Skip to main content

N-3 Fatty Acids: Role in Treating Dyslipidemias and Preventing Cardiovascular Disease

  • Chapter
  • First Online:
  • 2188 Accesses

Part of the book series: Contemporary Endocrinology ((COE))

Abstract

Long-chain n-3 fatty acids have an important role in treating dyslipidemia characterized by elevated triglycerides. Because the degree of triglyceride lowering is dependent upon dose of the n-3 fatty acids as well as the baseline triglyceride level, high doses (3–4 g) are especially effective in treating very high triglycerides (> 500 mg/dL), a condition associated with an increased risk of pancreatitis. Various formulations are available, with differences in bioavailability and effects on specific lipid/lipoprotein parameters. The clinical significance of these differences is unclear, but warrants further study. All of the therapeutic formulations are well tolerated and have an excellent safety record in clinical trials. The role of long-chain n-3 fatty acids as a therapy to reduce the incidence of cardiovascular events is still being defined.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. de Lorgeril M, Salen P, Martin JL, Monjaud I, Delaye J, Mamelle N. Mediterranean diet, traditional risk factors, and the rate of cardiovascular complications after myocardial infarction: final report of the Lyon Diet Heart Study. Circulation. 1999;99:779–85.

    Article  PubMed  Google Scholar 

  2. Kromhout D, Giltay EJ, Geleijnse JM; Alpha Omega Trial Group. n-3 fatty acids and cardiovascular events after myocardial infarction. N Engl J Med. 2010;363:2015–26.

    Article  CAS  PubMed  Google Scholar 

  3. Burdge G. Alpha-linolenic acid metabolism in men and women: nutritional and biological implications. Curr Opin Clin Nutr Metab Care. 2004;7:137–44.

    Article  CAS  PubMed  Google Scholar 

  4. Burdge GC, Finnegan YE, Minihane AM, Williams CM, Wooten SA. Effect of altered dietary n-3 fatty acid intake upon plasma lipid fatty acid composition, conversion of [13C]alpha-linolenic acid to longer-chain fatty acids and partitioning towards beta-oxidation in older men. Br J Nutr. 2003;90:311–21.

    Article  CAS  PubMed  Google Scholar 

  5. Pawlosky RJ, Hibbeln JR, Novotny JA, Salem N Jr. Physiological compartmental analysis of alpha-linolenic acid metabolism in adult humans. J Lipid Res. 2001;42:1257–65.

    CAS  PubMed  Google Scholar 

  6. Brenna JT, Salem N Jr, Sinclair AH, Cunnane SC. Alpha-linolenic acid supplementation and conversion to n-3 long-chain polyunsaturated fatty acids in humans. Prostaglandins Leukot Essent Fatty Acids. 2009;80:85–91.

    Article  CAS  PubMed  Google Scholar 

  7. Welch AA, Shakya-Shrestha S, Lentjes MAH, Wareham NJ, Khaw K-T. Dietary intake and status of n-3 polyunsaturated fatty acids in a population of fish-eating and non-fish-eating meat-eaters, vegetarians, and vegans and the precursor-product ration of α-linolenic acid to long chain n-3 polyunsaturated fatty acids: results from the EPIC-Norfolk cohort. Am J Clin Nutr. 2010;92:1040–51.

    Article  CAS  PubMed  Google Scholar 

  8. Gibson RA, Neumann MA, Lien EL, Body KA, Tu WC. Docosahexaenoic acid synthesis from alpha-linolenic acid is inhibited by diets high in polyunsaturated fatty acids. Prostaglandins Leukot Essent Fatty Acids. 2012. http://dx.doi.org/10.1016/j.plefa.2012.04.003.

    Google Scholar 

  9. Dyerberg J, Bang HO, Hjorne N. Fatty acid composition of the plasma lipids in Greenland Eskimos. Am J Clin Nutr. 1975;28:958–66.

    CAS  PubMed  Google Scholar 

  10. Dyerberg J, Bang HO, Stoffersen E, et al. Eicosapentaenoic acid and prevention of thrombosis and atherosclerosis? Lancet. 1978;2:117–9.

    Google Scholar 

  11. Kromann N, Green A. Epidemiological studies in the Upernavik District, Greenland incidence of some chronic diseases 1950–1974. Acta Med Scand. 1980;208:401–6.

    Article  CAS  PubMed  Google Scholar 

  12. Bang HO, Dyerberg J. Lipid metabolism and ischemic heart disease in Greenland Eskimos. Adv Nutr Res. 1980;3:1–22.

    Article  CAS  Google Scholar 

  13. Goodnight SH Jr, Harris WS, Connor WE. The effects of dietary omega-3 Fatty Acids on platelet composition and function in man: a prospective, controlled study. Blood. 1981;58:880–5.

    CAS  PubMed  Google Scholar 

  14. Harris WS. Fish oils and plasma lipid and lipoprotein metabolism in humans: a critical review. J Lipid Res. 1989;30:785–807.

    CAS  PubMed  Google Scholar 

  15. Balk EM, Lichtenstein AH, Chung M, et al. Effects of omega-3 fatty acids on serum markers of cardiovascular disease risk: a systematic review. Atherosclerosis. 2006;189:19–30.

    Article  CAS  PubMed  Google Scholar 

  16. Harris WS. n-3 Fatty acids and serum lipoproteins: human studies. Am J Clin Nutr. 1997;65(5 suppl):1645S–54S

    CAS  PubMed  Google Scholar 

  17. Brunton S, Collins N. Differentiating prescription omega-3 acid ethyle esters (P-OM3) from dietary supplement omega-3 fatty acids. Curr Med Res Opin. 2007;23:1139–45.

    Article  CAS  PubMed  Google Scholar 

  18. Bays HE, Ballantyne CM, Kastelein JJ, Isaacsohn JL, Braeckman RA, Soni PN. Eicosapentaenoic acid ethyl ester (AMR101) therapy in patients with very high triglyceride levels (from the Multi-center, placebo-controlled, randomized, double-blinded, 12-week study with an open label extension [MARINE] trial). Am J Cardiol. 2011;108:682–90.

    Article  CAS  PubMed  Google Scholar 

  19. Ballantyne CM, Bays HE, Kastelein JJ, Stein E, et al. Efficacy and safety of eicosapentaenoic acid ethyl ester (AMR101) therapy in statin-treated patients with persistent high triglycerides (from the ANCHOR Study). Am J Cardiol. 2012;110:984–92.

    Article  CAS  PubMed  Google Scholar 

  20. Kling DF, Johnson J, Rooney M, Davidson M. Omega-3 free fatty acids demonstrate more than 4-fold greater bioavailability for EPA and DHA compared with omega-3 acid ethyl esters in conjunction with a low-fat diet: the ECLIPSE study. J Clin Lipidol. 2011;105:231.

    Article  Google Scholar 

  21. http://clinicaltrials.gov/ct2/show/NCT01242527

  22. Shearer GC, Savinova OV, Harris WS. Fish oil—how does it reduce plasma triglycerides? Biochim Biophys Acta. 2012;1821:843–51.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Harris WS, Miller M, Tighe AP, et al. Omega-3 fatty acids and coronary heart disease risk: clinical and mechanistic perspectives. Atherosclerosis. 2008;197:12–24.

    Article  CAS  PubMed  Google Scholar 

  24. Khan S, Minihane AM, Talmud PJ, et al. Dietary long-chain n-3 PUFAs increase LPL gene expression in adipose tissue of subjects with an atherogenic lipoprotein phenotype. J Lipid Res. 2002;43:979–85.

    CAS  PubMed  Google Scholar 

  25. Swahn E, von Schenck H, Olsson AG. Omega-3 ethyl ester concentrate decreases total apolipoprotein CIII and increases antithrombin III in postmyocardial infarction patients. Clin Drug Investig. 1998;15:473–82.

    Article  CAS  PubMed  Google Scholar 

  26. Balk E, Chung M, Lichtenstein A, et al. Effects of omega-3 fatty acids on cardiovascular risk factors and intermediate markers of cardiovascular disease. Evid Rep Technol Asess (Summ). 2004;1–6.

    Google Scholar 

  27. Harris W, Ginsberg H, Arunakul N, Schacter NS, et al. Safety and efficacy of Omacor in severe hypertriglyceridemia. J Cardiovasc Risk. 1997;4:385–91.

    Article  CAS  PubMed  Google Scholar 

  28. Pownall H, Brauchi D, Kilinc C, et al. Correlation of serum triglyceride and its reduction by n-3 fatty acids with lipid transfer activity and the neutral lipid compositions of high-density and low-density lipoproteins. Atherosclerosis. 1999;143:285–97.

    Article  CAS  PubMed  Google Scholar 

  29. Reliant Pharmaceuticals, Inc. Data on file. Liberty Corner, NJ; 2005.

    Google Scholar 

  30. Westphal S, Orth M, Ambrosch A, Osmundsen K, Luley C. Postprandial chylomicrons and VLDLs in severe hypertriacylglycerolemia are lowered more effectively than are chylomicron remnants after treatment with n-3 fatty acids. Am J Clin Nutr. 2000;71:914–20.

    CAS  PubMed  Google Scholar 

  31. Stalenhoef A, de Graaf J, Wittekoek M, Bredie S, Demacker P, Kastelein J. The effect of concentrated n-3 fatty acids versus gemfibrozil on plasma lipoproteins, low-density lipoprotein heterogeneity and oxidizability in patients with hypertriglyceridemia. Atherosclerosis. 2000;153:129–38.

    Article  CAS  PubMed  Google Scholar 

  32. McKeone BJ, Osmundsen K, Brauchi D, et al. Alterations in serum phosphatidylcholine fatty acyl species by eicosapentaenoic and docosahexaenoic ethyl esters in patients with severe hypertriglyceridemia. J Lipid Res. 1997;38:429–36.

    CAS  PubMed  Google Scholar 

  33. Harris WS. Expert opinion: omega-3 fatty acids and bleeding—cause for concern? Am J Cardiol. 2007;99:44C–46C.

    Article  CAS  PubMed  Google Scholar 

  34. Skulas-Ray AC, West SG, Davidson MH, Kris-Etherton PM. Omega-3 fatty acid concentrates in the treatment of moderate hypertriglyceridemia. Expert Opin Pharmacother. 2008;9:1237–48.

    Article  CAS  PubMed  Google Scholar 

  35. Lungershausen YK, Abbey M, Nestel PJ, Howe PR. Reduction of blood pressure and plasma truglycerides by omega-3 fatty acids in treated hypertensives. J Hypertens. 1994;12:1041–5.

    Article  CAS  PubMed  Google Scholar 

  36. Johansen O, Seljeflot I, Hostmark AT, Arnesen H. The effect of supplementation with omega-3 fatty acids on soluble markers of endothelial function in patients with coronary heart disease. Arteriocler Thromb Vasc Biol. 1999;19:1681–866.

    Article  CAS  Google Scholar 

  37. Davidson MH, Stein EA, Bays HE, et al. Efficacy and tolerability of adding prescription omega-3 fatty acids 4 g/d to simvastatin 40 mg/d in hypertriglyceridemic patients: an 8-week, randomized, double-blind, placebo-controlled study. Clin Ther. 2007;29:1354–67.

    Article  CAS  PubMed  Google Scholar 

  38. Hartweg J, Farmer AJ, Perera R, Holman RR, Neil HAW. Meta-analysis of the effects of n-3 polyunsaturated fatty acids on lipoproteins and other emerging lipid cardiovascular risk markers in patients with type 2 diabetes. Diabetologia. 2007;50:1593–602.

    Article  CAS  PubMed  Google Scholar 

  39. Maki KC, Dicklin MR, Lawless AL, Reeves MS. Omega-3 fatty acids for the treatment of elevated triglycerides. Clin Lipidol. 2009;4:425–37.

    Article  CAS  Google Scholar 

  40. Chan DC, Watts GF, Barrett PHR, et al. Regulatory effects of HMG CoA reductase inhibitors and fish oils on Apo B-100 kinetics in insulin-resistant obese male subjects with dyslipidemia. Diabetes. 2002;51:2377–86.

    Article  CAS  PubMed  Google Scholar 

  41. Chan DC, Watts GF, Mori TA, et al. Randomized controlled trial of the effect of n-3 fatty acid supplementation on the metabolism of apolipoprotein B-100 and chylomicron remnants in men with visceral obesity. Am J Clin Nutr. 2003;77:300–7.

    CAS  PubMed  Google Scholar 

  42. Packard CJ. Triacylglycerol-rich lipoproteins and the generation of small, dense low-density lipoprotein. Biochem Soc Trans. 2003;31:1066–9.

    Article  CAS  PubMed  Google Scholar 

  43. Davidson MH, Maki KC, Bays H, et al. Effects of prescription omega-3-acid ethyl esters on lipoprotein particle concentrations, apolipoproteins AI and CIII, and lipoprotein-associated phospholipase A2 mass in statin-treated subjects with hypertriglyceridemia. J Clin Lipidol. 2009;3:332–40.

    Article  PubMed  Google Scholar 

  44. Maki KC, Bays HE, Dicklin MR, Johnson SL, Shabbout M. Effects of prescription omega-3-acid ethyl esters, coadministered with atorvastatin, on circulating levels of lipoprotein particles, apolipoprotein CIII, and lipoprotein-associated phospholipase A2 mass in men and women with mixed dyslipidemia. J Clin Lipidol. 2011;5:483–92.

    Article  PubMed  Google Scholar 

  45. Baum SJ. ANCHOR Trial Conclusions regarding the effects of pure eicosapentaenoic acid on low-density lipoprotein cholesterol. Am J Cardiol. 2013;111:454–5.

    Article  CAS  PubMed  Google Scholar 

  46. Jacobson TA, Glickstein SB, Rowe JD, Soni PN. Effects of eicospentaenoic and docashexaenoic acid on low-density lipoprotein cholesterol and other lipids: a review. J Clin Lipidol. 2012;6:5–18.

    Article  PubMed  Google Scholar 

  47. Mozaffarian D, Wu JH. (n-3) fatty acids and cardiovascular health: are effects of EPA and DHA shared or complementary? J Nutr. 2012;142:614S–625S.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Tatsuno I, Saito Y, Kudou K, Ootake J. Efficacy and safety of TAK-085 compared with eicosapentaenoic acid in Japanese subjects with hypertriglyceridemia undergoing lifestyle modification: the omega-3 fatty acids randomized double-blind (ORD) study. J Clin Lipidol. 2013;7:199–207.

    Article  PubMed  Google Scholar 

  49. Minihane AM. Fatty acid-genotype interactions and cardiovascular risk. Prostaglandins Leukot Essent Fatty Acids. 2010;82:259–64.

    Article  CAS  PubMed  Google Scholar 

  50. Olano-Martin E, Anil E, Caslake MJ, Packard CJ, et al. Contribution of apolipoprotein E genotype and docosahexaenoic acid to the LDL-cholesterol response to fish oil. Atherosclerosis. 2010;209:104–10.

    Article  CAS  PubMed  Google Scholar 

  51. Caslake MJ, Miles EA, Kofler BM, Lietz G, Curtis P, et al. Effect of sex and genotype on cardiovascular biomarker response to fish oils: the FINGEN Study. Am J Clin Nutr. 2008;88:618–29.

    CAS  PubMed  Google Scholar 

  52. Kromhout D, Bosschieter EB, de Lezenne Coulander C. The inverse relation between fish consumption and 20-year mortality from coronary heart disease. N Engl J Med. 1985;312:1205–9.

    Article  CAS  PubMed  Google Scholar 

  53. Rodriguez BL, Sharp DS, Abbott RD, et al. Fish intake may limit the increase in risk of coronary heart disease morbidity and mortality among heavy smokers. The Honolulu Heart Program. Circulation. 1996;94:952–6.

    Article  CAS  PubMed  Google Scholar 

  54. Daviglus ML, Stamler J, Orencia AJ, et al. Fish consumption and the 30-year risk of fatal myocardial infarction. N Engl J Med. 1997;336:1046–53.

    Article  CAS  PubMed  Google Scholar 

  55. Yuan JM, Ross RK, Gao YT, Yu MC. Fish and shellfish consumption in relation to death from myocardial infarction among men in Shanghai, China. Am J Epidemiol. 2001;154:809–16.

    Article  CAS  PubMed  Google Scholar 

  56. Oomen CM, Feskens EJ, Rasanen L, et al. Fish consumption and coronary heart disease mortality in Finland, Italy, and The Netherlands. Am J Epidemiol. 2000;151:999–1006.

    Article  CAS  PubMed  Google Scholar 

  57. Dolecek TA. Epidemiological evidence of relationships between dietary polyunsaturated fatty acids and mortality in the multiple risk factor intervention Trial. Proc Soc Exp Bio Med. 1992;200:177–82.

    Article  CAS  Google Scholar 

  58. Albert CM, Hennekens CH, O’Donnell CJ, et al. Fish consumption and risk of sudden cardiac death. JAMA. 1998;279:23–8.

    Article  CAS  PubMed  Google Scholar 

  59. Hu FB, Bronner L, Willett WC, et al. Fish and omega-3 fatty acid intake and risk of coronary heart disease in women. JAMA. 2002;287:1815–21.

    Article  CAS  PubMed  Google Scholar 

  60. Mozaffarian D, Lemaitre RN, Kuller LH, Burke GL, Tracy RP, Siscovick DS. Cardiac benefits of fish consumption may depend on the type of fish meal consumed: the cardiovascular health study. Circulation. 2003;107:1372–7.

    Article  PubMed  Google Scholar 

  61. Hu FB, Cho E, Rexrode KM, Albert CM, Manson JE. Fish and long-chain omega-3 fatty acid intake and risk of coronary heart disease and total mortality in diabetic women. Circulation. 2003;107:1852–7.

    Article  PubMed  Google Scholar 

  62. Lemaitre RN, King IB, Mozaffarian D, Kuller LH, Tracy RP, Siscovick DS. n–3 polyunsaturated fatty acids, fatal ischemic heart disease and non-fatal myocardial infarction in older adults. The cardiovascular health study. Am J Clin Nutr. 2003;77:319–25.

    CAS  PubMed  Google Scholar 

  63. He K, Song Y, Daviglus ML, et al. Accumulated evidence on fish consumption and coronary heart disease mortality: a meta-analysis of cohort studies. Circulation. 2004;109:2705–11.

    Article  PubMed  Google Scholar 

  64. Panagiotakos DB, Pitsavos C, Zampelas A, et al. Fish consumption and the risk of developing acute coronary syndromes: the CARDIO2000 study. Int J Cardiol. 2005;102:403–9.

    Article  PubMed  Google Scholar 

  65. Iso H, Rexrode KM, Stampfer MJ, et al. Intake of fish and omega-3 fatty acids and risk of stroke in women. JAMA. 2001;285:304–12.

    Article  CAS  PubMed  Google Scholar 

  66. Bjerregaard LJ, Joensen AM, Dethlefsen C, et al. Fish intake and acute coronary syndrome. Eur Heart J. 2010;31:29–34.

    Article  CAS  PubMed  Google Scholar 

  67. Siscovick DS, Raghunathan TE, King I, et al. Dietary intake and cell membrane levels of long-chain n-3 polyunsaturated fatty acids and the risk of primary cardiac arrest. JAMA. 1995;274:1363–7.

    Article  CAS  PubMed  Google Scholar 

  68. Albert CM, Campos H, Stampfer MJ, et al. Blood levels of long-chain n-3 fatty acids and the risk of sudden death. N Engl J Med. 2002;346:1113–8.

    Article  CAS  PubMed  Google Scholar 

  69. Harris WS, Poston WC, Haddock CK. Tissue n–3 and n–6 fatty acids and risk for coronary heart disease events. Atherosclerosis. 2007;193:1–10.

    Article  CAS  PubMed  Google Scholar 

  70. Block RC, Harris WS, Reid KJ, Sands SA, Spertus JA. EPA and DHA in blood cell membranes from acute coronary syndrome patients and controls. Atherosclerosis. 2008;197:821–8.

    Article  CAS  PubMed  Google Scholar 

  71. Park Y, Lim J, Lee J, Kim SG. Erythrocyte fatty acid profiles can predict acute non-fatal myocardial infarction. Br J Nutr. 2009;102:1355–61.

    Article  CAS  PubMed  Google Scholar 

  72. Pottala JV, Garg S, Cohen BE, Whooley MA, Harris WS. Blood eicosapentaenoic and docosahexaenoic acids predict all-cause mortality in patients with stable coronary heart disease: the heart and soul study. Circ Cardiovasc Qual Outcomes. 2010;3:406–12.

    Article  PubMed Central  PubMed  Google Scholar 

  73. Burr ML, Ashfield-Watt PA, Dunstan FD, et al. Lack of benefit of dietary advice to men with angina: results of a controlled trial. Eur J Clin Nutr. 2003;57:193–200.

    Article  CAS  PubMed  Google Scholar 

  74. GISSI-Prevenzione Investigators (Gruppo Italiano per lo Studio della Sopravvivenza nell’Infarto miocardico). Dietary supplementation with n-3 polyunsaturated fatty acids and vitamin E after myocardial infarction: results of the GISSI-Prevenzione trial. Lancet. 1999;354:447–55.

    Article  Google Scholar 

  75. Rauch B, Schiele R, Schneider S, et al. OMEGA, a randomized, placebo-controlled trail to test the effect of highly purified omega-3 fatty acids on top of modern guideline-adjusted therapy after myocardial infarction. Circulation. 2010;122:2152–9.

    Article  CAS  PubMed  Google Scholar 

  76. Kromhout D, Giltay EJ, Geleijnse JM, et al. N-3 fatty acids and cardiovascular events after myocardial infarction. N Eng J Med. 2010;363:2015–26.

    Article  CAS  Google Scholar 

  77. Galan P, Kesse-Guyot E, Czernichow S, et al. Effects of B vitamins and omega-3 fatty acids on cardiovascular diseases: a randomized placebo controlled trial. BMJ. 2010;341:c6273.

    Article  PubMed Central  PubMed  Google Scholar 

  78. ORIGIN Trial Investigators. N-3 fatty acids and cardiovascular outcomes in patients with dysglycemia. N Engl J Med. 2012;367:309–18.

    Article  Google Scholar 

  79. Yokoyama M, Origasa H, Matsuzaki M, et al. Effects of eicosapentaenoic acid on major coronary events in hypercholesterolaemic patients (JELIS): a randomised open-label, blinded endpoint analysis. Lancet. 2007;369:1090–8.

    Article  CAS  PubMed  Google Scholar 

  80. The Risk and Prevention Study Collaborative Group. N-3 fatty acids in patients with multiple cardiovascular risk factors. N Eng J Med. 2013;368:1800–8.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas A. Barringer MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Humana Press

About this chapter

Cite this chapter

Barringer, T., Harris, W., Fleming, J., Kris-Etherton, P. (2015). N-3 Fatty Acids: Role in Treating Dyslipidemias and Preventing Cardiovascular Disease. In: Garg, A. (eds) Dyslipidemias. Contemporary Endocrinology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-424-1_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-424-1_21

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-423-4

  • Online ISBN: 978-1-60761-424-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics