Lipoprotein Physiology

  • Daniel J. RaderEmail author
  • Sumeet A. Khetarpal
Part of the Contemporary Endocrinology book series (COE)


Lipoproteins are macromolecular complexes composed of lipids and proteins. They exist to transport hydrophobic lipids and proteins within the circulation. A key function of the apolipoprotein B-containing lipoproteins is the transport of energy in the form of esterified fatty acids (in triglycerides (TGs)) to tissues that utilize them or store them. Intestinally derived chylomicrons deliver dietary fat to the periphery, whereas liver-derived very low density lipoproteins (VLDL) deliver endogenous fat (fatty acids transported to liver from adipose or newly synthesized in liver) to the periphery. Lipolysis of TGs in the periphery is mediated by the key enzyme lipoprotein lipase (LPL). Low-density lipoproteins (LDL) are by-products of VLDL metabolism and are the major cholesterol-carrying lipoprotein in plasma. LDLs are taken up by the liver by the LDL receptor and other receptors. High-density lipoproteins (HDL) mediate the transport of cholesterol from the periphery back to the liver for excretion. Normal lipoprotein metabolism is essential for health, and a variety of inherited and acquired disorders disrupt normal lipoprotein metabolism and cause dyslipidemia and other consequences.


Lipoproteins Cholesterol Triglycerides LDL HDL Metabolism 


  1. 1.
    Hussain MM. Intestinal lipid absorption and lipoprotein formation. Curr Opin Lipidol. 2014;25:200–6.CrossRefPubMedGoogle Scholar
  2. 2.
    Wang LJ, Song BL. Niemann-Pick C1-like 1 and cholesterol uptake. Biochim Biophys Acta. 2012;1821:964–72.CrossRefPubMedGoogle Scholar
  3. 3.
    Liu Q, Siloto RM, Lehner R, Stone SJ, Weselake RJ. Acyl-CoA:diacylglycerol acyltransferase: molecular biology, biochemistry and biotechnology. Prog Lipid Res. 2012;51:350–77.CrossRefPubMedGoogle Scholar
  4. 4.
    Chang TY, Li BL, Chang CC, Urano Y. Acyl-coenzyme A: cholesterol acyltransferases. Am J Physiol Endocrinol Metab. 2009;297:E1–9.CrossRefPubMedCentralPubMedGoogle Scholar
  5. 5.
    Hussain MM, Rava P, Walsh M, Rana M, Iqbal J. Multiple functions of microsomal triglyceride transfer protein. Nutr Metab (Lond). 2012;9:14.CrossRefGoogle Scholar
  6. 6.
    Fryer LG, Jones B, Duncan EJ, Hutchison CE, Ozkan T, Williams PA, Alder O, Nieuwdorp M, Townley AK, Mensenkamp AR. The endoplasmic reticulum coat protein II transport machinery coordinates cellular lipid secretion and cholesterol biosynthesis. J Biol Chem. 2014;289:4244–61.CrossRefPubMedCentralPubMedGoogle Scholar
  7. 7.
    Abumrad NA, Davidson NO. Role of the gut in lipid homeostasis. Physiol Rev. 2012;92:1061–85.CrossRefPubMedCentralPubMedGoogle Scholar
  8. 8.
    Xiao C, Dash S, Morgantini C, Lewis GF. New and emerging regulators of intestinal lipoprotein secretion. Atherosclerosis. 2014;233:608–15.CrossRefPubMedGoogle Scholar
  9. 9.
    Beigneux AP, Weinstein MM, Davies BS, Gin P, Bensadoun A, Fong LG, Young SG. GPIHBP1 and lipolysis: an update. Curr Opin Lipidol. 2009;20:211–16.CrossRefPubMedCentralPubMedGoogle Scholar
  10. 10.
    Johansen CT, Hegele RA. The complex genetic basis of plasma triglycerides. Curr Atheroscler Rep. 2012;14:227–34.CrossRefPubMedGoogle Scholar
  11. 11.
    Kersten S. Physiological regulation of lipoprotein lipase. Biochim Biophys Acta. 2014;1841:919–33.CrossRefPubMedGoogle Scholar
  12. 12.
    Sharma V, Forte TM, Ryan RO. Influence of apolipoprotein A-V on the metabolic fate of triacylglycerol. Curr Opin Lipidol. 2013;24:153–9.CrossRefPubMedCentralPubMedGoogle Scholar
  13. 13.
    Johansen CT, Kathiresan S, Hegele RA. Genetic determinants of plasma triglycerides. J Lipid Res. 2011;52:189–206.CrossRefPubMedCentralPubMedGoogle Scholar
  14. 14.
    Chan DC, Pang J, Romic G, Watts GF. Postprandial hypertriglyceridemia and cardiovascular disease: current and future therapies. Curr Atheroscler Rep. 2013;15:309.CrossRefPubMedGoogle Scholar
  15. 15.
    Bishop JR, Stanford KI, Esko JD. Heparan sulfate proteoglycans and triglyceride-rich lipoprotein metabolism. Curr Opin Lipidol. 2008;19:307–13.CrossRefPubMedGoogle Scholar
  16. 16.
    Reiner Z, Guardamagna O, Nair D, Soran H, Hovingh K, Bertolini S, Jones S, Coric M, Calandra S, Hamilton J, et al. Lysosomal acid lipase deficiency—an under-recognized cause of dyslipidaemia and liver dysfunction. Atherosclerosis. 2014;235:21–30.CrossRefPubMedGoogle Scholar
  17. 17.
    Sundaram M, Yao Z. Recent progress in understanding protein and lipid factors affecting hepatic VLDL assembly and secretion. Nutr Metab (Lond). 2010;7:35.CrossRefGoogle Scholar
  18. 18.
    Young SG, Zechner R. Biochemistry and pathophysiology of intravascular and intracellular lipolysis. Genes Dev. 2013;27:459–84.CrossRefPubMedCentralPubMedGoogle Scholar
  19. 19.
    Ameer F, Scandiuzzi L, Hasnain S, Kalbacher H, Zaidi N. De novo lipogenesis in health and disease. Metabolism. 2014;63(7):895–902.CrossRefPubMedGoogle Scholar
  20. 20.
    Welty FK. Hypobetalipoproteinemia and abetalipoproteinemia. Curr Opin Lipidol. 2014;25:161–68CrossRefPubMedGoogle Scholar
  21. 21.
    van Greevenbroek MM, Stalenhoef AF, de Graaf J, Brouwers MC. Familial combined hyperlipidemia: from molecular insights to tailored therapy. Curr Opin Lipidol. 2014;25:176–82.CrossRefPubMedGoogle Scholar
  22. 22.
    Brown MS, Goldstein JL. Cholesterol feedback: from Schoenheimer’s bottle to Scap’s MELADL. J Lipid Res. 2009;50 Suppl:15–27.CrossRefGoogle Scholar
  23. 23.
    Zhang L, Reue K, Fong LG, Young SG, Tontonoz P. Feedback regulation of cholesterol uptake by the LXR-IDOL-LDLR axis. Arterioscler Thromb Vasc Biol. 2012;32:2541–6.CrossRefPubMedCentralPubMedGoogle Scholar
  24. 24.
    Horton JD, Cohen JC, Hobbs HH. PCSK9: a convertase that coordinates LDL catabolism. J Lipid Res. 2009;50 Suppl:172–7.Google Scholar
  25. 25.
    Rosenson RS, Brewer HB Jr., Davidson WS, Fayad ZA, Fuster V, Goldstein J, Hellerstein M, Jiang XC, Phillips MC, Rader DJ, et al. Cholesterol efflux and atheroprotection: advancing the concept of reverse cholesterol transport. Circulation. 2012;125:1905–19.CrossRefPubMedCentralPubMedGoogle Scholar
  26. 26.
    Pays E, Vanhollebeke B. Human innate immunity against African trypanosomes. Curr Opin Immunol. 2009;21:493–8.CrossRefPubMedGoogle Scholar
  27. 27.
    Heinecke JW. The protein cargo of HDL: implications for vascular wall biology and therapeutics. J Clin Lipidol. 2010;4:371–5.CrossRefPubMedCentralPubMedGoogle Scholar
  28. 28.
    Rader DJ. Molecular regulation of HDL metabolism and function: implications for novel therapies. J Clin Invest. 2006;116:3090–100.CrossRefPubMedCentralPubMedGoogle Scholar
  29. 29.
    Lee JY, Parks JS. ATP-binding cassette transporter AI and its role in HDL formation. Curr Opin Lipidol. 2005;16:19–25.CrossRefPubMedGoogle Scholar
  30. 30.
    Jiang XC, Jin W, Hussain MM. The impact of phospholipid transfer protein (PLTP) on lipoprotein metabolism. Nutr Metab (Lond). 2012;9:75.CrossRefGoogle Scholar
  31. 31.
    Rousset X, Vaisman B, Amar M, Sethi AA, Remaley AT. Lecithin: cholesterol acyltransferase—from biochemistry to role in cardiovascular disease. Curr Opin Endocrinol Diabetes Obes. 2009;16:163–71.CrossRefPubMedCentralPubMedGoogle Scholar
  32. 32.
    Schwartz CC, VandenBroek JM, Cooper PS. Lipoprotein cholesteryl ester production, transfer, and output in vivo in humans. J Lipid Res. 2004;45:1594–607.CrossRefPubMedGoogle Scholar
  33. 33.
    Lewis GF, Rader DJ. New insights into the regulation of HDL metabolism and reverse cholesterol transport. Circ Res. 2005;96:1221–32.CrossRefPubMedGoogle Scholar
  34. 34.
    Yasuda T, Ishida T, Rader DJ. Update on the role of endothelial lipase in high-density lipoprotein metabolism, reverse cholesterol transport, and atherosclerosis. Circ J. 2010;74:2263–70.CrossRefPubMedGoogle Scholar
  35. 35.
    Shen WJ, Hu J, Hu Z, Kraemer FB, Azhar S. Scavenger receptor class B type I (SR-BI): a versatile receptor with multiple functions and actions. Metabolism. 2014; 63(7):875–86CrossRefPubMedGoogle Scholar
  36. 36.
    Barth JL, Argraves WS. Cubilin and megalin: partners in lipoprotein and vitamin metabolism. Trends Cardiovasc Med. 2001;11:26–31.CrossRefPubMedGoogle Scholar
  37. 37.
    Westerterp M, Bochem AE, Yvan-Charvet L, Murphy AJ, Wang N, Tall AR. ATP-binding cassette transporters, atherosclerosis, and inflammation. Circ Res. 2014;114:157–70.CrossRefPubMedGoogle Scholar
  38. 38.
    Fernandez-Hernando C, Moore KJ. MicroRNA modulation of cholesterol homeostasis. Arterioscler Thromb Vasc Biol. 2011;31:2378–82.CrossRefPubMedCentralPubMedGoogle Scholar
  39. 39.
    Rader DJ, Alexander ET, Weibel GL, Billheimer J, Rothblat GH. The role of reverse cholesterol transport in animals and humans and relationship to atherosclerosis. J Lipid Res. 2009;50 Suppl:S189–94.Google Scholar
  40. 40.
    Khera AV, Cuchel M, de la Llera-Moya M, Rodrigues A, Burke MF, Jafri K, French BC, Phillips JA, Mucksavage ML, Wilensky RL, et al. Cholesterol efflux capacity, high-density lipoprotein function, and atherosclerosis. N Engl J Med. 2011;364:127–35.CrossRefPubMedCentralPubMedGoogle Scholar
  41. 41.
    Rader DJ, Tall AR. The not-so-simple HDL story: Is it time to revise the HDL cholesterol hypothesis? Nat Med. 2012;18:1344–6.CrossRefPubMedGoogle Scholar
  42. 42.
    Luscher TF, Landmesser U, von Eckardstein A, Fogelman AM. High-density lipoprotein: vascular protective effects, dysfunction, and potential as therapeutic target. Circ Res. 2014;114:171–82.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press 2015

Authors and Affiliations

  1. 1.Department of Medicine, GeneticsUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations