Phytomedicine. 1997;4:369–78.PubMedGoogle Scholar
  169. 169.
    Gebhardt R. Inhibition of cholesterol biosynthesis in primary cultured rat hepatocytes by artichoke (Cynara scolymus L.) extracts. J Pharmacol Exp Ther. 1998;286:1122–8.PubMedGoogle Scholar
  170. 170.
    Gebhardt R. Inhibition of cholesterol biosynthesis in HepG2 cells by artichoke extracts is reinforced by glucosidase pretreatment. Phytother Res. 2002;16:368–72.PubMedGoogle Scholar
  171. 171.
    Qiang Z, Lee SO, Ye Z, Wu X, Hendrich S. Artichoke extract lowered plasma cholesterol and increased fecal bile acids in Golden Syrian hamsters. Phytother Res. 2012;26:1048–52.PubMedGoogle Scholar
  172. 172.
    Kirchhoff R, Beckers C, Kirchhoff GM, Trinczek-Gartner H, Petrowicz O, Reimann HJ. Increase in choleresis by means of artichoke extract. Phytomedicine. 1994;1:107–15.PubMedGoogle Scholar
  173. 173.
    Gebhardt R. Inhibition of cholesterol biosynthesis in primary cultured rat hepatocytes by artichoke (Cynara scolymus L.) extracts. J Pharmacol Exp Ther. 1998;286:1122–8.PubMedGoogle Scholar
  174. 174.
    Petrowicz O, Gebhardt R, Donner M, Schwandt P, Kraft K. Effects of artichoke leaf extract (ALE) on lipoprotein metabolism in vitro and in vivo. Atherosclerosis. 1997;129:147.Google Scholar
  175. 175.
    Englisch W, Beckers C, Unkauf M, Ruepp M, Zinserling V. Efficacy of artichoke dry extract in patients with hyperlipoproteinemia. Arzneimittelforschung. 2000;50:260–265.Google Scholar
  176. 176.
    Bundy R, Walker AF, Middleton RW, Wallis C, Simpson HC. Artichoke leaf extract (Cynara scolymus) reduces plasma cholesterol in otherwise healthy hypercholesterolemic adults: a randomized, double blind placebo controlled trial. Phytomedicine. 2008;15:668–75.PubMedGoogle Scholar
  177. 177.
    Heckers H, Dittmar K, Schmahl FW, Huth K. Inefficiency of cynarin as therapeutic regimen in familial type ii hyperlipoproteinaemia. Atherosclerosis. 1977;26:249–53.PubMedGoogle Scholar
  178. 178.
    Wider B, Pittler MH, Thompson-Coon J, Ernst E. Artichoke leaf extract for treating hypercholesterolaemia. Cochrane Database Syst Rev. 2013;3:CD003335.PubMedGoogle Scholar

Copyright information

© Humana Press 2015

Authors and Affiliations

  1. 1.Department of Internal Medicine, Division of Nutrition & Metabolic DiseasesUniversity of Texas Southwestern Medical CenterDallasUSA

Personalised recommendations