Advertisement

Dyslipidemias pp 267-286 | Cite as

Drug-Induced Dyslipidemia

  • Vinaya SimhaEmail author
Chapter
Part of the Contemporary Endocrinology book series (COE)

Abstract

Hyperlipidemia may be caused or exacerbated by many conditions including pharmacotherapy. A wide variety of medications can cause adverse effects on lipid metabolism leading to dyslipidemia. These include antihypertensives such as thiazide diuretics and nonspecific beta-adrenergic blockers, various steroid hormones including glucocorticoids, estrogens, androgens, and their related compounds, immunosuppressive medications, antineoplastic agents, atypical antipsychotics, HIV-1 protease inhibitors, antiepileptics, and other miscellaneous drugs. The effect of some medications is mild and of little clinical significance, while others can cause severe hyperlipidemia and acute complications such as pancreatitis. This chapter focuses on some of the common medications causing dyslipidemia, the magnitude of their effects, and its mechanisms, and management. Awareness about drug-induced dyslipidemia is essential for providing optimal care to patients with lipid disorders.

Keywords

Drug-induced hyperlipidemia Glucocorticoids Sirolimus Retinoids Estrogen 

References

  1. 1.
    Tanaka N, Sakaguchi S, Oshige K, Niimura T, Kanehisa T. Effect of chronic administration of propranolol on lipoprotein composition. Metabolism. 1976;25:1071–5.PubMedGoogle Scholar
  2. 2.
    Leren P, Foss PO, Helgeland A, Hjermann I, Holme I, Lund-Larsen PG. Effect of propranolol and prazosin on blood lipids. The Oslo Study. Lancet. 1980;2:4–6.PubMedGoogle Scholar
  3. 3.
    Velasco M, Hurt E, Silva H, Urbina-Quintana A, Hernandez-Pieretti O, Feldstein E, Camejo G. Effects of prazosin and propranolol on blood lipids and lipoproteins in hypertensive patients. Am J Med. 1986;80:109–13.PubMedGoogle Scholar
  4. 4.
    Rouffy J, Jaillard J. Effects of two antihypertensive agents on lipids, lipoproteins, and apoproteins A and B. Comparison of prazosin and atenolol. Am J Med. 1986;80:100–103.PubMedGoogle Scholar
  5. 5.
    Middeke M, Weisweiler P, Schwandt P, Holzgreve H. Serum lipoproteins during antihypertensive therapy with beta blockers and diuretics: a controlled long-term comparative trial. Clin Cardiol. 1987;10:94–8.PubMedGoogle Scholar
  6. 6.
    Ferrara LA, Marotta T, Rubba P, De Simone B, Leccia G, Soro S, Mancini M. Effects of alpha-adrenergic and beta-adrenergic receptor blockade on lipid metabolism. Am J Med. 1986;80:104–8.PubMedGoogle Scholar
  7. 7.
    Lardinois CK, Neuman SL. The effects of antihypertensive agents on serum lipids and lipoproteins. Arch Intern Med. 1988;148:1280–8.PubMedGoogle Scholar
  8. 8.
    Donahoo WT, Kosmiski LA, Eckel RH. Drugs causing dyslipoproteinemia. Endocrinol Metab Clin North Am. 1998;27:677–97.PubMedGoogle Scholar
  9. 9.
    Bell DS, Bakris GL, McGill JB. Comparison of carvedilol and metoprolol on serum lipid concentration in diabetic hypertensive patients. Diabetes Obes Metab. 2009;11:234–8.PubMedGoogle Scholar
  10. 10.
    Sharp RP, Sirajuddin R, Sharief IM. Impact of carvedilol on the serum lipid profile. Ann Pharmacother. 2008;42:564–71.PubMedGoogle Scholar
  11. 11.
    Lowenstein J, Neusy AJ. Effects of prazosin and propranolol on serum lipids in patients with essential hypertension. Am J Med. 1984;76:79–84.PubMedGoogle Scholar
  12. 12.
    Takabatake T, Ohta H, Maekawa M, Yamamoto Y, Ishida Y, Hara H, Hattori N. Effects of long-term prazosin therapy on lipoprotein metabolism in hypertensive patients. Am J Med. 1984;76:113–6.PubMedGoogle Scholar
  13. 13.
    Day JL, Metcalfe J, Simpson CN. Adrenergic mechanisms in control of plasma lipid concentrations. Br Med J (Clin Res Ed). 1982;284:1145–8.Google Scholar
  14. 14.
    Barboriak JJ, Friedberg HD. Propranolol and hypertriglyceridemia. Atherosclerosis. 1973;17:31–5.PubMedGoogle Scholar
  15. 15.
    Misson R, Merkel T, Cutler RE. Comparison of blood pressure, plasma lipid and cardiac performance responses to prazosin versus propranolol in thiazide-treated hypertensive patients. Am J Cardiol. 1984;53:51A–4A.PubMedGoogle Scholar
  16. 16.
    Vardeny O, Nicholas G, Andrei A, Buhr KA, Hermanson MP, Moran JJ, Detry MA, Stein JH. Beta-AR polymorphisms and glycemic and lipid parameters in hypertensive individuals receiving carvedilol or metoprolol. Am J Hypertens. 2012;25:920–6.PubMedCentralPubMedGoogle Scholar
  17. 17.
    Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo JL Jr, Jones DW, Materson BJ, Oparil S, Wright JT Jr, Roccella EJ. The seventh report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure: the JNC 7 report. Jama. 2003;89:2560–72.Google Scholar
  18. 18.
    Schoenfeld MR, Goldberger E. Hypercholesterolemia Induced by thiazides: a pilot study. Curr Ther Res Clin Exp. 1964;6:180–184.PubMedGoogle Scholar
  19. 19.
    Pollare T, Lithell H, Berne C. A comparison of the effects of hydrochlorothiazide and captopril on glucose and lipid metabolism in patients with hypertension. N Engl J Med. 1989;321:868–73PubMedGoogle Scholar
  20. 20.
    Grimm RH Jr, Leon AS, Hunninghake DB, Lenz K, Hannan P, Blackburn H. Effects of thiazide diuretics on plasma lipids and lipoproteins in mildly hypertensive patients: a double-blind controlled trial. Ann Intern Med. 1981;94:7–11.PubMedGoogle Scholar
  21. 21.
    Goldman AI, Steele BW, Schnaper HW, Fitz AE, Frohlich ED, Perry HM Jr. Serum lipoprotein levels during chlorthalidone therapy. A Veterans Administration-National Heart, Lung, and Blood Institute cooperative study on antihypertensive therapy: mild hypertension. JAMA. 1980;244:1691–5PubMedGoogle Scholar
  22. 22.
    Lasser NL, Grandits G, Caggiula AW, Cutler JA, Grimm RH Jr, Kuller LH, Sherwin RW, Stamler J. Effects of antihypertensive therapy on plasma lipids and lipoproteins in the multiple risk factor intervention trial. Am J Med. 1984;76:52–66.PubMedGoogle Scholar
  23. 23.
    Kasiske BL, Ma JZ, Kalil RS, Louis TA. Effects of antihypertensive therapy on serum lipids. Ann Intern Med. 1995;122:133–41PubMedGoogle Scholar
  24. 24.
    van der Heijden M, Donders SH, Cleophas TJ, Niemeyer MG, van der Meulen J, Bernink PJ, de Planque BA, van der Wall EE. A randomized, placebo-controlled study of loop diuretics in patients with essential hypertension: the bumetanide and furosemide on lipid profile (BUFUL) clinical study report. J Clin Pharmacol 1998;38:630–5.PubMedGoogle Scholar
  25. 25.
    Falch DK, Schreiner A. The effect of spironolactone on lipid, glucose and uric acid levels in blood during long-term administration to hypertensives. Acta Med Scand. 1983;213:27–30.PubMedGoogle Scholar
  26. 26.
    Ames RP, Hill P. Antihypertensive therapy and the risk of coronary heart disease. J Cardiovasc Pharmacol. 1982;4(Suppl 2):S206–12.PubMedGoogle Scholar
  27. 27.
    Brook RD. Mechanism of differential effects of antihypertensive agents on serum lipids. Curr Hypertens Rep. 2000;2:370–7.PubMedGoogle Scholar
  28. 28.
    Menon DV, Arbique D, Wang Z, Adams-Huet B, Auchus RJ, Vongpatanasin W. Differential effects of chlorthalidone versus spironolactone on muscle sympathetic nerve activity in hypertensive patients. J Clin Endocrinol Metab. 2009;94:1361–6.PubMedCentralPubMedGoogle Scholar
  29. 29.
    Weinberger MH. Mechanisms of diuretic effects on carbohydrate tolerance, insulin sensitivity and lipid levels. Eur Heart J. 1992;13(Suppl G):5–9PubMedGoogle Scholar
  30. 30.
    Chatterjee R, Yeh HC, Shafi T, Selvin E, Anderson C, Pankow JS, Miller E, Brancati F. Serum and dietary potassium and risk of incident type 2 diabetes mellitus: the Atherosclerosis Risk in Communities (ARIC) study. Arch Intern Med. 2010;170:1745–51.PubMedCentralPubMedGoogle Scholar
  31. 31.
    Chatterjee R, Yeh HC, Shafi T, Selvin E, Anderson C, Pankow JS, Miller E, Brancati F. Major cardiovascular events in hypertensive patients randomized to doxazosin vs chlorthalidone: the antihypertensive and lipid-lowering treatment to prevent heart attack trial (ALLHAT). ALLHAT Collaborative Research Group. JAMA. 2000;283:1967–75.Google Scholar
  32. 32.
    Maxwell SR, Moots RJ, Kendall MJ. Corticosteroids: do they damage the cardiovascular system? Postgrad Med J. 1994;70:863–70.PubMedCentralPubMedGoogle Scholar
  33. 33.
    Ettinger WH Jr, Hazzard WR. Prednisone increases very low density lipoprotein and high density lipoprotein in healthy men. Metabolism. 1988;37:1055–8PubMedGoogle Scholar
  34. 34.
    Taskinen MR, Kuusi T, Yki-Jarvinen H, Nikkila EA. Short-term effects of prednisone on serum lipids and high density lipoprotein subfractions in normolipidemic healthy men. J Clin Endocrinol Metab. 1988;67:291–9PubMedGoogle Scholar
  35. 35.
    Choi HK, Seeger JD. Glucocorticoid use and serum lipid levels in US adults: the Third National Health and Nutrition Examination Survey. Arthritis Rheum. 2005;53:528–35.PubMedGoogle Scholar
  36. 36.
    Zimmerman J, Fainaru M, Eisenberg S. The effects of prednisone therapy on plasma lipoproteins and apolipoproteins: a prospective study. Metabolism. 1984;33:521–6.PubMedGoogle Scholar
  37. 37.
    Ettinger WH, Klinefelter HF, Kwiterovitch PO. Effect of short-term, low-dose corticosteroids on plasma lipoprotein lipids. Atherosclerosis. 1987;63:167–172.PubMedGoogle Scholar
  38. 38.
    Ettinger WH, Goldberg AP, Applebaum-Bowden D, Hazzard WR. Dyslipoproteinemia in systemic lupus erythematosus. Effect of corticosteroids. Am J Med. 1987;83:503–8.PubMedGoogle Scholar
  39. 39.
    Ettinger WH Jr, Hazzard WR. Elevated apolipoprotein-B levels in corticosteroid-treated patients with systemic lupus erythematosus. J Clin Endocrinol Metab. 1988;67:425–8.PubMedGoogle Scholar
  40. 40.
    Filipsson H, Monson JP, Koltowska-Haggstrom M, Mattsson A, Johannsson G. The impact of glucocorticoid replacement regimens on metabolic outcome and comorbidity in hypopituitary patients. J Clin Endocrinol Metab. 2006;91:3954–61.PubMedGoogle Scholar
  41. 41.
    Ibels LS, Simons LA, King JO, Williams PF, Neale FC, Stewart JH. Studies on the nature and causes of hyperlipidaemia in uraemia, maintenance dialysis and renal transplantation. Q J Med. 1975;44:601–14.PubMedGoogle Scholar
  42. 42.
    Ponticelli C, Barbi GL, Cantaluppi A, De Vecchi A, Annoni G, Donati C, Cecchettin M. Lipid disorders in renal transplant recipients. Nephron. 1978;20:189–95.PubMedGoogle Scholar
  43. 43.
    Superko HR, Haskell WL, Di Ricco CD. Lipoprotein and hepatic lipase activity and high-density lipoprotein subclasses after cardiac transplantation. Am J Cardiol. 1990;66:1131–34.PubMedGoogle Scholar
  44. 44.
    Taylor DO, Thompson JA, Hastillo A, Barnhart G, Rider S, Lower RR, Hess ML. Hyperlipidemia after clinical heart transplantation. J Heart Transplant. 1989;8:209–213; discussion 219–220PubMedGoogle Scholar
  45. 45.
    Munoz SJ, Deems RO, Moritz MJ, Martin P, Jarrell BE, Maddrey WC. Hyperlipidemia and obesity after orthotopic liver transplantation. Transplant Proc. 1991;23:1480–3.PubMedGoogle Scholar
  46. 46.
    Vathsala A, Weinberg RB, Schoenberg L, Grevel J, Dunn J, Goldstein RA, Van Buren CT, Lewis RM, Kahan BD. Lipid abnormalities in renal transplant recipients treated with cyclosporine. Transplant Proc. 1989;21:3670–3.PubMedGoogle Scholar
  47. 47.
    Rudas L, Pflugfelder PW, McKenzie FN, Menkis AH, Novick RJ, Kostuk WJ. Serial evaluation of lipid profiles and risk factors for development of hyperlipidemia after cardiac transplantation. Am J Cardiol. 1990;66:1135–8.PubMedGoogle Scholar
  48. 48.
    Cabana VG, Lukens JR, Rice KS, Hawkins TJ, Getz GS. HDL content and composition in acute phase response in three species: triglyceride enrichment of HDL a factor in its decrease. J Lipid Res. 1996;37:2662–74.PubMedGoogle Scholar
  49. 49.
    Arnaldi G, Scandali VM, Trementino L, Cardinaletti M, Appolloni G, Boscaro M. Pathophysiology of dyslipidemia in Cushing’s syndrome. Neuroendocrinology. 2010;92(Suppl 1):86–90.PubMedGoogle Scholar
  50. 50.
    Walsh BW, Schiff I, Rosner B, Greenberg L, Ravnikar V, Sacks FM. Effects of postmenopausal estrogen replacement on the concentrations and metabolism of plasma lipoproteins. N Engl J Med. 1991;325: 1196–204.PubMedGoogle Scholar
  51. 51.
    Walsh BW, Schiff I, Rosner B, Greenberg L, Ravnikar V, Sacks FM. Effects of estrogen or estrogen/progestin regimens on heart disease risk factors in postmenopausal women. The Postmenopausal Estrogen/Progestin Interventions (PEPI) trial. The Writing Group for the PEPI trial. JAMA. 1995;273:199–208.Google Scholar
  52. 52.
    Hazzard WR, Spiger MJ, Bagdade JD, Bierman EL. Studies on the mechanism of increased plasma triglyceride levels induced by oral contraceptives. N Engl J Med. 1969;280:471–4.PubMedGoogle Scholar
  53. 53.
    Granfone A, Campos H, McNamara JR, Schaefer MM, Lamon-Fava S, Ordovas JM, Schaefer EJ. Effects of estrogen replacement on plasma lipoproteins and apolipoproteins in postmenopausal, dyslipidemic women. Metabolism. 1992;41:1193–8.PubMedGoogle Scholar
  54. 54.
    Barrett-Connor E, Wingard DL, Criqui MH. Postmenopausal estrogen use and heart disease risk factors in the 1980s. Rancho Bernardo, Calif, revisited. JAMA. 1989;261:2095–100.PubMedGoogle Scholar
  55. 55.
    Stuyt PM, Demacker PN, Stalenhoef AF. Pancreatitis induced by oestrogen in a patient with type I hyperlipoproteinaemia. Br Med J (Clin Res Ed). 1986;293:734.Google Scholar
  56. 56.
    Feoli-Fonseca JC, Levy E, Godard M, Lambert M. Familial lipoprotein lipase deficiency in infancy: clinical, biochemical, and molecular study. J Pediatr. 1998;133:417–23.PubMedGoogle Scholar
  57. 57.
    Haque WA, Vuitch F, Garg A. Post-mortem findings in familial partial lipodystrophy, Dunnigan variety. Diabet Med. 2002;19:1022–5.PubMedGoogle Scholar
  58. 58.
    Campos H, Walsh BW, Judge H, Sacks FM. Effect of estrogen on very low density lipoprotein and low density lipoprotein subclass metabolism in postmenopausal women. J Clin Endocrinol Metab. 1997;82:3955–63.PubMedGoogle Scholar
  59. 59.
    Moorjani S, Dupont A, Labrie F, De Lignieres B, Cusan L, Dupont P, Mailloux J, Lupien PJ. Changes in plasma lipoprotein and apolipoprotein composition in relation to oral versus percutaneous administration of estrogen alone or in cyclic association with utrogestan in menopausal women. J Clin Endocrinol Metab. 1991;73:373–9.PubMedGoogle Scholar
  60. 60.
    Silfverstolpe G, Gustafson A, Samsioe G, Svanborg A. Lipid metabolic studies in oophorectomized women. Effects of three different progestogens. Acta Obstet Gynecol Scand Suppl 1979;88:89–95.PubMedGoogle Scholar
  61. 61.
    Ball MJ, Ashwell E, Gillmer MD. Progestagen-only oral contraceptives: comparison of the metabolic effects of levonorgestrel and norethisterone. Contraception. 1991;44:223–33.PubMedGoogle Scholar
  62. 62.
    Enk L, Landgren BM, Lindberg UB, Silfverstolpe G, Crona N. 1A prospective, one-year study on the effects of two long acting injectable contraceptives (depot-medroxyprogesterone acetate and norethisterone oenanthate) on serum and lipoprotein lipids. Horm Metab Res. 1992;24:85–9.PubMedGoogle Scholar
  63. 63.
    McEwan JA, Griffin M, Fotherby K, Trayner I. Long-term use of depot-norethisterone enanthate: effect on blood lipid fractions. Contraception. 1992;46:49–60.PubMedGoogle Scholar
  64. 64.
    Berenson AB, Rahman M, Wilkinson G. Effect of injectable and oral contraceptives on serum lipids. Obstet Gynecol. 2009;114:786–94.PubMedCentralPubMedGoogle Scholar
  65. 65.
    Tikkanen MJ, Kuusi T, Nikkila EA, Sipinen S. Post-heparin plasma hepatic lipase activity as predictor of high-density lipoprotein response to progestogen therapy: studies with cyproterone acetate. Maturitas. 1987;9:81–6.PubMedGoogle Scholar
  66. 66.
    Burkman RT, Robinson JC, Kruszon-Moran D, Kimball AW, Kwiterovich P, Burford RG. Lipid and lipoprotein changes associated with oral contraceptive use: a randomized clinical trial. Obstet Gynecol. 1988;71:33–8.PubMedGoogle Scholar
  67. 67.
    Godsland IF, Crook D, Simpson R, Proudler T, Felton C, Lees B, Anyaoku V, Devenport M, Wynn V. The effects of different formulations of oral contraceptive agents on lipid and carbohydrate metabolism. N Engl J Med. 1990;323:1375–81.PubMedGoogle Scholar
  68. 68.
    Kafrissen ME, Corson SL. Comparative review of third-generation progestins. Int J Fertil. 1992;37(Suppl 2):104–15.PubMedGoogle Scholar
  69. 69.
    Lobo RA, Skinner JB, Lippman JS, Cirillo SJ. Plasma lipids and desogestrel and ethinyl estradiol: a meta-analysis. Fertil Steril. 1996;65:1100–9.PubMedGoogle Scholar
  70. 70.
    Akerlund M, Almstrom E, Hogstedt S, Nabrink M. Oral contraceptive tablets containing 20 and 30 micrograms of ethinyl estradiol with 150 micrograms desogestrel. Their influence on lipids, lipoproteins, sex hormone binding globulin and testosterone. Acta Obstet Gynecol Scand. 1994;73:136–43.PubMedGoogle Scholar
  71. 71.
    Tuppurainen M, Klimscheffskij R, Venhola M, Dieben TO. The combined contraceptive vaginal ring (NuvaRing) and lipid metabolism: a comparative study. Contraception. 2004;69:389–94.PubMedGoogle Scholar
  72. 72.
    Kayikcioglu F, Gunes M, Ozdegirmenci O, Haberal A. Effects of levonorgestrel-releasing intrauterine system on glucose and lipid metabolism: a 1-year follow-up study. Contraception. 2006;73:528–31.PubMedGoogle Scholar
  73. 73.
    Biswas A, Viegas OA, Roy AC. Effect of Implanon and Norplant subdermal contraceptive implants on serum lipids–a randomized comparative study. Contraception. 2003;68:189–93.PubMedGoogle Scholar
  74. 74.
    Barkfeldt J, Virkkunen A, Dieben T. The effects of two progestogen-only pills containing either desogestrel (75 microg/day) or levonorgestrel (30 microg/day) on lipid metabolism. Contraception. 2001;64:295–9.PubMedGoogle Scholar
  75. 75.
    Verhaeghe J. Hormonal contraception in women with the metabolic syndrome: a narrative review. Eur J Contracept Reprod Health Care. 2010;15:305–13.PubMedGoogle Scholar
  76. 76.
    Benshushan A, Brzezinski A. Tamoxifen effects on menopause–associated risk factors and symptoms. Obstet Gynecol Surv. 1999;54:272–8.PubMedGoogle Scholar
  77. 77.
    Brun LD, Gagne C, Rousseau C, Moorjani S, Lupien PJ. Severe lipemia induced by tamoxifen. Cancer. 1986;57:2123–6.PubMedGoogle Scholar
  78. 78.
    Sakhri J, Ben Salem C, Harbi H, Fathallah N, Ltaief R. Severe acute pancreatitis due to tamoxifen-induced hypertriglyceridemia with positive rechallenge. Jop. 2010;11:382–4.PubMedGoogle Scholar
  79. 79.
    Santeufemia DA, Capobianco G, Dessole S, Tolu F, Fadda GM, Di Meglio G, Farris A. Tamoxifen induced severe hypertriglyceridemia in a male patient with breast carcinoma. Breast J. 2009;15:675–6.PubMedGoogle Scholar
  80. 80.
    Liu CL, Yang TL. Sequential changes in serum triglyceride levels during adjuvant tamoxifen therapy in breast cancer patients and the effect of dose reduction. Breast Cancer Res Treat. 2003;79:11–6.PubMedGoogle Scholar
  81. 81.
    Chang NW, Chen FN, Wu CT, Lin CF, Chen DR. Apolipoprotein E4 allele influences the response of plasma triglyceride levels to tamoxifen in breast cancer patients. Clin Chim Acta. 2009;401:144–147PubMedGoogle Scholar
  82. 82.
    Dayspring T, Qu Y, Keech C. Effects of raloxifene on lipid and lipoprotein levels in postmenopausal osteoporotic women with and without hypertriglyceridemia. Metabolism. 2006;55:972–9.PubMedGoogle Scholar
  83. 83.
    Carr MC, Knopp RH, Brunzell JD, Wheeler BS, Zhu X, Lakshmanan M, Rosen AS, Anderson PW. Effect of raloxifene on serum triglycerides in women with a history of hypertriglyceridemia while on oral estrogen therapy. Diabetes Care. 2005;28:1555–61.PubMedGoogle Scholar
  84. 84.
    Castro MR, Nguyen TT, O’Brien T. Clomiphene-induced severe hypertriglyceridemia and pancreatitis. Mayo Clin Proc. 1999;74:1125–8.PubMedGoogle Scholar
  85. 85.
    Gillett MJ, Burnett JR, Yeap D. Clomiphene-associated combined hyperlipidemia: a case report. J Reprod Med. 2006;51:587–90.PubMedGoogle Scholar
  86. 86.
    Yasar HY, Ertugrul O. Clomiphene citrate-induced severe hypertriglyceridemia. Fertil Steril. 2009;92:396 e397–8.Google Scholar
  87. 87.
    Bundred NJ. The effects of aromatase inhibitors on lipids and thrombosis. Br J Cancer. 2005;93(Suppl 1):S23–7.PubMedCentralPubMedGoogle Scholar
  88. 88.
    Bhasin S, Swerdloff RS, Steiner B, Peterson MA, Meridores T, Galmirini M, Pandian MR, Goldberg R, Berman N. A biodegradable testosterone microcapsule formulation provides uniform eugonadal levels of testosterone for 10–11 weeks in hypogonadal men. J Clin Endocrinol Metab. 1992;74:75–83.PubMedGoogle Scholar
  89. 89.
    Salehian B, Wang C, Alexander G, Davidson T, McDonald V, Berman N, Dudley RE, Ziel F, Swerdloff RS. Pharmacokinetics, bioefficacy, and safety of sublingual testosterone cyclodextrin in hypogonadal men: comparison to testosterone enanthate—a clinical research center study. J Clin Endocrinol Metab. 1995;80:3567–75.PubMedGoogle Scholar
  90. 90.
    Tan KC, Shiu SW, Pang RW, Kung AW. Effects of testosterone replacement on HDL subfractions and apolipoprotein A-I containing lipoproteins. Clin Endocrinol (Oxf). 1998;48:187–94.Google Scholar
  91. 91.
    Alen M, Rahkila P, Marniemi J. Serum lipids in power athletes self-administering testosterone and anabolic steroids. Int J Sports Med. 1985;6:139–44.PubMedGoogle Scholar
  92. 92.
    Friedl KE, Hannan CJ Jr, Jones RE, Plymate SR. High-density lipoprotein cholesterol is not decreased if an aromatizable androgen is administered. Metabolism. 1990;39:69–74.PubMedGoogle Scholar
  93. 93.
    Hurley BF, Seals DR, Hagberg JM, Goldberg AC, Ostrove SM, Holloszy JO, Wiest WG, Goldberg AP. High-density-lipoprotein cholesterol in bodybuilders v powerlifters. Negative effects of androgen use. JAMA. 1984;252:507–13.PubMedGoogle Scholar
  94. 94.
    Bhasin S, Storer TW, Berman N, Callegari C, Clevenger B, Phillips J, Bunnell TJ, Tricker R, Shirazi A, Casaburi R. The effects of supraphysiologic doses of testosterone on muscle size and strength in normal men. N Engl J Med. 1996;335:1–7.PubMedGoogle Scholar
  95. 95.
    Kouri EM, Pope HG Jr, Oliva PS. Changes in lipoprotein-lipid levels in normal men following administration of increasing doses of testosterone cypionate. Clin J Sport Med. 1996;6:152–7.PubMedGoogle Scholar
  96. 96.
    Hartgens F, Rietjens G, Keizer HA, Kuipers H, Wolffenbuttel BH. Effects of androgenic-anabolic steroids on apolipoproteins and lipoprotein (a). Br J Sports Med. 2004;38:253–9.PubMedCentralPubMedGoogle Scholar
  97. 97.
    Nestler JE, Barlascini CO, Clore JN, Blackard WG. Dehydroepiandrosterone reduces serum low density lipoprotein levels and body fat but does not alter insulin sensitivity in normal men. J Clin Endocrinol Metab. 1988;66:57–61.PubMedGoogle Scholar
  98. 98.
    Mortola JF, Yen SS. The effects of oral dehydroepiandrosterone on endocrine-metabolic parameters in postmenopausal women. J Clin Endocrinol Metab. 1990;71:696–704.PubMedGoogle Scholar
  99. 99.
    Haffner SM, Kushwaha RS, Foster DM, Applebaum-Bowden D, Hazzard WR. Studies on the metabolic mechanism of reduced high density lipoproteins during anabolic steroid therapy. Metabolism. 1983;32:413–20.PubMedGoogle Scholar
  100. 100.
    Garevik N, Skogastierna C, Rane A, Ekstrom L. Single dose testosterone increases total cholesterol levels and induces the expression of HMG CoA reductase. Subst Abuse Treat Prev Policy. 2012;7:12.PubMedCentralPubMedGoogle Scholar
  101. 101.
    Eri LM, Urdal P, Bechensteen AG. Effects of the luteinizing hormone-releasing hormone agonist leuprolide on lipoproteins, fibrinogen and plasminogen activator inhibitor in patients with benign prostatic hyperplasia. J Urol. 1995;154:100–4.PubMedGoogle Scholar
  102. 102.
    Saylor PJ, Smith MR. Metabolic complications of androgen deprivation therapy for prostate cancer. J Urol. 2009;181:1998–2006; discussion 2007–1998.Google Scholar
  103. 103.
    Taylor DO, Edwards LB, Aurora P, Christie JD, Dobbels F, Kirk R, Rahmel AO, Kucheryavaya AY, Hertz MI. Registry of the International Society for Heart and Lung Transplantation: twenty-fifth official adult heart transplant report–2008. J Heart Lung Transplant. 2008;27:943–956.PubMedGoogle Scholar
  104. 104.
    Ramezani M, Einollahi B, Ahmadzad-Asl M, Nafar M, Pourfarziani V, Samadpour A, Moradi M, Alghasi M, Chalian H, Davoudi F. Hyperlipidemia after renal transplantation and its relation to graft and patient survival. Transplant Proc. 2007;39:1044–7.PubMedGoogle Scholar
  105. 105.
    Tse KC, Lam MF, Yip PS, Li FK, Lai KN, Chan TM. A long-term study on hyperlipidemia in stable renal transplant recipients. Clin Transplant. 2004;18:274–80.PubMedGoogle Scholar
  106. 106.
    Gisbert C, Prieto M, Berenguer M, Breto M, Carrasco D, de Juan M, Mir J, Berenguer J. Hyperlipidemia in liver transplant recipients: prevalence and risk factors. Liver Transpl Surg. 1997;3:416–22.PubMedGoogle Scholar
  107. 107.
    Charco R, Cantarell C, Vargas V, Capdevila L, Lazaro JL, Hidalgo E, Murio E, Margarit C. Serum cholesterol changes in long-term survivors of liver transplantation: a comparison between cyclosporine and tacrolimus therapy. Liver Transpl Surg. 1999;5:204–8.PubMedGoogle Scholar
  108. 108.
    Ho S, Clipstone N, Timmermann L, Northrop J, Graef I, Fiorentino D, Nourse J, Crabtree GR. The mechanism of action of cyclosporin A and FK506. Clin Immunol Immunopathol. 1996;80:S40–5.PubMedGoogle Scholar
  109. 109.
    Aakhus S, Dahl K, Wideroe TE. Hyperlipidaemia in renal transplant patients. J Intern Med. 1996;239:407–15.PubMedGoogle Scholar
  110. 110.
    Hilbrands LB, Demacker PN, Hoitsma AJ, Stalenhoef AF, Koene RA. The effects of cyclosporine and prednisone on serum lipid and (apo)lipoprotein levels in renal transplant recipients. J Am Soc Nephrol. 1995;5:2073–81.PubMedGoogle Scholar
  111. 111.
    Sehgal V, Radhakrishnan J, Appel GB, Valeri A, Cohen DJ. Progressive renal insufficiency following cardiac transplantation: cyclosporine, lipids, and hypertension. Am J Kidney Dis. 1995;26:193–201.PubMedGoogle Scholar
  112. 112.
    Jiang Y, Xie XB, Peng LK, Peng FH, Lan GB, Wang Y, Yu SJ, Fang CH. Dyslipidemia in human kidney transplant recipients receiving cyclosporine and tacrolimus is associated with different expression of CD36 on peripheral blood monocytes. Transplant Proc. 2011;43:1612–5.PubMedGoogle Scholar
  113. 113.
    Guckelberger O, Bechstein WO, Neuhaus R, Luesebrink R, Lemmens HP, Kratschmer B, Jonas S, Neuhaus PL. Cardiovascular risk factors in long-term follow-up after orthotopic liver transplantation. Clin Transplant. 1997;11:60–5.PubMedGoogle Scholar
  114. 114.
    Kuster GM, Drexel H, Bleisch JA, Rentsch K, Pei P, Binswanger U, Amann FW. Relation of cyclosporine blood levels to adverse effects on lipoproteins. Transplantation. 1994;57:1479–83.PubMedGoogle Scholar
  115. 115.
    Fernandez-Miranda C, Guijarro C, de la Calle A, Loinaz C, Gonzalez-Pinto I, Gomez-Izquierdo T, Larumbe S, Moreno E, del Palacio A. Lipid abnormalities in stable liver transplant recipients–effects of cyclosporin, tacrolimus, and steroids. Transpl Int. 1998;11:137–42.PubMedGoogle Scholar
  116. 116.
    Ballantyne CM, Podet EJ, Patsch WP, Harati Y, Appel V, Gotto AM, Jr., Young JB. Effects of cyclosporine therapy on plasma lipoprotein levels. JAMA. 1989;262:53–6.PubMedGoogle Scholar
  117. 117.
    Ellis CN, Gorsulowsky DC, Hamilton TA, Billings JK, Brown MD, Headington JT, Cooper KD, Baadsgaard O, Duell EA, Annesley TM, et al. Cyclosporine improves psoriasis in a double-blind study. JAMA. 1986;256:3110–6.PubMedGoogle Scholar
  118. 118.
    Ruiu G, Pinach S, Gambino R, Uberti B, Alemanno N, Pagano G, Cassader M. Influence of cyclosporine on low-density lipoprotein uptake in human lymphocytes. Metabolism. 2005;54:1620–5.PubMedGoogle Scholar
  119. 119.
    Winegar DA, Salisbury JA, Sundseth SS, Hawke RL. Effects of cyclosporin on cholesterol 27-hydroxylation and LDL receptor activity in HepG2 cells. J Lipid Res. 1996;37:179–91.PubMedGoogle Scholar
  120. 120.
    Bjorkhem I, Andersson O, Diczfalusy U, Sevastik B, Xiu RJ, Duan C, Lund E. Atherosclerosis and sterol 27-hydroxylase: evidence for a role of this enzyme in elimination of cholesterol from human macrophages. Proc Natl Acad Sci U S A 1994;91:8592–6.PubMedCentralPubMedGoogle Scholar
  121. 121.
    de Groen PC. Cyclosporine, low-density lipoprotein, and cholesterol. Mayo Clin Proc. 1988;63:1012–21.PubMedGoogle Scholar
  122. 122.
    Wu J, Zhu YH, Patel SB. Cyclosporin-induced dyslipoproteinemia is associated with selective activation of SREBP-2. Am J Physiol. 1999;277:E1087–94.PubMedGoogle Scholar
  123. 123.
    Gueguen Y, Ferrari L, Souidi M, Batt AM, Lutton C, Siest G, Visvikis S. Compared effect of immunosuppressive drugs cyclosporine A and rapamycin on cholesterol homeostasis key enzymes CYP27A1 and HMG-CoA reductase. Basic Clin Pharmacol Toxicol. 2007;100:392–7.PubMedGoogle Scholar
  124. 124.
    al Rayyes O Wallmark A Floren CH. Reversal of cyclosporine-inhibited low-density lipoprotein receptor activity in HepG2 cells by 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors. Hepatology. 1997;25:991–4.PubMedGoogle Scholar
  125. 125.
    Kobashigawa JA, Katznelson S, Laks H, Johnson JA, Yeatman L, Wang XM, Chia D, Terasaki PI, Sabad A, Cogert GA, et al. Effect of pravastatin on outcomes after cardiac transplantation. N Engl J Med. 1995;333:621–7.PubMedGoogle Scholar
  126. 126.
    Kobashigawa JA, Moriguchi JD, Laks H, Wener L, Hage A, Hamilton MA, Cogert G, Marquez A, Vassilakis ME, Patel J, Yeatman L. Ten-year follow-up of a randomized trial of pravastatin in heart transplant patients. J Heart Lung Transplant. 2005;24:1736–40.PubMedGoogle Scholar
  127. 127.
    Wenke K, Meiser B, Thiery J, Nagel D, von Scheidt W, Steinbeck G, Seidel D, Reichart B. Simvastatin reduces graft vessel disease and mortality after heart transplantation: a four-year randomized trial. Circulation. 1997;96:1398–402.PubMedGoogle Scholar
  128. 128.
    Olbricht C, Wanner C, Eisenhauer T, Kliem V, Doll R, Boddaert M, O’Grady P, Krekler M, Mangold B, Christians U. Accumulation of lovastatin, but not pravastatin, in the blood of cyclosporine-treated kidney graft patients after multiple doses. Clin Pharmacol Ther. 1997;62:311–21.PubMedGoogle Scholar
  129. 129.
    Holdaas H, Jardine AG, Wheeler DC, Brekke IB, Conlon PJ, Fellstrom B, Hammad A, Holme I, Isoniemi H, Moore R, Rowe PA, Sweny P, Talbot DA, Wadstrom J, Ostraat O. Effect of fluvastatin on acute renal allograft rejection: a randomized multicenter trial. Kidney Int. 2001;60:1990–7.PubMedGoogle Scholar
  130. 130.
    Keogh A, Macdonald P, Kaan A, Aboyoun C, Spratt P, Mundy J. Efficacy and safety of pravastatin vs simvastatin after cardiac transplantation. J Heart Lung Transplant. 2000;19:529–37.PubMedGoogle Scholar
  131. 131.
    Akhlaghi F, Jackson CH, Parameshwar J, Sharples LD, Trull AK. Risk factors for the development and progression of dyslipidemia after heart transplantation. Transplantation. 2002;73:1258–64.PubMedGoogle Scholar
  132. 132.
    Taylor DO, Barr ML, Radovancevic B, Renlund DG, Mentzer RM Jr, Smart FW, Tolman DE, Frazier OH, Young JB, VanVeldhuisen P. A randomized, multicenter comparison of tacrolimus and cyclosporine immunosuppressive regimens in cardiac transplantation: decreased hyperlipidemia and hypertension with tacrolimus. J Heart Lung Transplant. 1999;18:336–45.PubMedGoogle Scholar
  133. 133.
    Cheung CY, Chan HW, Liu YL, Chau KF, Li CS. Long-term graft function with tacrolimus and cyclosporine in renal transplantation: paired kidney analysis. Nephrology (Carlton). 2009;14:758–63.Google Scholar
  134. 134.
    Jarzembowski T, Panaro F, Raofi V, Dong G, Testa G, Sankary H, Benedetti E. Long-term results of a prospective randomized trial comparing tacrolimus versus cyclosporine in African-American recipients of primary cadaver renal transplant. Transpl Int. 2005;18:419–22.PubMedGoogle Scholar
  135. 135.
    Bilchick KC, Henrikson CA, Skojec D, Kasper EK, Blumenthal RS. Treatment of hyperlipidemia in cardiac transplant recipients. Am Heart J. 2004;148:200–10.PubMedGoogle Scholar
  136. 136.
    Neuhaus P, Klupp J, Langrehr JM. mTOR inhibitors: an overview. Liver Transpl. 2001;7:473–84.PubMedGoogle Scholar
  137. 137.
    Neff GW, Montalbano M, Slapak-Green G, Meyer D, Berney T, Safdar K, Schiff ER, Tzakis AG. Sirolimus therapy in orthotopic liver transplant recipients with calcineurin inhibitor related chronic renal insufficiency. Transplant Proc. 2003;35:3029–3031.PubMedGoogle Scholar
  138. 138.
    Trotter JF, Wachs ME, Trouillot TE, Bak T, Kugelmas M, Kam I, Everson G. Dyslipidemia during sirolimus therapy in liver transplant recipients occurs with concomitant cyclosporine but not tacrolimus. Liver Transpl 2001;7:401–8.PubMedGoogle Scholar
  139. 139.
    MacDonald AS. A worldwide, phase III, randomized, controlled, safety and efficacy study of a sirolimus/cyclosporine regimen for prevention of acute rejection in recipients of primary mismatched renal allografts. Transplantation. 2001;71:271–280.PubMedGoogle Scholar
  140. 140.
    Brattstrom C, Wilczek H, Tyden G, Bottiger Y, Sawe J, Groth CG. Hyperlipidemia in renal transplant recipients treated with sirolimus (rapamycin). Transplantation. 1998;65:1272–4.PubMedGoogle Scholar
  141. 141.
    Firpi RJ, Tran TT, Flores P, Nissen N, Colquhoun S, Shackleton C, Martin P, Vierling JM, Poordad FF. Sirolimus-induced hyperlipidaemia in liver transplant recipients is not dose-dependent. Aliment Pharmacol Ther. 2004;19:1033–9.PubMedGoogle Scholar
  142. 142.
    Morrisett JD, Abdel-Fattah G, Hoogeveen R, Mitchell E, Ballantyne CM, Pownall HJ, Opekun AR, Jaffe JS, Oppermann S, Kahan BD. Effects of sirolimus on plasma lipids, lipoprotein levels, and fatty acid metabolism in renal transplant patients. J Lipid Res. 2002;43:1170–80.PubMedGoogle Scholar
  143. 143.
    Tur MD, Garrigue V, Vela C, Dupuy AM, Descomps B, Cristol JP, Mourad G. Apolipoprotein CIII is upregulated by anticalcineurins and rapamycin: implications in transplantation-induced dyslipidemia. Transplant Proc. 2000;32:2783–4.PubMedGoogle Scholar
  144. 144.
    Hoogeveen RC, Ballantyne CM, Pownall HJ, Opekun AR, Hachey DL, Jaffe JS, Oppermann S, Kahan BD, Morrisett JD. Effect of sirolimus on the metabolism of apoB100- containing lipoproteins in renal transplant patients. Transplantation. 2001;72:1244–50.PubMedGoogle Scholar
  145. 145.
    Ai D, Chen C, Han S, Ganda A, Murphy AJ, Haeusler R, Thorp E, Accili D, Horton JD, Tall AR. Regulation of hepatic LDL receptors by mTORC1 and PCSK9 in mice. J Clin Invest. 2012;122:1262–70.PubMedCentralPubMedGoogle Scholar
  146. 146.
    Bershad S, Rubinstein A, Paterniti JR, Le NA, Poliak SC, Heller B, Ginsberg HN, Fleischmajer R, Brown WV. Changes in plasma lipids and lipoproteins during isotretinoin therapy for acne. N Engl J Med. 1985;313:981–5.PubMedGoogle Scholar
  147. 147.
    Zech LA, Gross EG, Peck GL, Brewer HB. Changes in plasma cholesterol and triglyceride levels after treatment with oral isotretinoin. A prospective study. Arch Dermatol. 1983;119:987–93.PubMedGoogle Scholar
  148. 148.
    Lyons F, Laker MF, Marsden JR, Manuel R, Shuster S. Effect of oral 13-cis-retinoic acid on serum lipids. Br J Dermatol. 1982;107:591–5.PubMedGoogle Scholar
  149. 149.
    Zane LT, Leyden WA, Marqueling AL, Manos MM. A population-based analysis of laboratory abnormalities during isotretinoin therapy for acne vulgaris. Arch Dermatol. 2006;142:1016–22.PubMedGoogle Scholar
  150. 150.
    McCarter TL, Chen YK. Marked hyperlipidemia and pancreatitis associated with isotretinoin therapy. Am J Gastroenterol. 1992;87:1855–8.PubMedGoogle Scholar
  151. 151.
    Barth JH, Macdonald-Hull SP, Mark J, Jones RG, Cunliffe WJ. Isotretinoin therapy for acne vulgaris: a re-evaluation of the need for measurements of plasma lipids and liver function tests. Br J Dermatol. 1993;129:704–7.PubMedGoogle Scholar
  152. 152.
    Vahlquist C, Selinus I, Vessby B. Serum lipid changes during acitretin (etretin) treatment of psoriasis and palmo-plantar pustulosis. Acta Derm Venereol. 1988;68:300–5PubMedGoogle Scholar
  153. 153.
    Gupta AK, Goldfarb MT, Ellis CN, Voorhees JJ. Side-effect profile of acitretin therapy in psoriasis. J Am Acad Dermatol. 1989;20:1088–93.PubMedGoogle Scholar
  154. 154.
    Mehta N, Wayne AS, Kim YH, Hale GA, Alvarado CS, Myskowski P, Jaffe ES, Busam KJ, Pulitzer M, Zwerner J, Horwitz S. Bexarotene is active against subcutaneous panniculitis-like T-cell lymphoma in adult and pediatric populations. Clin Lymphoma Myeloma Leuk. 2012;12:20–5.PubMedCentralPubMedGoogle Scholar
  155. 155.
    Abbott RA, Whittaker SJ, Morris SL, Russell-Jones R, Hung T, Bashir SJ, Scarisbrick JJ. Bexarotene therapy for mycosis fungoides and Sezary syndrome. Br J Dermatol. 2009;160:1299–307.PubMedGoogle Scholar
  156. 156.
    Luo W, Schork NJ, Marschke KB, Ng SC, Hermann TW, Zhang J, Sanders JM, Tooker P, Malo N, Zapala MA, Dziewanowska ZE, Negro-Vilar A, Meglasson MD. Identification of polymorphisms associated with hypertriglyceridemia and prolonged survival induced by bexarotene in treating non-small cell lung cancer. Anticancer Res. 2011;31:2303–11.PubMedGoogle Scholar
  157. 157.
    Klor HU, Weizel A, Augustin M, Diepgen TL, Elsner P, Homey B, Kapp A, Ruzicka T, Luger T. The impact of oral vitamin A derivatives on lipid metabolism—What recommendations can be derived for dealing with this issue in the daily dermatological practice? J Dtsch Dermatol Ges. 2011;9:600–6.PubMedGoogle Scholar
  158. 158.
    Melnik BC. The role of transcription factor FoxO1 in the pathogenesis of acne vulgaris and the mode of isotretinoin action. G Ital Dermatol Venereol. 2010;145:559–71.PubMedGoogle Scholar
  159. 159.
    Frati C, Bevilacqua L, Apostolico V. Association of etretinate and fish oil in psoriasis therapy. Inhibition of hypertriglyceridemia resulting from retinoid therapy after fish oil supplementation. Acta Derm Venereol Suppl (Stockh). 1994;186:151–3.Google Scholar
  160. 160.
    Vahlquist C, Olsson AG, Lindholm A, Vahlquist A. Effects of gemfibrozil (Lopid) on hyperlipidemia in acitretin-treated patients. Results of a double-blind cross-over study. Acta Derm Venereol. 1995;75:377–80.PubMedGoogle Scholar
  161. 161.
    Musolino A, Panebianco M, Zendri E, Santini M, Di Nuzzo S, Ardizzoni A. Hypertriglyceridaemia with bexarotene in cutaneous T cell lymphoma: the role of omega-3 fatty acids. Br J Haematol. 2009;145:84–6.PubMedGoogle Scholar
  162. 162.
    Sherman SI, Gopal J, Haugen BR, Chiu AC, Whaley K, Nowlakha P, Duvic M. Central hypothyroidism associated with retinoid X receptor-selective ligands. N Engl J Med. 1999;340:1075–9.PubMedGoogle Scholar
  163. 163.
    Golden WM, Weber KB, Hernandez TL, Sherman SI, Woodmansee WW, Haugen BR. Single-dose rexinoid rapidly and specifically suppresses serum thyrotropin in normal subjects. J Clin Endocrinol Metab. 2007;92:124–30.PubMedGoogle Scholar
  164. 164.
    Haugen BR. Drugs that suppress TSH or cause central hypothyroidism. Best Pract Res Clin Endocrinol Metab. 2009;23:793–800.PubMedCentralPubMedGoogle Scholar
  165. 165.
    Naeem M, Bacon BR, Mistry B, Britton RS, Di Bisceglie AM. Changes in serum lipoprotein profile during interferon therapy in chronic hepatitis C. Am J Gastroenterol. 2001;96:2468–72.PubMedGoogle Scholar
  166. 166.
    Rosenzweig IB, Wiebe DA, Borden EC, Storer B, Shrago ES. Plasma lipoprotein changes in humans induced by beta-interferon. Atherosclerosis. 1987;67:261–7.PubMedGoogle Scholar
  167. 167.
    Penarrubia MJ, Steegmann JL, Lavilla E, Casado F, Requena MJ, Pico M, Arranz R, Fernandez-Ranada JM. Hypertriglyceridemia may be severe in CML patients treated with interferon-alpha. Am J Hematol. 1995;49:240–1.PubMedGoogle Scholar
  168. 168.
    Sgarabotto D, Vianello F, Stefani PM, Scano F, Sartori R, Caenazzo A, Girolami A. Hypertriglyceridemia during long-term interferon-alpha therapy in a series of hematologic patients. J Interferon Cytokine Res. 1997;17:241–4.PubMedGoogle Scholar
  169. 169.
    Hamamoto S, Uchida Y, Wada T, Moritani M, Sato S, Hamamoto N, Ishihara S, Watanabe M, Kinoshita Y. Changes in serum lipid concentrations in patients with chronic hepatitis C virus positive hepatitis responsive or non-responsive to interferon therapy. J Gastroenterol Hepatol. 2005;20:204–8.PubMedGoogle Scholar
  170. 170.
    Eland IA, Rasch MC, Sturkenboom MJ, Bekkering FC, Brouwer JT, Delwaide J, Belaiche J, Houbiers G, Stricker BH. Acute pancreatitis attributed to the use of interferon alfa-2b. Gastroenterology. 2000;119:230–3.PubMedGoogle Scholar
  171. 171.
    Shinohara E, Yamashita S, Kihara S, Hirano K, Ishigami M, Arai T, Nozaki S, Kameda-Takemura K, Kawata S, Matsuzawa Y. Interferon alpha induces disorder of lipid metabolism by lowering postheparin lipases and cholesteryl ester transfer protein activities in patients with chronic hepatitis C. Hepatology. 1997;25:1502–6.PubMedGoogle Scholar
  172. 172.
    Yamagishi S, Abe T, Sawada T. Human recombinant interferon alpha-2a (r IFN alpha-2a) therapy suppresses hepatic triglyceride lipase, leading to severe hypertriglyceridemia in a diabetic patient. Am J Gastroenterol. 1994;89:2280.PubMedGoogle Scholar
  173. 173.
    Grunfeld C, Dinarello CA, Feingold KR. Tumor necrosis factor-alpha, interleukin-1, and interferon alpha stimulate triglyceride synthesis in HepG2 cells. Metabolism. 1991;40:894–8.PubMedGoogle Scholar
  174. 174.
    Wong SF, Jakowatz JG, Taheri R. Management of hypertriglyceridemia in patients receiving interferon for malignant melanoma. Ann Pharmacother. 2004;38:1655–9.PubMedGoogle Scholar
  175. 175.
    Parsons SK, Skapek SX, Neufeld EJ, Kuhlman C, Young ML, Donnelly M, Brunzell JD, Otvos JD, Sallan SE, Rifai N. Asparaginase-associated lipid abnormalities in children with acute lymphoblastic leukemia. Blood. 1997;89:1886–95.PubMedGoogle Scholar
  176. 176.
    Steinherz PG. Transient, severe hyperlipidemia in patients with acute lymphoblastic leukemia treated with prednisone and asparaginase. Cancer. 1994;74:3234–9.PubMedGoogle Scholar
  177. 177.
    Cohen H, Bielorai B, Harats D, Toren A, Pinhas-Hamiel O. Conservative treatment of L-asparaginase-associated lipid abnormalities in children with acute lymphoblastic leukemia. Pediatr Blood Cancer. 2010;54:703–6.PubMedGoogle Scholar
  178. 178.
    Kfoury-Baz EM, Nassar RA, Tanios RF, Otrock ZK, Youssef AM, Albany C, Bazarbachi A, Salem ZM. Plasmapheresis in asparaginase-induced hypertriglyceridemia. Transfusion. 2008;48:1227–30.PubMedGoogle Scholar
  179. 179.
    Jain S, Naithani R, Kapoor G, Nath T. L-asparaginase induced severe hypertriglyceridemia in acute lymphoblastic leukemia with 11q23 abnormality. Leuk Res. 2009;33:e194.PubMedGoogle Scholar
  180. 180.
    Dietel V, Buhrdel P, Hirsch W, Korholz D, Kiess W. Cerebral sinus occlusion in a boy presenting with asparaginase-induced hypertriglyceridemia. Klin Padiatr. 2007;219:95–6.PubMedGoogle Scholar
  181. 181.
    Ridola V, Buonuomo PS, Maurizi P, Putzulu R, Annunziata ML, Pietrini D, Riccardi R. Severe acute hypertriglyceridemia during acute lymphoblastic leukemia induction successfully treated with plasmapheresis. Pediatr Blood Cancer. 2008;50:378–80.PubMedGoogle Scholar
  182. 182.
    Meyer B, Hagen W, Scheithauer W, Ohler L, Kornek GV. L-Asparaginase-associated hyperlipidemia with hyperviscosity syndrome in a patient with T-cell lymphoblastic lymphoma. Ann Oncol. 2003;14:658–9.PubMedGoogle Scholar
  183. 183.
    Berrueco R, Rives S, Lopez-Garcia VS, Catala A, Toll T, Estella J. Very high hypertriglyceridemia induced: is plasmapheresis needed? Pediatr Blood Cancer. 2011;57:532.PubMedGoogle Scholar
  184. 184.
    Tan M, Wai D, Chng CL, Hwang W. Acarbose is an effective treatment for severe hypertriglyceridemia secondary to l-asparaginase and dexamethasone. Leuk Lymphoma. 2012;53:1245–6.PubMedGoogle Scholar
  185. 185.
    Bostrom B. Successful management of extreme hypertriglyceridemia from pegaspargase with omega-3. Pediatr Blood Cancer. 2012;59:350.PubMedGoogle Scholar
  186. 186.
    Tong WH, Pieters R, van der Sluis IM. Successful management of extreme hypertriglyceridemia in a child with acute lymphoblastic leukemia by temporarily omitting dexamethasone while continuing asparaginase. Pediatr Blood Cancer. 2012;58:317–8.PubMedGoogle Scholar
  187. 187.
    Lashkari HP, Lancaster D, Atra A, Champion MP, Taj MM. Symptomatic severe hypertriglyceridaemia with asparaginase therapy in acute lymphoblastic leukaemia (ALL) and lymphoblastic lymphoma: is rechallenging safe? Int J Hematol. 2011;94:571–5.PubMedGoogle Scholar
  188. 188.
    Hoogerbrugge N, Jansen H, Hoogerbrugge PM. Transient hyperlipidemia during treatment of ALL with L-asparaginase is related to decreased lipoprotein lipase activity. Leukemia. 1997;11:1377–9.PubMedGoogle Scholar
  189. 189.
    Tozuka M, Yamauchi K, Hidaka H, Nakabayashi T, Okumura N, Katsuyama T. Characterization of hypertriglyceridemia induced by L-asparaginase therapy for acute lymphoblastic leukemia and malignant lymphoma. Ann Clin Lab Sci. 1997;27:351–7.PubMedGoogle Scholar
  190. 190.
    Kurt M, Babaoglu MO, Yasar U, Shorbagi A, Guler N. Capecitabine-induced severe hypertriglyceridemia: report of two cases. Ann Pharmacother. 2006;40:328–31.PubMedGoogle Scholar
  191. 191.
    Koutras AK, Habeos IG, Vagenakis AG, Kalofonos HP. Capecitabine-induced hypertriglyceridemia: a report of two cases. Anticancer Res. 2006;26:2249–51.PubMedGoogle Scholar
  192. 192.
    Bar-Sela G, Haim N. Uncontrolled hypertriglyceridemia induced by capecitabine: case report and review of the literature. Cancer Chemother Pharmacol. 2009;63:779–82.PubMedGoogle Scholar
  193. 193.
    Garg R, Angus E, Fincher S. Capecitabine-induced severe hypertriglyceridaemia and diabetes: a case report and review of the literature. Diabet Med. 2009;26:1308–9.PubMedGoogle Scholar
  194. 194.
    Schneiders FL, van den Berg HP, Peters GJ, Verheul HM, van der Vliet HJ. Severe toxicity of capecitabine following uncomplicated treatment with 5-fluorouracil/leucovorin. Med Oncol. 2011;28:1136–9.PubMedGoogle Scholar
  195. 195.
    Javot L, Spaeth D, Scala-Bertola J, Gambier N, Petitpain N, Gillet P. Severe hypertriglyceridaemia during treatment with capecitabine. Br J Cancer. 2011;104:1238–9.PubMedCentralPubMedGoogle Scholar
  196. 196.
    Polinder-Bos HA, Kok EE, van de Wiel A, Spiering W, Wielders JP, Bloemendal HJ. Severe hypertriglyceridaemia associated with the use of capecitabine. Neth J Med. 2012;70:104.PubMedGoogle Scholar
  197. 197.
    Michie CO, Sakala M, Rivans I, Strachan MW, Clive S. The frequency and severity of capecitabine-induced hypertriglyceridaemia in routine clinical practice: a prospective study. Br J Cancer. 2010;103:617–21.PubMedCentralPubMedGoogle Scholar
  198. 198.
    Jones KL, Valero V. Capecitabine-induced pancreatitis. Pharmacotherapy. 2003;23:1076–8.PubMedGoogle Scholar
  199. 199.
    Yucel H, Warmerdam LV. Capecitabine-induced pancreatitis. J Oncol Pharm Pract. 2010;16:133–4.PubMedGoogle Scholar
  200. 200.
    Reist C, Mintz J, Albers LJ, Jamal MM, Szabo S, Ozdemir V. Second-generation antipsychotic exposure and metabolic-related disorders in patients with schizophrenia: an observational pharmacoepidemiology study from 1988 to 2002. J Clin Psychopharmacol. 2007;27:46–51.PubMedGoogle Scholar
  201. 201.
    Wirshing DA, Boyd JA, Meng LR, Ballon JS, Marder SR, Wirshing WC. The effects of novel antipsychotics on glucose and lipid levels. J Clin Psychiatry. 2002;63:856–65.PubMedGoogle Scholar
  202. 202.
    Lindenmayer JP, Czobor P, Volavka J, Citrome L, Sheitman B, McEvoy JP, Cooper TB, Chakos M, Lieberman JA. Changes in glucose and cholesterol levels in patients with schizophrenia treated with typical or atypical antipsychotics. Am J Psychiatry. 2003;160:290–6.PubMedGoogle Scholar
  203. 203.
    Lamberti JS, Olson D, Crilly JF, Olivares T, Williams GC, Tu X, Tang W, Wiener K, Dvorin S, Dietz MB. Prevalence of the metabolic syndrome among patients receiving clozapine. Am J Psychiatry. 2006;163:1273–6.PubMedGoogle Scholar
  204. 204.
    Ananth J, Venkatesh R, Burgoyne K, Gadasalli R, Binford R, Gunatilake S. Atypical antipsychotic induced weight gain: pathophysiology and management. Ann Clin Psychiatry. 2004;16:75–85.PubMedGoogle Scholar
  205. 205.
    Kim SF, Huang AS, Snowman AM, Teuscher C, Snyder SH. From the cover: antipsychotic drug-induced weight gain mediated by histamine H1 receptor-linked activation of hypothalamic AMP-kinase. Proc Natl Acad Sci U S A. 2007;104:3456–9.PubMedCentralPubMedGoogle Scholar
  206. 206.
    Stahl SM, Mignon L, Meyer JM. Which comes first: atypical antipsychotic treatment or cardiometabolic risk? Acta Psychiatr Scand. 2009;119:171–9.PubMedGoogle Scholar
  207. 207.
    Vik-Mo AO, Birkenaes AB, Ferno J, Jonsdottir H, Andreassen OA, Steen VM. Increased expression of lipid biosynthesis genes in peripheral blood cells of olanzapine-treated patients. Int J Neuropsychopharmacol. 2008;11:679–84.PubMedGoogle Scholar
  208. 208.
    Vestri HS, Maianu L, Moellering DR, Garvey WT. Atypical antipsychotic drugs directly impair insulin action in adipocytes: effects on glucose transport, lipogenesis, and antilipolysis. Neuropsychopharmacology. 2007;32:765–72.PubMedGoogle Scholar
  209. 209.
    Bergemann N, Ehrig C, Diebold K, Mundt C, von Einsiedel R. Asymptomatic pancreatitis associated with clozapine. Pharmacopsychiatry. 1999;32:78–80.PubMedGoogle Scholar
  210. 210.
    Meyer JM. Novel antipsychotics and severe hyperlipidemia. J Clin Psychopharmacol. 2001;21:369–74.PubMedGoogle Scholar
  211. 211.
    Kerr TA, Jonnalagadda S, Prakash C, Azar R. Pancreatitis following Olanzapine Therapy: A Report of Three Cases. Case Rep Gastroenterol. 2007;1:15–20.PubMedCentralPubMedGoogle Scholar
  212. 212.
    Koller EA, Cross JT, Doraiswamy PM, Malozowski SN. Pancreatitis associated with atypical antipsychotics: from the Food and Drug Administration’s MedWatch surveillance system and published reports. Pharmacotherapy. 2003;23:1123–30.PubMedGoogle Scholar
  213. 213.
    Chaggar PS, Shaw SM, Williams SG. Effect of antipsychotic medications on glucose and lipid levels. J Clin Pharmacol. 2011;51:631–8.PubMedGoogle Scholar
  214. 214.
    Hong CJ, Chen TT, Bai YM, Liou YJ, Tsai SJ. Impact of apolipoprotein A5 (APOA5) polymorphisms on serum triglyceride levels in schizophrenic patients under long-term atypical antipsychotic treatment. World J Biol Psychiatry. 2012;13:22–9.PubMedGoogle Scholar
  215. 215.
    Gregoor JG, van der Weide J, Loovers HM, van Megen HJ, Egberts TC, Heerdink ER. Association between LEP and LEPR gene polymorphisms and dyslipidemia in patients using atypical antipsychotic medication. Psychiatr Genet. 2010;20:311–6.PubMedGoogle Scholar
  216. 216.
    Muuronen A, Kaste M, Nikkila EA, Tolppanen EM. Mortality from ischaemic heart disease among patients using anticonvulsive drugs: a case-control study. Br Med J (Clin Res Ed). 1985;291:1481–3.Google Scholar
  217. 217.
    Annegers JF, Hauser WA, Shirts SB. Heart disease mortality and morbidity in patients with epilepsy. Epilepsia. 1984;25:699–704.PubMedGoogle Scholar
  218. 218.
    Demircioglu S, Soylu A, Dirik E. Carbamazepine and valproic acid: effects on the serum lipids and liver functions in children. Pediatr Neurol. 2000;23:142–6.PubMedGoogle Scholar
  219. 219.
    Eiris J, Novo-Rodriguez MI, Del Rio M, Meseguer P, Del Rio MC, Castro-Gago M. The effects on lipid and apolipoprotein serum levels of long-term carbamazepine, valproic acid and phenobarbital therapy in children with epilepsy. Epilepsy Res. 2000;41:1–7.PubMedGoogle Scholar
  220. 220.
    Eiris JM, Lojo S, Del Rio MC, Novo I, Bravo M, Pavon P, Castro-Gago M. Effects of long-term treatment with antiepileptic drugs on serum lipid levels in children with epilepsy. Neurology. 1995;45:1155–7.PubMedGoogle Scholar
  221. 221.
    Franzoni E, Govoni M, D’Addato S, Gualandi S, Sangiorgi Z, Descovich GC, Salvioli GP. Total cholesterol, high-density lipoprotein cholesterol, and triglycerides in children receiving antiepileptic drugs. Epilepsia. 1992;33:932–5.PubMedGoogle Scholar
  222. 222.
    Verrotti A, Basciani F, Domizio S, Sabatino G, Morgese G, Chiarelli F. Serum lipids and lipoproteins in patients treated with antiepileptic drugs. Pediatr Neurol. 1998;19:364–7.PubMedGoogle Scholar
  223. 223.
    Yilmaz E, Dosan Y, Gurgoze MK, Gungor S. Serum lipid changes during anticonvulsive treatment serum lipids in epileptic children. Acta Neurol Belg. 2001;101:217–20.PubMedGoogle Scholar
  224. 224.
    Verrotti A, Domizio S, Angelozzi B, Sabatino G, Morgese G, Chiarelli F. Changes in serum lipids and lipoproteins in epileptic children treated with anticonvulsants. J Paediatr Child Health. 1997;33:242–5.PubMedGoogle Scholar
  225. 225.
    Castro-Gago M, Novo-Rodriguez MI, Blanco-Barca MO, Urisarri-Ruiz de Cortazar A, Rodriguez-Garcia J, Rodriguez-Segade S, Eiris-Punal J. Evolution of serum lipids and lipoprotein (a) levels in epileptic children treated with carbamazepine, valproic acid, and phenobarbital. J Child Neurol. 2006;21:48–53.PubMedGoogle Scholar
  226. 226.
    Hamed SA, Hamed EA, Kandil MR, El-Shereef HK, Abdellah MM, Omar H. Serum thyroid hormone balance and lipid profile in patients with epilepsy. Epilepsy Res. 2005;66:173–83.PubMedGoogle Scholar
  227. 227.
    Tekgul H, Demir N, Gokben S. Serum lipid profile in children receiving anti-epileptic drug monotherapy: is it atherogenic? J Pediatr Endocrinol Metab. 2006;19:1151–5.PubMedGoogle Scholar
  228. 228.
    Jakubus T, Michalska-Jakubus M, Lukawski K, Janowska A, Czuczwar SJ. Atherosclerotic risk among children taking antiepileptic drugs. Pharmacol Rep. 2009;61:411–23.PubMedGoogle Scholar
  229. 229.
    Mateu J, Barrachina F. Hypertriglyceridaemia associated with propofol sedation in critically ill patients. Intensive Care Med. 1996;22:834–5.PubMedGoogle Scholar
  230. 230.
    Eddleston JM, Shelly MP. The effect on serum lipid concentrations of a prolonged infusion of propofol–hypertriglyceridaemia associated with propofol administration. Intensive Care Med. 1991;17:424–6.PubMedGoogle Scholar
  231. 231.
    Kumar AN, Schwartz DE, Lim KG. Propofol-induced pancreatitis: recurrence of pancreatitis after rechallenge. Chest. 1999;115:1198–9.PubMedGoogle Scholar
  232. 232.
    Devlin JW, Lau AK, Tanios MA. Propofol-associated hypertriglyceridemia and pancreatitis in the intensive care unit: an analysis of frequency and risk factors. Pharmacotherapy. 2005;25:1348–52.PubMedGoogle Scholar
  233. 233.
    Devaud JC, Berger MM, Pannatier A, Marques-Vidal P, Tappy L, Rodondi N, Chiolero R, Voirol P. Hypertriglyceridemia: a potential side effect of propofol sedation in critical illness. Intensive Care Med. 2012;38:1990–8.Google Scholar

Copyright information

© Humana Press 2015

Authors and Affiliations

  1. 1.Department of EndocrinologyMayo ClinicRochesterUSA

Personalised recommendations