Advertisement

Dyslipidemias pp 235-250 | Cite as

Sitosterolemia and Other Rare Sterol Disorders

  • Shailendra B. PatelEmail author
Chapter
Part of the Contemporary Endocrinology book series (COE)

Abstract

Rare monogenic disorders that disrupt sterol metabolism are now increasingly recognized as causing human disease and, more importantly, specific therapies that can prevent or ameliorate the complications are increasingly available. Thus, genetic defects that were thought previously to be exoteric or where no treatments could be offered are now beginning to populate the treatable spectrum of disease. These diseases, by definition of being rare, affect less than 1000 people in the USA. The key to diagnosing these conditions is the knowledge of these conditions. Sterol (as opposed to steroid) disorders include those that are caused by defects involving sterol synthesis genes, typically involving the postsqualene intermediates, or sterol breakdown genes (typically the bile acid pathway) or pathways that regulate sterol absorption and excretion. This chapter highlights one example in each of these pathways to illustrate the current state of the art, elucidate diagnostic procedures, and highlight specific therapies, where available.

Keywords

ABCG5 ABCG8 Bile acids Cataracts Chenodeoxycholic acid Ezetimibe Hypolipoproteinemia Macrothrombocytopenia Sitosterol Smith–Lemli–Opitz syndrome Xanthomas 

References

  1. 1.
    Rosenbaum AI, Maxfield FR. Niemann-Pick type C disease: molecular mechanisms and potential therapeutic approaches. J Neurochem. 2011;116(5):789–95.CrossRefPubMedCentralPubMedGoogle Scholar
  2. 2.
    King SR, et al. Functional and physiological consequences of StAR deficiency: role in lipoid congenital adrenal hyperplasia. Endocr Dev. 2011;20:47–53.PubMedGoogle Scholar
  3. 3.
    Hazard SE, Patel SB. Sterolins ABCG5 and ABCG8: regulators of whole body dietary sterols. Pflugers Arch. 2007;453(5):745–52.CrossRefPubMedCentralPubMedGoogle Scholar
  4. 4.
    Schoenheimer R. Uber die Bedeutung der Pflanzensterine fur den tierischen Organismus. Hoppe-Seyler’s Z Physiol Chem. 1929;180:1–5.CrossRefGoogle Scholar
  5. 5.
    Schoenheimer R, Breusch F. Synthesis and destruction of cholesterol in the organism. J Biol Chem. 1933;103:439–48.Google Scholar
  6. 6.
    Salen G, et al. Lethal atherosclerosis associated with abnormal plasma and tissue sterol composition in sitosterolemia with xanthomatosis. J Lipid Res. 1985;26(9):1126–33.PubMedGoogle Scholar
  7. 7.
    Bhattacharyya AK, Connor WE. Beta-sitosterolemia and xanthomatosis. A newly described lipid storage disease in two sisters. J Clin Invest. 1974:53(4):1033–43.CrossRefPubMedCentralPubMedGoogle Scholar
  8. 8.
    Patel SB, Salen G. Sitosterolemia: xenophobia for the body. In: Vissers MN, Kastelein JJP, Stroes ES, editors. Evidence-based management of lipid disorders. Harley: tfm Publishing Ltd.; 2010. pp. 217–30.Google Scholar
  9. 9.
    Beaty TH, et al. Genetic analysis of plasma sitosterol, apoprotein B, and lipoproteins in a large Amish pedigree with sitosterolemia. Am J Hum Genet. 1986;38(4):492–504.PubMedCentralPubMedGoogle Scholar
  10. 10.
    Patel SB, et al. Mapping a gene involved in regulating dietary cholesterol absorption. The sitosterolemia locus is found at chromosome 2p21. J Clin Invest. 1998;102(5):1041–4.CrossRefPubMedCentralPubMedGoogle Scholar
  11. 11.
    Lee M-H, et al. Identification of a gene, ABCG5, important in the regulation of dietary cholesterol absorption. Nat Genet. 2001;27:79–83.CrossRefPubMedCentralPubMedGoogle Scholar
  12. 12.
    Lu K, et al. High-resolution physical and transcript map of human chromosome 2p21 containing the sitosterolemia locus. Eur J Hum Genet. 2001;9:364–74.CrossRefPubMedCentralPubMedGoogle Scholar
  13. 13.
    Lu K, et al. Two genes that map to the sitosterolemia locus cause sitosterolemia: genomic structure and spectrum of mutations involving sterolin-1 and sterolin-2, encoded by ABCG5 and ABCG8 respectively. Am J Hum Genet. 2001;69:278–90.CrossRefPubMedCentralPubMedGoogle Scholar
  14. 14.
    Berge KE, et al. Accumulation of dietary cholesterol in sitosterolemia caused by mutations in adjacent ABC transporters. Science. 2000;290(5497):1771–5.CrossRefPubMedGoogle Scholar
  15. 15.
    Graf GA, et al. Coexpression of ATP-binding cassette proteins ABCG5 and ABCG8 permits their transport to the apical surface. J Clin Invest. 2002;110(5):659–69.CrossRefPubMedCentralPubMedGoogle Scholar
  16. 16.
    Graf GA, et al. ABCG5 and ABCG8 are obligate heterodimers for protein trafficking and biliary cholesterol excretion. J Biol Chem. 2003;278(48):48275–82.CrossRefPubMedGoogle Scholar
  17. 17.
    Hobbs HH, et al. Genetic defenses against hypercholesterolemia. Cold Spring Harb Symp Quant Biol. 2002;67:499–505.CrossRefPubMedGoogle Scholar
  18. 18.
    Klett EL, Patel S. Genetic defenses against noncholesterol sterols. Curr Opin Lipidol. 2003;14(4):341–5.CrossRefPubMedCentralPubMedGoogle Scholar
  19. 19.
    Yu L, et al. Expression of ABCG5 and ABCG8 is required for regulation of biliary cholesterol secretion. J Biol Chem. 2005;280(10):8742–7.CrossRefPubMedGoogle Scholar
  20. 20.
    Wang J, et al. Sequences in the nonconsensus nucleotide-binding domain of ABCG5/ABCG8 required for sterol transport. J Biol Chem. 2011;286(9):7308–14.CrossRefPubMedCentralPubMedGoogle Scholar
  21. 21.
    Rees DC. et al. Stomatocytic haemolysis and macrothrombocytopenia (Mediterranean stomatocytosis/macrothrombocytopenia) is the haematological presentation of phytosterolaemia. Br J Haematol. 2005;130(2):297–309.CrossRefPubMedGoogle Scholar
  22. 22.
    Kruit JK, et al. Plant sterols cause macrothrombocytopenia in a mouse model of sitosterolemia. J Biol Chem. 2008;283(10):6281–7.CrossRefPubMedGoogle Scholar
  23. 23.
    Chase TH, et al. The mouse mutation “thrombocytopenia and cardiomyopathy” (trac) disrupts Abcg5: a spontaneous single gene model for human hereditary phytosterolemia/sitosterolemia. Blood. 2010;115(6):1267–76.CrossRefPubMedCentralPubMedGoogle Scholar
  24. 24.
    Miettinen TA, et al. Liver transplantation in a patient with sitosterolemia and cirrhosis. Gastroenterology. 2006;130(2):542–7.CrossRefPubMedCentralPubMedGoogle Scholar
  25. 25.
    Mushtaq T, et al. Adrenal insufficiency in phytosterolaemia. Eur J Endocrinol. 2007;157(Suppl 1):S61–5.CrossRefPubMedGoogle Scholar
  26. 26.
    Mymin D, et al. Image in cardiovascular medicine. Aortic xanthomatosis with coronary ostial occlusion in a child homozygous for a nonsense mutation in ABCG8. Circulation. 2003;107(5):791.CrossRefPubMedGoogle Scholar
  27. 27.
    Solca C, et al. Sitosterolaemia in Switzerland: molecular genetics links the US Amish-Mennonites to their European roots. Clin Genet. 2005;68(2):174–8.CrossRefPubMedCentralPubMedGoogle Scholar
  28. 28.
    Mannucci L, et al. Beta-sitosterolaemia: a new nonsense mutation in the ABCG5 gene. Eur J Clin Invest. 2007;37(12):997–1000.CrossRefPubMedGoogle Scholar
  29. 29.
    Yang C, et al. Sterol intermediates from cholesterol biosynthetic pathway as LXR ligands. J Biol Chem. 2006;281(38):27816–26.Google Scholar
  30. 30.
    Kidambi S, Patel SB. Sitosterolaemia: pathophysiology, clinical presentation and laboratory diagnosis. J Clin Pathol. 2008;61(5):588–94.CrossRefPubMedGoogle Scholar
  31. 31.
    Salen G, et al. Ezetimibe effectively reduces plasma plant sterols in patients with sitosterolemia. Circulation. 2004;109(8):966–71.CrossRefPubMedCentralPubMedGoogle Scholar
  32. 32.
    Lutjohann D, et al. Long-term efficacy and safety of ezetimibe 10 mg in patients with homozygous sitosterolemia: a 2-year, open-label extension study. Int J Clin Pract. 2008;62(10):1499–510.CrossRefPubMedGoogle Scholar
  33. 33.
    Garcia-Calvo M, et al. The target of ezetimibe is Niemann-Pick C1-Like 1 (NPC1L1). Proc Natl Acad Sci U S A. 2005;102(23):8132–7.CrossRefPubMedCentralPubMedGoogle Scholar
  34. 34.
    Kelley RI, Herman GE. Inborn errors of sterol biosynthesis. Annu Rev Genomics Hum Genet. 2001;2:299–341.CrossRefPubMedGoogle Scholar
  35. 35.
    Porter FD, Herman GE. Malformation syndromes caused by disorders of cholesterol synthesis. J Lipid Res. 2011;52(1):6–34.CrossRefPubMedCentralPubMedGoogle Scholar
  36. 36.
    Smith DW, et al. A newly recognized syndrome of multiple congenital abnormalities. J Pediatr. 1964;64:210–7.CrossRefPubMedGoogle Scholar
  37. 37.
    Irons M, et al. Defective cholesterol biosynthesis in Smith–Lemli–Opitz syndrome. Lancet. 1993;341(8857):1414.CrossRefPubMedGoogle Scholar
  38. 38.
    Tint GS. Cholesterol defect in Smith–Lemli–Opitz syndrome. Am J Med Genet. 1993;47(4):573–4.CrossRefPubMedGoogle Scholar
  39. 39.
    Fitzky BU, et al. Mutations in the Delta7-sterol reductase gene in patients with the Smith–Lemli–Opitz syndrome. Proc Natl Acad Sci U S A. 1998;95(14):8181–6.CrossRefPubMedCentralPubMedGoogle Scholar
  40. 40.
    Moebius FF, et al. Molecular cloning and expression of the human delta7-sterol reductase. Proc Natl Acad Sci U S A. 1998;95(4):1899–902.CrossRefPubMedCentralPubMedGoogle Scholar
  41. 41.
    Wassif CA, et al. Mutations in the human sterol delta7-reductase gene at 11q12-13 cause Smith–Lemli–Opitz syndrome. Am J Hum Genet. 1998;63(1):55–62.CrossRefPubMedCentralPubMedGoogle Scholar
  42. 42.
    Waterham HR, et al. Smith–Lemli–Opitz syndrome is caused by mutations in the 7-dehydrocholesterol reductase gene. Am J Hum Genet. 1998;63(2):329–38.CrossRefPubMedCentralPubMedGoogle Scholar
  43. 43.
    Yu H, et al. Spectrum of Delta(7)-dehydrocholesterol reductase mutations in patients with the Smith–Lemli–Opitz (RSH) syndrome. Hum Molec Genet. 2000;9(9):1385–91.CrossRefPubMedGoogle Scholar
  44. 44.
    Nowaczyk MJ, Irons MB. Smith–Lemli–Opitz syndrome: phenotype, natural history, and epidemiology. Am J Med Genet C Semin Med Genet. 2012;160C(4):250–62.CrossRefPubMedGoogle Scholar
  45. 45.
    Porter FD. Smith–Lemli–Opitz syndrome: pathogenesis, diagnosis and management. Eur J Hum Genet. 2008;16(5):535–41.CrossRefPubMedGoogle Scholar
  46. 46.
    Mueller C, et al. Normal cognition and behavior in a Smith–Lemli–Opitz syndrome patient who presented with Hirschsprung disease. Am J Med Genet. 2003;123A(1):100–6.CrossRefPubMedGoogle Scholar
  47. 47.
    Waterham HR, Hennekam RC. Mutational spectrum of Smith–Lemli–Opitz syndrome. Am J Med Genet C Semin Med Genet. 2012;160C(4):263–84.CrossRefPubMedGoogle Scholar
  48. 48.
    Svoboda MD, et al. Treatment of Smith–Lemli–Opitz syndrome and other sterol disorders. Am J Med Genet C Semin Med Genet. 2012;160C(4):285–94.CrossRefPubMedGoogle Scholar
  49. 49.
    Tierney E, et al. Analysis of short-term behavioral effects of dietary cholesterol supplementation in Smith–Lemli–Opitz syndrome. Am J Med Genet A. 2010;152A(1):91–5.CrossRefPubMedCentralPubMedGoogle Scholar
  50. 50.
    Van Bogaert L, et al. Une forme cerebrale de la cholesterinose generalisse. Paris: Masson et Cie; 1937.Google Scholar
  51. 51.
    Menkes JH, et al. Cerebrotendinous xanthomatosis. The storage of cholestanol within the nervous system. Arch Neurol. 1968;19(1):47–53.CrossRefPubMedGoogle Scholar
  52. 52.
    Philippart M, Van Bogaert L. Cholestanolosis (cerebrotendinous xanthomatosis). A follow-up study on the original family. Arch Neurol. 1969;21(6):603–10.CrossRefPubMedGoogle Scholar
  53. 53.
    Salen G. Cholestanol deposition in cerebrotendinous xanthomatosis. A possible mechanism. Ann Intern Med. 1971;75(6):843–51.CrossRefPubMedGoogle Scholar
  54. 54.
    Waterreus RJ, et al. Cerebrotendinous xanthomatosis (CTX): a clinical survey of the patient population in The Netherlands. Clin Neurol Neurosurg. 1987;89(3):169–75.CrossRefPubMedGoogle Scholar
  55. 55.
    Verrips A, et al. Clinical and molecular genetic characteristics of patients with cerebrotendinous xanthomatosis. Brain. 2000;123(Pt 5):908–19.CrossRefPubMedGoogle Scholar
  56. 56.
    Salen G, Grundy SM. The metabolism of cholestanol, cholesterol, and bile acids in cerebrotendinous xanthomatosis. J Clin Invest. 1973;52(11):2822–35.CrossRefPubMedCentralPubMedGoogle Scholar
  57. 57.
    Setoguchi T, et al. A biochemical abnormality in cerebrotendinous xanthomatosis. Impairment of bile acid biosynthesis associated with incomplete degradation of the cholesterol side chain. J Clin Invest. 1974;53(5):1393–401.CrossRefPubMedCentralPubMedGoogle Scholar
  58. 58.
    Andersson S, et al. Cloning, structure, and expression of the mitochondrial cytochrome P-450 sterol 26-hydroxylase, a bile acid biosynthetic enzyme. J Biol Chem. 1989;264(14):8222–9.PubMedGoogle Scholar
  59. 59.
    Cali JJ, et al. Mutations in the bile acid biosynthetic enzyme sterol 27-hydroxylase underlie cerebrotendinous xanthomatosis. J Biol Chem. 1991;266(12):7779–83.PubMedGoogle Scholar
  60. 60.
    Cali JJ, Russell DW. Characterization of human sterol 27-hydroxylase. A mitochondrial cytochrome P-450 that catalyzes multiple oxidation reaction in bile acid biosynthesis. J Biol Chem. 1991;266(12):7774–8.PubMedGoogle Scholar
  61. 61.
    Falik-Zaccai TC, et al. Population screening in a Druze community: the challenge and the reward. Genet Med. 2008;10(12):903–9.CrossRefPubMedGoogle Scholar
  62. 62.
    Lee MH, et al. Fine-mapping, mutation analyses, and structural mapping of cerebrotendinous xanthomatosis in U.S. pedigrees. J Lipid Res. 2001;42(2):159–69.PubMedCentralPubMedGoogle Scholar
  63. 63.
    Berginer VM, et al. Long-term treatment of cerebrotendinous xanthomatosis with chenodeoxycholic acid. N Engl J Med. 1984;311(26):1649–52.CrossRefPubMedGoogle Scholar
  64. 64.
    van Heijst AF, et al. Treatment and follow-up of children with cerebrotendinous xanthomatosis. Eur J Pediatr. 1998;157(4):313–6.CrossRefPubMedGoogle Scholar
  65. 65.
    Martini G, et al. Long-term bone density evaluation in cerebrotendinous xanthomatosis: evidence of improvement after chenodeoxycholic acid treatment. Calcif Tissue Int. 2013;92(3):282–6.CrossRefPubMedGoogle Scholar
  66. 66.
    Buch S, et al. A genome-wide association scan identifies the hepatic cholesterol transporter ABCG8 as a susceptibility factor for human gallstone disease. Nat Genet. 2007;39(8):995–9.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press 2015

Authors and Affiliations

  1. 1.Department of Medicine and Division of Endocrinology, HRC4850, Division of EndocrinologyClement J Zablocki Veterans Affairs Medical Center, and Medical College of WisconsinMilwaukeeUSA

Personalised recommendations