Skip to main content

Management of Acute and Late Endocrine Effects Following Childhood Cancer Treatment

  • Chapter
  • First Online:
  • 2663 Accesses

Part of the book series: Contemporary Endocrinology ((COE))

Abstract

Recent advances in the treatment of pediatric cancers have resulted in increasing numbers of children surviving their malignancy. Current survival rates are approaching 75%, and it had been estimated that by 2010, 1 in 715 young adults would be a long-term survivor of childhood cancer. Therapeutic options consist of a combination of multi-agent chemotherapy, surgery, radiotherapy, and bone marrow or stem cell transplantation. Unfortunately, decreasing mortality from malignancy comes at the cost of increased morbidity resulting in acute and late effects of treatment. Endocrine disorders affect up to 50% of childhood cancer survivors following chemotherapy and radiotherapy. This chapter describes the acute and late endocrine effects of treatment for childhood cancer by endocrine system and chronology of onset, with a discussion of the pathophysiology, diagnosis, and treatment for each system involved.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Rutter MM, Rose SR. Long-term sequelae of childhood cancer. Curr Opin Pediatr. 2007;19:480–7.

    Article  PubMed  Google Scholar 

  2. Oeffinger K, Mertens A, Sklar C, et al. Chronic health conditions in adult survivors of childhood cancer. N Eng J Med. 2006;355:1572–82.

    Article  CAS  Google Scholar 

  3. Edgar AB, Morris EMM, Kelnar CJH, et al. Long-term follow-up of survivors of childhood cancer. In: Wallace WHB, Kelnar CJH, editors. Endocrinopathy after childhood cancer treatment. Basel: Karger; 2009. p. 159–80.

    Chapter  Google Scholar 

  4. Diller L, Chow EJ, Gurney GJ, et al. Chronic disease in the Childhood Cancer Survivor Study Cohort: a review of published findings. J Clin Oncol. 2009;27: 2339–55.

    Article  PubMed  Google Scholar 

  5. Thomasett MJ, Conte FA, Kaplan SI, et al. Endocrine and neurologic outcome in childhood craniopharyngioma: review of effect of treatment in 42 patients. J Pediatr. 1980;97:728–35.

    Article  Google Scholar 

  6. De Vile CJ, Grant DB, Hayward RD, et al. Growth and endocrine sequelae of craniopharyngioma. Arch Dis Child. 1996;75:108–14.

    Article  Google Scholar 

  7. Karavitaki N, Brufani C, Warner JT, et al. Craniopharyngiomas in children and adults: systematic analysis of 121 cases with long-term follow-up. Clin Endocrinol. 2005;62:397–409.

    Article  CAS  Google Scholar 

  8. Seckl JR, Dunger DB, Lightman SL. Neurohypophyseal peptide function during early postoperative diabetes insipidus. Brain. 1987;110:737–46.

    Article  PubMed  Google Scholar 

  9. Rivkees S, Dunbar N, Wilson T. The management of central diabetes insipidus in infancy: desmopressin, low renal solute load formula, thiazide diuretics. J Pediatr Endocrinol Metab. 2007;20:459–69.

    PubMed  CAS  Google Scholar 

  10. Palmer B. Hyponatremia in patients with central nervous system disease: SIADH versus CSW. Trends Endocrinol Metab. 2003;14:182–7.

    Article  PubMed  CAS  Google Scholar 

  11. Andrassy R, Chwals W. Nutritional support of the pediatric oncology patient. Nutrition. 1998;14: 124–9.

    Article  PubMed  CAS  Google Scholar 

  12. Rickard KA, Grosfeld JL, Kirksey A, et al. Reversal of protein-energy malnutrition in children during treatment of advanced neoplastic disease. Ann Surg. 1979;190:771–81.

    Article  PubMed  CAS  Google Scholar 

  13. Willi SM, Kennedy A, Wallace P, et al. Troglitazone antagonizes metabolic effects of glucocorticoids in humans: effects on glucose tolerance, insulin sensitivity, suppression of free fatty acids, and leptin. Diabetes. 2002;51:2895–902.

    Article  PubMed  CAS  Google Scholar 

  14. Pagano G, Cavallo-Perin P, Cassader M, et al. An in vivo and in vitro study of the mechanisms of prednisone-induced insulin resistance in healthy subjects. J Clin Invest. 1983;72:1814–20.

    Article  PubMed  CAS  Google Scholar 

  15. Lambillotte C, Gilon P, Henquin JC. Direct glucocorticoid inhibition of insulin secretion. An in vitro study of dexamethasone effects in mouse islets. J Clin Invest. 1997;99:414–23.

    Article  PubMed  CAS  Google Scholar 

  16. Ranta F, Avram D, Berchtold S, et al. Dexamethasone induces cell death in insulin secreting cells, an effect reversed by exendin-4. Diabetes. 2006;55: 1380–90.

    Article  PubMed  CAS  Google Scholar 

  17. Hoffmeister PA, Storer BE, Sanders JE. Diabetes mellitus in long-term survivors of pediatrics hematopoietic cell transplantation. J Pediatr Hematol Oncol. 2004;26:81–90.

    Article  PubMed  Google Scholar 

  18. Kasayama S, Tanaka T, Hashimoto K, et al. Efficacy of glimepiride for the treatment of diabetes occurring during glucocorticoid therapy. Diabetes Care. 2002;25:2359–60.

    Article  PubMed  Google Scholar 

  19. Voytovich MH, Haukereid C, Hjelmesaeth J, et al. Nateglinide improves postprandial hyperglycemia and insulin secretion in renal transplant recipients. Clin Transplant. 2007;21:246–51.

    Article  PubMed  Google Scholar 

  20. Hanefeld M, Fischer S, Schulze J, et al. Therapeutic potentials of acarbose as first-line drug in NIDDM insufficiently treated with diet alone. Diabetes Care. 1991;14:732–7.

    Article  PubMed  CAS  Google Scholar 

  21. Baldwin D, Duffin KE. Rosiglitazone treatment of diabetes mellitus after solid organ transplantation. Transplantation. 2004;77:1009–14.

    Article  PubMed  CAS  Google Scholar 

  22. Willi SM, Kennedy A, Brant BP, et al. Effective use of thiazolidinediones for the treatment of glucocorticoid-induced diabetes. Diabetes Res Clin Pract. 2002;58:87–96.

    Article  PubMed  CAS  Google Scholar 

  23. Davies M, Lavalle-Gonzalez F, Storms F, et al. Initiation of insulin glargine therapy in type 2 diabetes subjects suboptimally controlled on oral antidiabetic agents: results from the AT.LANTUS trial. Diabetes Obes Metab. 2008;10:387–99.

    Article  PubMed  CAS  Google Scholar 

  24. Clore J. Glucocorticoid-induced hyperglycemia. Endocr Pract. 2009;15:469–74.

    Article  PubMed  Google Scholar 

  25. Streck WF, Lockwood DH. Pituitary adrenal recovery following short-term suppression with corticosteroids. Am J Med. 1979;66:910–4.

    Article  PubMed  CAS  Google Scholar 

  26. Bouley R, Hasler U, Lu H, et al. Bypassing vasopressin receptor signaling pathways in nephrogenic diabetes insipidus. Semin Nephrol. 2008;28:266–78.

    Article  PubMed  CAS  Google Scholar 

  27. Jakobsson B, Berg U. Effect of hydrochlorothiazide and indomethacin treatment on renal function in nephrogenic diabetes insipidus. Acta Paediatr. 1994;83:522–5.

    Article  PubMed  CAS  Google Scholar 

  28. Alon U, Chan JC. Hydrochlorothiazide-amiloride in the treatment of congenital nephrogenic diabetes insipidus. Am J Nephrol. 1985;5:9–13.

    Article  PubMed  CAS  Google Scholar 

  29. Majzoub JA, Srivatsa A. Diabetes insipidus: clinical and basic aspects. Pediatr Endocrinol Rev. 2006;4 Suppl 1:60–5.

    PubMed  Google Scholar 

  30. Shalet SM, Gibson B, Swindell R, et al. Effect of spinal irradiation on growth. Arch Dis Child. 1987;62:461–4.

    Article  PubMed  CAS  Google Scholar 

  31. Mulder RL, Kremer LC, van Santen HM, et al. Prevalence and risk factors of radiation-induced growth hormone deficiency in childhood cancersurvivors: a systematic review. Cancer Treat Rev. 2009;35:616–32.

    Article  PubMed  CAS  Google Scholar 

  32. Brauner R, Fontoura M, Zucker JM, et al. Growth and growth hormone secretion after bone marrow transplantation. Arch Dis Child. 1993;68:458–63.

    Article  PubMed  CAS  Google Scholar 

  33. Thomas BC, Stanhope R, Leiper AD. Gonadotropin releasing hormone analogue and growth hormone therapy in precocious and premature puberty following cranial irradiation for acute lymphoblastic leukemia. Horm Res. 1993;39:25–9.

    Article  PubMed  CAS  Google Scholar 

  34. Gleeson HK, Stoeter R, Ogilvy-Stuart AL, et al. Improvements in final height over 25 years in growth hormone (GH)-deficient childhood survivors of brain tumors receiving GH replacement. J Clin Endocrinol Metab. 2003;88:3682–9.

    Article  PubMed  CAS  Google Scholar 

  35. Gurney JG, Ness KK, Stovall M, et al. Final height and body mass index among adult survivors of childhood brain cancer: childhood cancer survivor study. J Clin Endocrinol Metab. 2003;88:4731–9.

    Article  PubMed  CAS  Google Scholar 

  36. Sklar CA, Constine LS. Chronic neuroendocrinological sequelae of radiation therapy. Int J Radiat Oncol Biol Phys. 1995;31:1113–21.

    Article  PubMed  CAS  Google Scholar 

  37. Laughton SJ, Merchant TE, Sklar CA, et al. Endocrine outcomes for children with embryonal brain tumors after risk adapted craniospinal and conformal primary-site irradiation and high-dose chemotherapy with stem cell rescue on the SJMB-96 trial. J Clin Oncol. 2008;26:1112–8.

    Article  PubMed  CAS  Google Scholar 

  38. Costin G. Effects of low-dose cranial radiation on growth hormone secretory dynamics and hypothalamic-pituitary function. Am J Dis Child. 1988;142: 847–52.

    PubMed  CAS  Google Scholar 

  39. Ogilvy-Stuart AL, Clayton PE, Shalet SM. Cranial irradiation and early puberty. J Clin Endocrinol Metab. 1994;78:1282–6.

    Article  PubMed  CAS  Google Scholar 

  40. Brauner R, Czernichow P, Rappaport R. Greater susceptibility to hypothalamopituitary irradiation in younger children with acute lymphoblastic leukemia. J Pediatr. 1986;108:332–6.

    PubMed  CAS  Google Scholar 

  41. Ogilvy-Stuart AL, Clark DJ, Wallace WH, et al. Endocrine deficit after fractionated total body irradiation. Arch Dis Child. 1992;67:1107–10.

    Article  PubMed  CAS  Google Scholar 

  42. Shalet SM, Beardwell CG, Jones PH, et al. Growth hormone deficiency after treatment of acute leukaemia in children. Arch Dis Child. 1976;51:489–93.

    Article  PubMed  CAS  Google Scholar 

  43. Kirk JA, Raghupathy P, Stevens MM, et al. Growth failure and growth-hormone deficiency after treatment for acute lymphoblastic leukaemia. Lancet. 1987;1:190–3.

    Article  PubMed  CAS  Google Scholar 

  44. Darzy KH, Pezzoli SS, Thorner MO, Shalet SM. The dynamics of growth hormone (GH) secretion in adult cancer survivors with severe GH deficiency acquired after brain irradiation in childhood for nonpituitary brain tumors: evidence for preserved pulsatility and diurnal variation with increased secretory disorderliness. J Clin Endocrinol Metab. 2005;90:2794–803.

    Article  PubMed  CAS  Google Scholar 

  45. Ogilvy-Stuart AL, Wallace WH, Shalet SM. Radiation and neuroregulatory control of growth hormone secretion. Clin Endocrinol. 1994;41:163–8.

    Article  CAS  Google Scholar 

  46. Jorgensen EV, Schwartz ID, Hvizdala E, et al. Neurotransmitter control of growth hormone secretion in children after cranial radiation therapy. J Pediatr Endocrinol. 1993;6:131–42.

    PubMed  CAS  Google Scholar 

  47. Darzy K, Shalet SM. Hypopituitarism as a consequence of brain tumours and radiotherapy. Pituitary. 2005;8:203–11.

    Article  PubMed  Google Scholar 

  48. Darzy KH, Shalet SM. Hypopituitarism following radiotherapy revisited. Endocr Dev. 2009;15:1–24.

    Article  PubMed  Google Scholar 

  49. Darzy KH. Radiation-induced hypopituitarism after cancer therapy: who, how and when to test. Nat Clin Pract Endocrinol Metab. 2009;5:88–99.

    Article  PubMed  CAS  Google Scholar 

  50. Chrousos GP, Poplack D, Brown T, et al. Effects of cranial radiation on hypothalamic-adenohypophyseal function: abnormal growth hormone secretory dynamics. J Clin Endocrinol Metab. 1982;54:1135–9.

    Article  PubMed  CAS  Google Scholar 

  51. Spoudeas HA, Hindmarsh PC, Matthews DR, et al. Evolution of growth hormone neurosecretory disturbance after cranial irradiation for childhood brain tumours: a prospective study. J Endocrinol. 1996;150: 329–42.

    Article  PubMed  CAS  Google Scholar 

  52. Blatt J, Bercu BB, Gillin JC, et al. Reduced pulsatile growth hormone secretion in children after therapy for acute lymphoblastic leukemia. J Pediatr. 1984; 104:182–6.

    Article  PubMed  CAS  Google Scholar 

  53. Darzy KH, Pezzoli SS, Thorner MO, et al. Cranial irradiation and growth hormone neurosecretory dysfunction: a critical appraisal. J Clin Endocrinol Metab. 2007;92:1666–72.

    Article  PubMed  CAS  Google Scholar 

  54. Bercu BB, Root AW, Shulman DI. Preservation of dopaminergic and alpha-adrenergic function in children with growth hormone neurosecretory dysfunction. J Clin Endocrinol Metab. 1986;63:968–73.

    Article  PubMed  CAS  Google Scholar 

  55. Bercu BB, Shulman D, Root AW, et al. Growth hormone (GH) provocative testing frequently does not reflect endogenous GH secretion. J Clin Endocrinol Metab. 1986;63:709–16.

    Article  PubMed  CAS  Google Scholar 

  56. Crowne EC, Moore C, Wallace WH, et al. A novel variant of growth hormone (GH) insufficiency following low dose cranial irradiation. Clin Endocrinol (Oxf). 1992;36:59–68.

    Article  CAS  Google Scholar 

  57. Moell C, Garwicz S, Westgren U, et al. Suppressed spontaneous secretion of growth hormone in girls after treatment for acute lymphoblastic leukaemia. Arch Dis Child. 1989;64:252–8.

    Article  PubMed  CAS  Google Scholar 

  58. Tillmann V, Shalet SM, Price DA, et al. Serum insulin-like growth factor-I, IGF binding protein-3 and IGFBP-3 protease activity after cranial irradiation. Horm Res. 1998;50:71–7.

    Article  PubMed  CAS  Google Scholar 

  59. Mostoufi-Moab S, Grimberg A. Pediatric brain tumor treatment: growth consequences and their management. Pediatr Endocrinol Rev. 2010;8:6–17.

    PubMed  Google Scholar 

  60. Growth Hormone Research Society. Consensus guidelines for the diagnosis and treatment of growth hormone (GH) deficiency in childhood and adolescence: summary statement of the GH Research Society. J Clin Endocrinol Metab. 2000;85:3990–3.

    Article  Google Scholar 

  61. Wilson T, Rose S, Cohen P, et al. Update of guidelines for the use of growth hormone in children: the Lawson Wilkins Pediatric Endocrinology Society Drug and Therapeutics Committee. J Pediatr. 2003;143:415–21.

    Article  PubMed  Google Scholar 

  62. Adan L, Sainte-Rose C, Souberbielle JC, et al. Adult height after growth hormone (GH) treatment for GH deficiency due to cranial irradiation. Med Pediatr Oncol. 2000;34:14–9.

    Article  PubMed  CAS  Google Scholar 

  63. Ogilvy-Stuart AL, Shalet S. Growth and puberty after growth hormone treatment after irradiation for brain tumours. Arch Dis Child. 1995;73:141–6.

    Article  PubMed  CAS  Google Scholar 

  64. Xu W, Janss AJ, Moshang Jr T. Adult height and sitting height in children surviving medulloblastoma. J Clin Endocrinol Metab. 2003;88:4677–81.

    Article  PubMed  CAS  Google Scholar 

  65. Clayton PE, Shalet SM. The evolution of spine growth after irradiation. Clin Oncol. 1991;3:220–2.

    Article  CAS  Google Scholar 

  66. Wang ED, Drummond DS, Dormans JP, et al. Scoliosis in patients treated with growth hormone. J Pediatr Orthop. 1997;17:708–11.

    PubMed  CAS  Google Scholar 

  67. Swerdlow AJ, Higgins CD, Adlard P, et al. Risk of cancer in patients treated with human pituitary growth hormone in the UK, 1959-85: a cohort study. Lancet. 2002;360:273–7.

    Article  PubMed  CAS  Google Scholar 

  68. Swerdlow AJ, Reddingius RE, Higgins CD, et al. Growth hormone treatment of children with brain tumors and risk of tumor recurrence. J Clin Endocrinol Metab. 2000;85:4444–9.

    Article  PubMed  CAS  Google Scholar 

  69. Packer RJ, Boyett JM, Janss AJ, et al. Growth hormone replacement therapy in children with medulloblastoma: use and effect on tumor control. J Clin Oncol. 2001;19:480–7.

    PubMed  CAS  Google Scholar 

  70. Sklar CA, Mertens AC, Mitby P, et al. Risk of disease recurrence and second neoplasms in survivors of childhood cancer treated with growth hormone: a report from the Childhood Cancer Survivor Study. J Clin Endocrinol Metab. 2002;87:3136–41.

    Article  PubMed  CAS  Google Scholar 

  71. Ergun-Longmire B, Mertens A, Mitby P, et al. Growth hormone treatment and risk of second neoplasms in the childhood cancer survivor. J Clin Endocrinol Metab. 2006;91:3494–8.

    Article  PubMed  CAS  Google Scholar 

  72. Bell J, Parker KL, Swinford RD, et al. Long-term safety of recombinant human growth hormone in children. J Clin Endocrinol Metab. 2009;95:167–77.

    Article  PubMed  CAS  Google Scholar 

  73. Holm K, Nysom K, Rasmussen MH, et al. Growth, growth hormone and final height after BMT. Possible recovery of irradiation-induced growth hormone insufficiency. Bone Marrow Transplant. 1996;18: 163–70.

    PubMed  CAS  Google Scholar 

  74. Couto-Silva AC, Trivin C, Esperou H, et al. Changes in height, weight and plasma leptin after bone marrow transplantation. Bone Marrow Transplant. 2000;26:1205–10.

    Article  PubMed  CAS  Google Scholar 

  75. Gleeson HK, Gattamaneni HR, Smethurst L, et al. Reassessment of growth hormone status is required at final height in children treated with growth hormone replacement after radiation therapy. J Clin Endocrinol Metab. 2004;89:662–6.

    Article  PubMed  CAS  Google Scholar 

  76. Link K, Moëll C, Garwicz S, et al. Growth hormone deficiency predicts cardiovascular risk in young adults treated for acute lymphoblastic leukemia in childhood. J Clin Endocrinol Metab. 2004;89: 5003–12.

    Article  PubMed  CAS  Google Scholar 

  77. Murray RD, Darzy KH, Gleeson HK, et al. GH deficient survivors of childhood cancer: GH replacement during adult life. J Clin Endocrinol Metab. 2002;87:129–35.

    Article  PubMed  CAS  Google Scholar 

  78. Mukherjee A, Tolhurst-Cleaver S, Ryder WD, et al. The characteristics of quality of life impairment in adult growth hormone (GH)-deficient survivors of cancer and their response to GH replacement therapy. J Clin Endocrinol Metab. 2005;90:1542–9.

    Article  PubMed  CAS  Google Scholar 

  79. Follin C, Thilén U, Ahrén B, et al. Improvement in cardiac systolic function and reduced prevalence of metabolic syndrome after two years of growth ­hormone (GH) treatment in GH-deficient adult survivors of childhood-onset acute lymphoblastic leukemia. J Clin Endocrinol Metab. 2006;91:1872–5.

    Article  PubMed  CAS  Google Scholar 

  80. Cook D, Yuen K, Biller B, et al. American Association of Clinical Endocrinologists medical guidelines for clinical practice for growth hormone use in growth hormone-deficient adults and transition patients—2009 update. Endocr Pract. 2009;15 Suppl 2:1–29.

    PubMed  Google Scholar 

  81. Rose SR, Lustig RH, Pitukcheewanot P, et al. Diagnosis of hidden central hypothyroidism in survivors of childhood cancer. J Clin Endocrinol Metab. 1999;84:4472–9.

    Article  PubMed  CAS  Google Scholar 

  82. Kaplan MM, Garnick MB, Gelber R, et al. Risk factors for thyroid abnormalities after neck irradiation for childhood cancer. Am J Med. 1983;74:272–80.

    Article  PubMed  CAS  Google Scholar 

  83. Schmiegelow M, Feldt-Rasmussen U, Rasmussen HK, et al. A population based study of thyroid function after radiotherapy and chemotherapy for childhood brain tumor. J Clin Endocrinol Metab. 2003;88:136–40.

    Article  PubMed  CAS  Google Scholar 

  84. Picco P, Garaventa A, Claudiani F, et al. Primary hypothyroidism as a consequence of 131-I-metaiodo-benzylguanidine treatment for children with neuroblastoma. Cancer. 1995;76:1662–4.

    Article  PubMed  CAS  Google Scholar 

  85. Laverdiere C, Cheung NK, Kushner BH, et al. Long-term complications in survivors of advanced stage neuroblastoma. Pediatr Blood Cancer. 2005;45: 324–32.

    Article  PubMed  Google Scholar 

  86. Mostoufi-Moab G, Moshang Jr T. Endocrine problems in pediatric cancer survivors. In: Sarafoglou K, editor. Pediatric endocrinology and inborn errors of metabolism. New York: McGraw Hill Medical; 2009. p. 843–56.

    Google Scholar 

  87. Chemaitilly W, Sklar CA. Endocrine complications in long-term survivors of childhood cancers. Endocr Relat Cancer. 2010;17:R141–59.

    Article  PubMed  CAS  Google Scholar 

  88. Sigurdson AJ, Ronckers CM, Mertens AC, et al. Primary thyroid cancer after a first tumour in childhood (the Childhood Cancer Survivor Study): a nested case-control study. Lancet. 2005;365:2014–23.

    Article  PubMed  Google Scholar 

  89. Acharya S, Sarafoglou K, LaQuaglia M, et al. Thyroid neoplasms after therapeutic radiation for malignancies during childhood or adolescence. Cancer. 2003;97:2397–403.

    Article  PubMed  Google Scholar 

  90. Bounacer A, Wicker R, Schlumberger M, et al. Oncogenic rearrangements of the ret proto-oncogene in thyroid tumors induced after exposure to ionizing radiation. Biochimie. 1997;79:619–23.

    Article  PubMed  CAS  Google Scholar 

  91. Elisei R, Romei C, Vorontsova T, et al. RET/PTC rearrangements in thyroid nodules: studies in irradiated and not irradiated, malignant and benign thyroid lesions in children and adults. J Clin Endocrinol Metab. 2001;86:3211–6.

    Article  PubMed  CAS  Google Scholar 

  92. Brignardello E, Corrias A, Isolato G, et al. Ultrasound screening for thyroid carcinoma in childhood cancer survivors: a case series. J Clin Endocrinol Metab. 2008;93:4840–3.

    Article  PubMed  CAS  Google Scholar 

  93. Oberfield S, Soranno D, Nirenberg A, et al. Age at onset of puberty following high-dose central nervous system radiation therapy. Arch Pediatr Adolesc Med. 1996;150:589–92.

    Article  PubMed  CAS  Google Scholar 

  94. Roth C, Schmidberger H, Schaper O, et al. Cranial irradiation of female rats causes dose-dependent and age-dependent activation or inhibition of pubertal development. Pediatr Res. 2000;47:586–91.

    Article  PubMed  CAS  Google Scholar 

  95. Roth C, Schmidberger H, Lakomek M, et al. Reduction of gamma-aminobutyric acid-ergic neurotransmission as a putative mechanism of radiation induced activation of the gonadotropin releasing-hormone-pulse generator leading to precocious puberty in female rats. Neurosci Lett. 2001;297:45–8.

    Article  PubMed  CAS  Google Scholar 

  96. Lannering B, Jansson C, Rosberg S, et al. Increased LH and FSH secretion after cranial irradiation in boys. Med Pediatr Oncol. 1997;29:280–7.

    Article  PubMed  CAS  Google Scholar 

  97. Greulich WW, Pyle SI. Radiographic atlas of skeletal development of the hand and wrist. 2nd ed. Stanford, CA: Stanford University Press; 1959.

    Google Scholar 

  98. Partsch CJ, Sippell WG. Treatment of central precocious puberty. Best Pract Res Clin Endocrinol Metab. 2002;16:165–89.

    Article  PubMed  CAS  Google Scholar 

  99. Eugster EA, Clarke W, Kletter GB, et al. Efficacy and safety of histrelin subdermal implant in children with central precocious puberty: a multicenter trial. J Clin Endocrinol Metab. 2007;92:1697–704.

    Article  PubMed  CAS  Google Scholar 

  100. Carel JC, Eugster EA, Rogol A, Ghizzoni L, and Palmert MR, on behalf of the ESPE-LWPES GnRH Analogs Consensus Conference Group. Consensus statement on the use of gonadotropin-releasing hormone analogs in children. Pediatrics. 2009;123: e752–62

    Google Scholar 

  101. Diaz-Thomas A, Shulman D. Use of aromatase inhibitors in children and adolescents: what’s new? Curr Opin Pediatr. 2010;22:501–7.

    Article  PubMed  Google Scholar 

  102. Shalitin S, Gal M, Goshen Y, et al. Endocrine outcome in long-term survivors of childhood brain tumors. Horm Res Paediatr. 2011;76:113–22.

    Article  PubMed  CAS  Google Scholar 

  103. Constine LS, Woolf PD, Cann D, et al. Hypothalamic-pituitary dysfunction after radiation for brain tumors. N Eng J Med. 1993;328:87–94.

    Article  CAS  Google Scholar 

  104. Armstrong GT, Whitton JA, Gajjar A, et al. Abnormal timing of menarche in survivors of central nervous system tumors: a report from the Childhood Cancer Survivor Study. Cancer. 2009;115:2562–70.

    Article  PubMed  Google Scholar 

  105. Byrne J. Infertility and premature menopause in childhood cancer survivors. Med Pediatr Oncol. 1999;33:24–8.

    Article  PubMed  CAS  Google Scholar 

  106. Sklar CA. Maintenance of ovarian function and risk of premature menopause related to cancer treatment. J Natl Cancer Inst Monogr. 2005;34:25–7.

    Article  PubMed  Google Scholar 

  107. Sklar CA. Reproductive physiology and treatment related loss of sex hormone production. Med Pediatr Oncol. 1999;33:2–8.

    Article  PubMed  CAS  Google Scholar 

  108. Lushbaugh CC, Casarett GW. The effect of gonadal irradiation in clinical radiation therapy: a review. Cancer. 1976;37:1111–20.

    Article  PubMed  CAS  Google Scholar 

  109. Balis FM, Poplack DG. Cancer chemotherapy. In: Nathan DG, Oski FA, editors. Hematology of infancy and childhood. 4th ed. Philadelphia, PA: Saunders; 1976. p. 1223–9.

    Google Scholar 

  110. Chemaitilly W, Mertens A, Mitby P, et al. Acute ovarian failure in the childhood cancer survivor study. J Clin Endocrinol Metab. 2006;91:1723–8.

    Article  PubMed  CAS  Google Scholar 

  111. Bhasin S, Jameson JL. Disorders of the testes and male reproductive system. In: Larry Jameson J, editor. Harrison’s endocrinology. New York: McGraw Hill; 2006. p. 173–94.

    Google Scholar 

  112. Simon B, Lee S, Partridge AH, et al. Preserving fertility after cancer. CA Cancer J Clin. 2005;55: 211–28.

    Article  PubMed  Google Scholar 

  113. Wallace WH, Thompson AB. Preservation of fertility in children treated for cancer. Arch Dis Child. 2003;88:493–6.

    Article  PubMed  CAS  Google Scholar 

  114. Critchley HO. Factors of importance for implantation and problems after treatment for childhood cancer. Med Pediatr Oncol. 1999;33:9–14.

    Article  PubMed  CAS  Google Scholar 

  115. Society for Assisted Reproductive Technology, American Society for Reproductive Medicine. Assisted reproductive technology in the United States: 2000 results generated from the American Society for Reproductive Medicine/Society for Assisted Reproductive Technology Registry. Fertil Steril. 2004;81:1207–20.

    Article  Google Scholar 

  116. Rose SR, Danish RK, Kearney NS, et al. ACTH deficiency in childhood cancer survivors. Pediatr Blood Cancer. 2005;45:808–13.

    Article  PubMed  Google Scholar 

  117. Anmuth CJ, Ross BW, Alexander MA, et al. Chronic syndrome of inappropriate secretion of antidiuretic hormone in a pediatric patient after traumatic brain injury. Arch Phys Med Rehabil. 1993;74:1219–21.

    PubMed  CAS  Google Scholar 

  118. Forrest JN, Cox M, Hong C, et al. Superiority of democlocycline over lithium in the treatment of chronic syndrome of inappropriate secretion of antidiuretic hormone. N Eng J Med. 1978;298:173–7.

    Article  Google Scholar 

  119. Rianthavorn P, Cain J, Turman MA. Use of conivaptan to allow aggressive hydration to prevent tumor lysis syndrome in a pediatric patient with large-cell lymphoma and SIADH. Pediatr Nephrol. 2008;23: 1367–70.

    Article  PubMed  Google Scholar 

  120. Chan JM, Rimm EB, Colditz GA, et al. Obesity, fat distribution, and weight gain as risk factors for clinical diabetes in men. Diabetes Care. 1994;17:961–9.

    Article  PubMed  CAS  Google Scholar 

  121. Colditz GA, Willett WC, Rotnitzky A, et al. Weight gain as a risk factor for clinical diabetes mellitus in women. Ann Intern Med. 1995;122:481–6.

    PubMed  CAS  Google Scholar 

  122. Vasan RS, Larson MG, Leip EP, et al. Assessment of frequency of progression to hypertension in non-hypertensive participants in the Framingham Heart Study: a cohort study. Lancet. 2001;358:1682–6.

    Article  PubMed  CAS  Google Scholar 

  123. Gostynski M, Gutzwiller F, Kuulasmaa K, et al. Analysis of the relationship between total cholesterol, age, body mass index among males and females in the WHO MONICA Project. Int J Obes Relat Metab Disord. 2004;28:1082–90.

    Article  PubMed  CAS  Google Scholar 

  124. Poirier P, Giles TD, Bray GA, et al. Obesity and cardiovascular disease: pathophysiology, evaluation, and effect of weight loss—an update of the 1997 American Heart Association scientific statement on obesity and heart disease from the Obesity Committee of the Council on Nutrition, Physical Activity, and Metabolism. Circulation. 2006;113:898–918.

    Article  PubMed  Google Scholar 

  125. Rosengren A, Wedel H, Wilhelmsen L. Body weight and weight gain during adult life in men in relation to coronary heart disease and mortality. A prospective population study. Eur Heart J. 1999;20: 269–77.

    Article  PubMed  CAS  Google Scholar 

  126. Dalton VK, Rue M, Silverman LB, et al. Height and weight in children treated for acute lymphoblastic leukemia: relationship to CNS treatment. J Clin Oncol. 2003;21:2953–60.

    Article  PubMed  Google Scholar 

  127. Jarfelt M, Lannering B, Bosaeus I, et al. Body composition in young adult survivors of childhood acute lymphoblastic leukaemia. Eur J Endocrinol. 2005;153:81–9.

    Article  PubMed  CAS  Google Scholar 

  128. Mayer EI, Reuter M, Dopfer RE, et al. Energy expenditure, energy intake and prevalence of obesity after therapy for acute lymphoblastic leukemia during childhood. Horm Res. 2000;53:193–9.

    Article  PubMed  CAS  Google Scholar 

  129. Nysom K, Holm K, Michaelsen KF, et al. Degree of fatness after treatment for acute lymphoblastic leukemia in childhood. J Clin Endocrinol Metab. 1999;84:4591–6.

    Article  PubMed  CAS  Google Scholar 

  130. Oeffinger KC, Mertens AC, Sklar CA, et al. Obesity in adult survivors of childhood acute lymphoblastic leukemia: a report from the Childhood Cancer Survivor Study. J Clin Oncol. 2003;21:1359–65.

    Article  PubMed  Google Scholar 

  131. Talvensaari KK, Lanning M, Tapanainen P, et al. Long-term survivors of childhood cancer have an increased risk of manifesting the metabolic syndrome. J Clin Endocrinol Metab. 1996;81:3051–5.

    Article  PubMed  CAS  Google Scholar 

  132. Alberti KG, Zimmet PZ. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabet Med. 1998;15:539–53.

    Article  PubMed  CAS  Google Scholar 

  133. Expert Panel on Detection, Evaluation, And Treatment of High Blood Cholesterol In Adults. Executive Summary of The Third Report of The National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, And Treatment of High Blood Cholesterol In Adults (Adult Treatment Panel III). JAMA. 2001;285:2486–97.

    Article  Google Scholar 

  134. Balkau B, Charles MA. European Group for the Study of Insulin Resistance (EGIR). Comment on the provisional report from the WHO consultation. Diabet Med. 1999;16:442–3.

    Article  PubMed  CAS  Google Scholar 

  135. Zimmet PZ, Alberti KG, Shaw JE. Mainstreaming the metabolic syndrome: a definitive definition. Med J Aust. 2005;183:175–6.

    PubMed  Google Scholar 

  136. Meacham L, Chow E, Ness K, et al. Cardiovascular risk factors in adult survivors of pediatric cancer: a report from the Childhood Cancer Survivor Study. Cancer Epidemiol Biomarkers Prev. 2010;19:170–81.

    Article  PubMed  Google Scholar 

  137. Garmey E, Liu Q, Sklar CA, et al. Longitudinal changes in obesity and body mass index among adult survivors of childhood acute lymphoblastic leukemia: a report from the Childhood Cancer Survivor Study. J Clin Oncol. 2008;26:4639–45.

    Article  PubMed  Google Scholar 

  138. Jones KL, Arslanian S, Peterokova VA, et al. Effect of metformin in pediatric patients with type 2 diabetes: a randomized controlled trial. Diabetes Care. 2002;25:89–94.

    Article  PubMed  CAS  Google Scholar 

  139. Atkinson SA, Halton JM, Bradley C, et al. Bone and mineral abnormalities in childhood acute lymphoblastic leukemia: influence of disease, drugs and nutrition. Int J Cancer Suppl. 1998;11:35–9.

    Article  PubMed  CAS  Google Scholar 

  140. Hartman A, van den Bos C, Stijnen T, et al. Decrease in peripheral muscle strength and ankle dorsiflexion as long-term side effects of treatment for childhood cancer. Pediatr Blood Cancer. 2007;50:833–7.

    Article  Google Scholar 

  141. Crofton PM, Ahmed SF, Wade JC, et al. Effects of intensive chemotherapy on bone and collagen turnover and the growth hormone axis in children with acute lymphoblastic leukemia. J Clin Endocrinol Metab. 1998;83:3121–9.

    Article  PubMed  CAS  Google Scholar 

  142. Gilsanz V, Carlson ME, Roe TF, et al. Osteoporosis after cranial irradiation for acute lymphoblastic leukemia. J Pediatr. 1990;117:238–44.

    Article  PubMed  CAS  Google Scholar 

  143. Alikasifoglu A, Yetgin S, Cetin M, et al. Bone mineral density and serum bone turnover markers in ­survivors of childhood acute lymphoblastic leukemia: comparison of megadose methylprednisolone and conventional-dose prednisolone treatments. Am J Hematol. 2005;80:113–8.

    Article  PubMed  CAS  Google Scholar 

  144. Halton J, Gaboury I, Grant R, et al. Advanced vertebral fracture among newly diagnosed children with acute lymphoblastic leukemia: result of the Canadian Steroid-Associated Osteoporosis in the Pediatric Population (STOPP) research program. J Bone Miner Res. 2009;24:1326–33.

    Article  PubMed  Google Scholar 

  145. Maniadaki I, Stiakaki E, Germanakis I, et al. Evaluation of bone mineral density at different phases of therapy of childhood ALL. Pediatr Hematol Oncol. 2006;23:11–8.

    Article  PubMed  Google Scholar 

  146. van der Sluis IM, van den Heuvel-Eibrink MM, Hahlen K, et al. Altered bone mineral density and body composition, and increased fracture risk in childhood acute lymphoblastic leukemia. J Pediatr. 2002;141:204–10.

    Article  PubMed  Google Scholar 

  147. Arikoski P, Komulainen J, Riikonen P, et al. Alterations in bone turnover and impaired development of bone mineral density in newly diagnosed children with cancer: a 1-year prospective study. J Clin Endocrinol Metab. 1999;84:3174–81.

    Article  PubMed  CAS  Google Scholar 

  148. Hogler W, Wehl G, van Staa T, et al. Incidence of skeletal complications during treatment of childhood acute lymphoblastic leukemia: comparison of fracture risk with the general practice research database. Pediatr Blood Cancer. 2007;48:21–7.

    Article  PubMed  Google Scholar 

  149. Mattano LA, Sather HN, Trigg ME, et al. Osteonecrosis as complication of treating acute lymphoblastic leukaemia in children: a report from the children’s cancer group. J Clin Oncol. 2000;18:3262–72.

    PubMed  Google Scholar 

  150. Lackner H, Benesch M, Moser A, et al. Aseptic osteonecrosis in children and adolescents treated for hemato-oncological diseases: a 13-year longitudinal observational study. J Pediatr Hematol Oncol. 2005;27:259–63.

    Article  PubMed  Google Scholar 

  151. Sala A, Mattano LA, Barr RD. Osteonecrosis in children and adolescents with cancer—an adverse effect of systemic therapy. Eur J Cancer. 2007;43:683–9.

    Article  PubMed  Google Scholar 

  152. Patel B, Richards SM, Rowe JM, et al. High incidence of avascular necrosis in adolescents with acute lymphoblastic leukaemia: a UKALL XII analysis. Leukemia. 2008;22:308–12.

    Article  PubMed  CAS  Google Scholar 

  153. Leonard MB, Zemel BS. Current concepts in pediatric bone disease. Pediatr Clin North Am. 2002;49: 143–73.

    Article  PubMed  Google Scholar 

  154. Karimova EJ, Kaste SC. MR imaging of osteonecrosis of the knee in children with acute lymphocytic leukemia. Pediatr Radiol. 2007;37:1140–6.

    Article  PubMed  Google Scholar 

  155. Gordon CM, Bachrach LK, Carpenter TO, et al. Dual energy X-ray absorptiometry interpretation and reporting in children and adolescents: the 2007 ISCD pediatric official positions. J Clin Densitom. 2008; 11:43–58.

    Article  PubMed  Google Scholar 

  156. Nguyen T, Zacharin M. Pamidronate treatment of steroid associated osteonecrosis in young patients treated for acute lymphoblastic leukaemia—two-year outcomes. J Pediatr Endocrinol Metab. 2006; 19:161–7.

    Article  PubMed  CAS  Google Scholar 

  157. Lethaby C, Wiernikowski J, Sala A, et al. Bisphosphonate therapy for reduced bone mineral density during treatment of acute lymphoblastic leukaemia in childhood and adolescence: a report of preliminary experience. J Pediatr Hematol Oncol. 2007;29:613–6.

    Article  PubMed  CAS  Google Scholar 

  158. Wiernikowski JT, Barr RD, Webber C, et al. Alendronate for steroid-induced osteopenia in ­children with acute lymphoblastic leukaemia or ­non-Hodgkin’s lymphoma: results of a pilot study. J Oncol Pharm Pract. 2005;11:51–6.

    Article  PubMed  CAS  Google Scholar 

  159. Hewitt M, Weiner SL, Simone JV, editors. Childhood cancer survivorship: improving care and quality of life. Washington, DC: National Academies Press; 2003.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jill L. Brodsky M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Brodsky, J.L., Grimberg, A. (2013). Management of Acute and Late Endocrine Effects Following Childhood Cancer Treatment. In: Radovick, S., MacGillivray, M. (eds) Pediatric Endocrinology. Contemporary Endocrinology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-395-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-395-4_10

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-394-7

  • Online ISBN: 978-1-60761-395-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics