Skip to main content

Mouse Models of Myeloid Leukemia

  • Chapter
  • First Online:
Book cover Neoplastic Hematopathology

Part of the book series: Contemporary Hematology ((CH))

  • 2183 Accesses

Abstract/Scope of Chapter

This chapter provides a broad overview of the various techniques used to model human myeloid malignancies and focuses on those areas where mouse modeling has been particularly valuable in advancing our understanding of human myeloid neoplasia. The studies in mice modeling BCR-ABL1-positive chronic myelogenous leukemia, PML-RARA-positive acute promyelocytic leukemia, and the core-binding factor acute myeloid leukemias are discussed in more detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McCormack E, Bruserud O, Gjertsen BT. Review: genetic models of acute myeloid leukaemia. Oncogene 2008;27(27):3765-79.

    Article  PubMed  CAS  Google Scholar 

  2. Sharpless NE, DePinho RA. The mighty mouse: genetically engineered mouse models in cancer drug development. Nat Rev Drug Discov 2006;5(9):741-54.

    Article  PubMed  CAS  Google Scholar 

  3. Kogan SC, Ward JM, Anver MR, et al. Bethesda proposals for classification of nonlymphoid hematopoietic neoplasms in mice. Blood 2002;100(1):238-45.

    Article  PubMed  CAS  Google Scholar 

  4. Cuenco GM, Nucifora G, Ren R. Human AML1/MDS1/EVI1 fusion protein induces an acute myelogenous leukemia (AML) in mice: a model for human AML. Proc Natl Acad Sci USA 2000;97(4):1760-5.

    Article  PubMed  CAS  Google Scholar 

  5. Kunder S, Calzada-Wack J, Holzlwimmer G, et al. A comprehensive antibody panel for immunohistochemical analysis of formalin-fixed, paraffin-embedded hematopoietic neoplasms of mice: analysis of mouse specific and human antibodies cross-reactive with murine tissue. Toxicol Pathol 2007;35(3):366-75.

    Article  PubMed  CAS  Google Scholar 

  6. Swerdlow SH, Campo E, Harris NL, et al. WHO classification of tumours of haematopoietic and lymphoid tissues. Lyon: IARC Press, 2008.

    Google Scholar 

  7. Nowell PC, Hungerford DA. A minute chromosome in human chronic granulocytic leukemia. Science 1960;132:1497.

    Google Scholar 

  8. Wong S, Witte ON. The BCR-ABL story: bench to bedside and back. Annu Rev Immunol 2004;22:247-306.

    Article  PubMed  CAS  Google Scholar 

  9. Hariharan IK, Harris AW, Crawford M, et al. A bcr-v-abl oncogene induces lymphomas in transgenic mice. Mol Cell Biol 1989;9(7):2798-805.

    PubMed  CAS  Google Scholar 

  10. Heisterkamp N, Jenster G, Kioussis D, Pattengale PK, Groffen J. Human bcr-abl gene has a lethal effect on embryogenesis. Transgenic Res 1991;1(1):45-53.

    Article  PubMed  CAS  Google Scholar 

  11. Daley GQ, Van Etten RA, Baltimore D. Induction of chronic myelogenous leukemia in mice by the P210bcr/abl gene of the Philadelphia chromosome. Science 1990;247(4944):824-30.

    Article  PubMed  CAS  Google Scholar 

  12. Kelliher MA, McLaughlin J, Witte ON, Rosenberg N. Induction of a chronic myelogenous leukemia-like syndrome in mice with v-abl and BCR/ABL. Proc Natl Acad Sci USA 1990;87(17):6649-53.

    Article  PubMed  CAS  Google Scholar 

  13. Li S, Ilaria RL Jr, Million RP, Daley GQ, Van Etten RA. The P190, P210, and P230 forms of the BCR/ABL oncogene induce a similar chronic myeloid leukemia-like syndrome in mice but have different lymphoid leukemogenic activity. J Exp Med 1999;189(9):1399-412.

    Article  PubMed  CAS  Google Scholar 

  14. Pear WS, Miller JP, Xu L, et al. Efficient and rapid induction of a chronic myelogenous leukemia-like myeloproliferative disease in mice receiving P210 bcr/abl-transduced bone marrow. Blood 1998;92(10):3780-92.

    PubMed  CAS  Google Scholar 

  15. Zhang X, Ren R. Bcr-Abl efficiently induces a myeloproliferative disease and production of excess interleukin-3 and granulocyte-macrophage colony-stimulating factor in mice: a novel model for chronic myelogenous leukemia. Blood 1998;92(10):3829-40.

    PubMed  CAS  Google Scholar 

  16. Ren R. Mechanisms of BCR-ABL in the pathogenesis of chronic myelogenous leukaemia. Nat Rev Cancer 2005;5(3):172-83.

    Article  PubMed  CAS  Google Scholar 

  17. Roumiantsev S, de Aos IE, Varticovski L, Ilaria RL, Van Etten RA. The src homology 2 domain of Bcr/Abl is required for efficient induction of chronic myeloid leukemia-like disease in mice but not for lymphoid leukemogenesis or activation of phosphatidylinositol 3-kinase. Blood 2001;97(1):4-13.

    Article  PubMed  CAS  Google Scholar 

  18. Zhang X, Wong R, Hao SX, Pear WS, Ren R. The SH2 domain of bcr-Abl is not required to induce a murine myeloproliferative disease; however, SH2 signaling influences disease latency and phenotype. Blood 2001;97(1):277-87.

    Article  PubMed  CAS  Google Scholar 

  19. Sirard C, Laneuville P, Dick JE. Expression of bcr-abl abrogates factor-dependent growth of human hematopoietic M07E cells by an autocrine mechanism. Blood 1994;83(6):1575-85.

    PubMed  CAS  Google Scholar 

  20. Anderson SM, Mladenovic J. The BCR-ABL oncogene requires both kinase activity and src-homology 2 domain to induce cytokine secretion. Blood 1996;87(1):238-44.

    PubMed  CAS  Google Scholar 

  21. Hariharan IK, Adams JM, Cory S. bcr-abl oncogene renders myeloid cell line factor independent: potential autocrine mechanism in chronic myeloid leukemia. Oncogene Res 1988;3(4):387-99.

    PubMed  CAS  Google Scholar 

  22. Li S, Gillessen S, Tomasson MH, Dranoff G, Gilliland DG, Van Etten RA. Interleukin 3 and granulocyte-macrophage colony-stimulating factor are not required for induction of chronic myeloid leukemia-like myeloproliferative disease in mice by BCR/ABL. Blood 2001;97(5):1442-50.

    Article  PubMed  CAS  Google Scholar 

  23. Wong S, McLaughlin J, Cheng D, Shannon K, Robb L, Witte ON. IL-3 receptor signaling is dispensable for BCR-ABL-induced myeloproliferative disease. Proc Natl Acad Sci USA 2003;100(20):11630-5.

    Article  PubMed  CAS  Google Scholar 

  24. Wang ZY, Chen Z. Acute promyelocytic leukemia: from highly fatal to highly curable. Blood 2008;111(5):2505-15.

    Article  PubMed  CAS  Google Scholar 

  25. Kogan SC. Mouse models of acute promyelocytic leukemia. Curr Top Microbiol Immunol 2007;313:3-29.

    Article  PubMed  CAS  Google Scholar 

  26. Brown D, Kogan S, Lagasse E, et al. A PMLRARalpha transgene initiates murine acute promyelocytic leukemia. Proc Natl Acad Sci USA 1997;94(6):2551-6.

    Article  PubMed  CAS  Google Scholar 

  27. Grisolano JL, Wesselschmidt RL, Pelicci PG, Ley TJ. Altered myeloid development and acute leukemia in transgenic mice expressing PML-RAR alpha under control of cathepsin G regulatory sequences. Blood 1997;89(2):376-87.

    PubMed  CAS  Google Scholar 

  28. He LZ, Tribioli C, Rivi R, et al. Acute leukemia with promyelocytic features in PML/RARalpha transgenic mice. Proc Natl Acad Sci USA 1997;94(10):5302-7.

    Article  PubMed  CAS  Google Scholar 

  29. Westervelt P, Lane AA, Pollock JL, et al. High-penetrance mouse model of acute promyelocytic leukemia with very low levels of PML-RARalpha expression. Blood 2003;102(5):1857-65.

    Article  PubMed  CAS  Google Scholar 

  30. Speck NA, Gilliland DG. Core-binding factors in haematopoiesis and leukaemia. Nat Rev Cancer 2002;2(7):502-13.

    Article  PubMed  CAS  Google Scholar 

  31. Lin RJ, Evans RM. Acquisition of oncogenic potential by RAR chimeras in acute promyelocytic leukemia through formation of homodimers. Mol Cell 2000;5(5):821-30.

    Article  PubMed  CAS  Google Scholar 

  32. Minucci S, Maccarana M, Cioce M, et al. Oligomerization of RAR and AML1 transcription factors as a novel mechanism of oncogenic activation. Mol Cell 2000;5(5):811-20.

    Article  PubMed  CAS  Google Scholar 

  33. Sternsdorf T, Phan VT, Maunakea ML, et al. Forced retinoic acid receptor alpha homodimers prime mice for APL-like leukemia. Cancer Cell 2006;9(2):81-94.

    Article  PubMed  CAS  Google Scholar 

  34. Higuchi M, O’Brien D, Kumaravelu P, Lenny N, Yeoh EJ, Downing JR. Expression of a conditional AML1-ETO oncogene bypasses embryonic lethality and establishes a murine model of human t(8;21) acute myeloid leukemia. Cancer Cell 2002;1(1):63-74.

    Article  PubMed  CAS  Google Scholar 

  35. Rhoades KL, Hetherington CJ, Harakawa N, et al. Analysis of the role of AML1-ETO in leukemogenesis, using an inducible transgenic mouse model. Blood 2000;96(6):2108-15.

    PubMed  CAS  Google Scholar 

  36. Yuan Y, Zhou L, Miyamoto T, et al. AML1-ETO expression is directly involved in the development of acute myeloid leukemia in the presence of additional mutations. Proc Natl Acad Sci USA 2001;98(18):10398-403.

    Article  PubMed  CAS  Google Scholar 

  37. Castilla LH, Garrett L, Adya N, et al. The fusion gene cbfb-MYH11 blocks myeloid differentiation and predisposes mice to acute myelomonocytic leukaemia. Nat Genet 1999;23(2):144-6.

    Article  PubMed  CAS  Google Scholar 

  38. Corral J, Lavenir I, Impey H, et al. An Mll-AF9 fusion gene made by homologous recombination causes acute leukemia in chimeric mice: a method to create fusion oncogenes. Cell 1996;85(6):853-61.

    Article  PubMed  CAS  Google Scholar 

  39. Dobson CL, Warren AJ, Pannell R, et al. The mll-AF9 gene fusion in mice controls myeloproliferation and specifies acute myeloid leukaemogenesis. EMBO J 1999;18(13):3564-74.

    Article  PubMed  CAS  Google Scholar 

  40. Minucci S, Monestiroli S, Giavara S, et al. PML-RAR induces promyelocytic leukemias with high efficiency following retroviral gene transfer into purified murine hematopoietic progenitors. Blood 2002;100(8):2989-95.

    Article  PubMed  CAS  Google Scholar 

  41. So CW, Karsunky H, Passegue E, Cozzio A, Weissman IL, Cleary ML. MLL-GAS7 transforms multipotent hematopoietic progenitors and induces mixed lineage leukemias in mice. Cancer Cell 2003;3(2):161-71.

    Article  PubMed  CAS  Google Scholar 

  42. Wong P, Iwasaki M, Somervaille TC, So CW, Cleary ML. Meis1 is an essential and rate-limiting regulator of MLL leukemia stem cell potential. Genes Dev 2007;21(21):2762-74.

    Article  PubMed  CAS  Google Scholar 

  43. Alcalay M, Zangrilli D, Fagioli M, et al. Expression pattern of the RAR alpha-PML fusion gene in acute promyelocytic leukemia. Proc Natl Acad Sci USA 1992;89(11):4840-4.

    Article  PubMed  CAS  Google Scholar 

  44. Grimwade D, Howe K, Langabeer S, et al. Establishing the presence of the t(15;17) in suspected acute promyelocytic leukaemia: cytogenetic, molecular and PML immunofluorescence assessment of patients entered into the M.R.C. ATRA trial. M.R.C. Adult Leukaemia Working Party. Br J Haematol 1996;94(3):557-73.

    PubMed  CAS  Google Scholar 

  45. Li YP, Andersen J, Zelent A, et al. RAR alpha1/RAR alpha2-PML mRNA expression in acute promyelocytic leukemia cells: a molecular and laboratory-clinical correlative study. Blood 1997;90(1):306-12.

    PubMed  CAS  Google Scholar 

  46. Pollock JL, Westervelt P, Kurichety AK, Pelicci PG, Grisolano JL, Ley TJ. A bcr-3 isoform of RARalpha-PML potentiates the development of PML-RARalpha-driven acute promyelocytic leukemia. Proc Natl Acad Sci USA 1999;96(26):15103-8.

    Article  PubMed  CAS  Google Scholar 

  47. Gilliland DG, Griffin JD. The roles of FLT3 in hematopoiesis and leukemia. Blood 2002;100(5):1532-42.

    Article  PubMed  CAS  Google Scholar 

  48. Callens C, Chevret S, Cayuela JM, et al. Prognostic implication of FLT3 and Ras gene mutations in patients with acute promyelocytic leukemia (APL): a retrospective study from the European APL Group. Leukemia 2005;19(7):1153-60.

    Article  PubMed  CAS  Google Scholar 

  49. Kottaridis PD, Gale RE, Frew ME, et al. The presence of a FLT3 internal tandem duplication in patients with acute myeloid leukemia (AML) adds important prognostic information to cytogenetic risk group and response to the first cycle of chemotherapy: analysis of 854 patients from the United Kingdom Medical Research Council AML 10 and 12 trials. Blood 2001;98(6):1752-9.

    Article  PubMed  CAS  Google Scholar 

  50. Kelly LM, Kutok JL, Williams IR, et al. PML/RARalpha and FLT3-ITD induce an APL-like disease in a mouse model. Proc Natl Acad Sci USA 2002;99(12):8283-8.

    Article  PubMed  CAS  Google Scholar 

  51. Sohal J, Phan VT, Chan PV, et al. A model of APL with FLT3 mutation is responsive to retinoic acid and a receptor tyrosine kinase inhibitor, SU11657. Blood 2003;101(8):3188-97.

    Article  PubMed  CAS  Google Scholar 

  52. Liu P, Tarle SA, Hajra A, et al. Fusion between transcription factor CBF beta/PEBP2 beta and a myosin heavy chain in acute myeloid leukemia. Science 1993;261(5124):1041-4.

    Article  PubMed  CAS  Google Scholar 

  53. Castilla LH, Perrat P, Martinez NJ, et al. Identification of genes that synergize with Cbfb-MYH11 in the pathogenesis of acute myeloid leukemia. Proc Natl Acad Sci USA 2004;101(14):4924-9.

    Article  PubMed  CAS  Google Scholar 

  54. Uren AG, Kool J, Berns A, van Lohuizen M. Retroviral insertional mutagenesis: past, present and future. Oncogene 2005;24(52):7656-72.

    Article  PubMed  CAS  Google Scholar 

  55. Landrette SF, Kuo YH, Hensen K, et al. Plag1 and Plagl2 are oncogenes that induce acute myeloid leukemia in cooperation with Cbfb-MYH11. Blood 2005;105(7):2900-7.

    Article  PubMed  CAS  Google Scholar 

  56. Van DF, Declercq J, Braem CV, Van de V. PLAG1, the prototype of the PLAG gene family: versatility in tumour development (review). Int J Oncol 2007;30(4):765-74.

    Google Scholar 

  57. Kas K, Voz ML, Roijer E, et al. Promoter swapping between the genes for a novel zinc finger protein and beta-catenin in pleiomorphic adenomas with t(3;8)(p21;q12) translocations. Nat Genet 1997;15(2):170-4.

    Article  PubMed  CAS  Google Scholar 

  58. Zatkova A, Rouillard JM, Hartmann W, et al. Amplification and overexpression of the IGF2 regulator PLAG1 in hepatoblastoma. Genes Chromosomes Cancer 2004;39(2):126-37.

    Article  PubMed  CAS  Google Scholar 

  59. Hibbard MK, Kozakewich HP, Dal CP, et al. PLAG1 fusion oncogenes in lipoblastoma. Cancer Res 2000;60(17):4869-72.

    PubMed  CAS  Google Scholar 

  60. Buijs A, Sherr S, Van BS, et al. Translocation (12;22) (p13;q11) in myeloproliferative disorders results in fusion of the ETS-like TEL gene on 12p13 to the MN1 gene on 22q11. Oncogene 1995;10(8):1511-9.

    PubMed  CAS  Google Scholar 

  61. Lekanne Deprez RH, Riegman PH, Groen NA, et al. Cloning and characterization of MN1, a gene from chromosome 22q11, which is disrupted by a balanced translocation in a meningioma. Oncogene 1995;10(8):1521-8.

    PubMed  CAS  Google Scholar 

  62. Carella C, Bonten J, Sirma S, et al. MN1 overexpression is an important step in the development of inv(16) AML. Leukemia 2007;21(8):1679-90.

    Article  PubMed  CAS  Google Scholar 

  63. Heuser M, Argiropoulos B, Kuchenbauer F, et al. MN1 overexpression induces acute myeloid leukemia in mice and predicts ATRA resistance in patients with AML. Blood 2007;110(5):1639-47.

    Article  PubMed  CAS  Google Scholar 

  64. Ross ME, Mahfouz R, Onciu M, et al. Gene expression profiling of pediatric acute myelogenous leukemia. Blood 2004;104(12):3679-87.

    Article  PubMed  CAS  Google Scholar 

  65. Valk PJ, Verhaak RG, Beijen MA, et al. Prognostically useful gene-expression profiles in acute myeloid leukemia. N Engl J Med 2004;350(16):1617-28.

    Article  PubMed  CAS  Google Scholar 

  66. van Wely KH, Molijn AC, Buijs A, et al. The MN1 oncoprotein synergizes with coactivators RAC3 and p300 in RAR-RXR-mediated transcription. Oncogene 2003;22(5):699-709.

    Article  PubMed  Google Scholar 

  67. Heuser M, Beutel G, Krauter J, et al. High meningioma 1 (MN1) expression as a predictor for poor outcome in acute myeloid leukemia with normal cytogenetics. Blood 2006;108(12):3898-905.

    Article  PubMed  CAS  Google Scholar 

  68. Byrd JC, Mrozek K, Dodge RK, et al. Pretreatment cytogenetic abnormalities are predictive of induction success, cumulative incidence of relapse, and overall survival in adult patients with de novo acute myeloid leukemia: results from Cancer and Leukemia Group B (CALGB 8461). Blood 2002;100(13):4325-36.

    Article  PubMed  CAS  Google Scholar 

  69. Grimwade D, Walker H, Oliver F, et al. The importance of diagnostic cytogenetics on outcome in AML: analysis of 1, 612 patients enrolled into the MRC AML 10 trial. Blood 1998;92(7):2322-33.

    PubMed  CAS  Google Scholar 

  70. Slovak ML, Kopecky KJ, Cassileth PA, et al. Karyotypic analysis predicts outcome of preremission and postremission therapy in adult acute myeloid leukemia: a Southwest Oncology Group/Eastern Cooperative Oncology Group Study. Blood 2000;96(13):4075-83.

    PubMed  CAS  Google Scholar 

  71. Okuda T, Cai Z, Yang S, et al. Expression of a knocked-In AML1-ETO leukemia gene inhibits the establishment of normal definitive hematopoiesis and directly generates dysplastic hematopoietic progenitors [In Process Citation]. Blood 1998;91(9):3134-43.

    PubMed  CAS  Google Scholar 

  72. Yergeau DA, Hetherington CJ, Wang Q, et al. Embryonic lethality and impairment of haematopoiesis in mice heterozygous for an AML1-ETO fusion gene. Nat Genet 1997;15(3):303-6.

    Article  PubMed  CAS  Google Scholar 

  73. Fenske TS, Pengue G, Mathews V, et al. Stem cell expression of the AML1/ETO fusion protein induces a myeloproliferative disorder in mice. Proc Natl Acad Sci USA 2004;101(42):15184-9.

    Article  PubMed  CAS  Google Scholar 

  74. Schessl C, Rawat VP, Cusan M, et al. The AML1-ETO fusion gene and the FLT3 length mutation collaborate in inducing acute leukemia in mice. J Clin Invest 2005;115(8):2159-68.

    Article  PubMed  CAS  Google Scholar 

  75. Schwieger M, Lohler J, Friel J, Scheller M, Horak I, Stocking C. AML1-ETO inhibits maturation of multiple lymphohematopoietic lineages and induces myeloblast transformation in synergy with ICSBP deficiency. J Exp Med 2002;196(9):1227-40.

    Article  PubMed  CAS  Google Scholar 

  76. Grisolano JL, O’Neal J, Cain J, Tomasson MH. An activated receptor tyrosine kinase, TEL/PDGF{beta}R, cooperates with AML1/ETO to induce acute myeloid leukemia in mice. Proc Natl Acad Sci USA 2003;100(16):9506-11.

    Article  PubMed  CAS  Google Scholar 

  77. Yan M, Kanbe E, Peterson LF, et al. A previously unidentified alternatively spliced isoform of t(8;21) transcript promotes leukemogenesis. Nat Med 2006;12(8):945-9.

    Article  PubMed  CAS  Google Scholar 

  78. Kuo YH, Landrette SF, Heilman SA, et al. Cbf beta-SMMHC induces distinct abnormal myeloid progenitors able to develop acute myeloid leukemia. Cancer Cell 2006;9(1):57-68.

    Article  PubMed  CAS  Google Scholar 

  79. Lane AA, Ley TJ. Neutrophil elastase cleaves PML-RARalpha and is important for the development of acute promyelocytic leukemia in mice. Cell 2003;115(3):305-18.

    Article  PubMed  CAS  Google Scholar 

  80. Rego EM, Wang ZG, Peruzzi D, He LZ, Cordon-Cardo C, Pandolfi PP. Role of promyelocytic leukemia (PML) protein in tumor suppression. J Exp Med 2001;193(4):521-9.

    Article  PubMed  CAS  Google Scholar 

  81. Chan IT, Kutok JL, Williams IR, et al. Oncogenic K-ras cooperates with PML-RAR alpha to induce an acute promyelocytic leukemia-like disease. Blood 2006;108(5):1708-15.

    Article  PubMed  CAS  Google Scholar 

  82. Cheng GX, Zhu XH, Men XQ, et al. Distinct leukemia phenotypes in transgenic mice and different corepressor interactions generated by promyelocytic leukemia variant fusion genes PLZF-RARalpha and NPM-RARalpha. Proc Natl Acad Sci USA 1999;96(11):6318-23.

    Article  PubMed  CAS  Google Scholar 

  83. He LZ, Guidez F, Tribioli C, et al. Distinct interactions of PML-RARalpha and PLZF-RARalpha with co-repressors determine differential responses to RA in APL. Nat Genet 1998;18(2):126-35.

    Article  PubMed  CAS  Google Scholar 

  84. He LZ, Bhaumik M, Tribioli C, et al. Two critical hits for promyelocytic leukemia. Mol Cell 2000;6(5):1131-41.

    Article  PubMed  CAS  Google Scholar 

  85. Sukhai MA, Wu X, Xuan Y, et al. Myeloid leukemia with promyelocytic features in transgenic mice expressing hCG-NuMA-RARalpha. Oncogene 2004;23(3):665-78.

    Article  PubMed  CAS  Google Scholar 

  86. Drynan LF, Pannell R, Forster A, et al. Mll fusions generated by Cre-loxP-mediated de novo translocations can induce lineage reassignment in tumorigenesis. EMBO J 2005;24(17):3136-46.

    Article  PubMed  CAS  Google Scholar 

  87. DiMartino JF, Ayton PM, Chen EH, Naftzger CC, Young BD, Cleary ML. The AF10 leucine zipper is required for leukemic transformation of myeloid progenitors by MLL-AF10. Blood 2002;99(10):3780-5.

    Article  PubMed  CAS  Google Scholar 

  88. Buonamici S, Li D, Chi Y, et al. EVI1 induces myelodysplastic syndrome in mice. J Clin Invest 2004;114(5):713-9.

    PubMed  CAS  Google Scholar 

  89. Kirstetter P, Schuster MB, Bereshchenko O, et al. Modeling of C/EBPalpha mutant acute myeloid leukemia reveals a common expression signature of committed myeloid leukemia-initiating cells. Cancer Cell 2008;13(4):299-310.

    Article  PubMed  CAS  Google Scholar 

  90. Lin YW, Slape C, Zhang Z, Aplan PD. NUP98-HOXD13 transgenic mice develop a highly penetrant, severe myelodysplastic syndrome that progresses to acute leukemia. Blood 2005;106(1):287-95.

    Article  PubMed  CAS  Google Scholar 

  91. Watanabe-Okochi N, Kitaura J, Ono R, et al. AML1 mutations induced MDS and MDS/AML in a mouse BMT model. Blood 2008;111(8):4297-308.

    Article  PubMed  CAS  Google Scholar 

  92. Omidvar N, Kogan S, Beurlet S, et al. BCL-2 and mutant NRAS interact physically and functionally in a mouse model of progressive myelodysplasia. Cancer Res 2007;67(24):11657-67.

    Article  PubMed  CAS  Google Scholar 

  93. Ritchie KA, Aprikyan AA, Bowen-Pope DF, et al. The Tel-PDGFRbeta fusion gene produces a chronic myeloproliferative syndrome in transgenic mice. Leukemia 1999;13(11):1790-803.

    Article  PubMed  CAS  Google Scholar 

  94. Tomasson MH, Sternberg DW, Williams IR, et al. Fatal myeloproliferation, induced in mice by TEL/PDGFbetaR expression, depends on PDGFbetaR tyrosines 579/581 [see comments]. J Clin Invest 2000;105(4):423-32.

    Article  PubMed  CAS  Google Scholar 

  95. Li Z, Godinho FJ, Klusmann JH, Garriga-Canut M, Yu C, Orkin SH. Developmental stage-selective effect of somatically mutated leukemogenic transcription factor GATA1. Nat Genet 2005;37(6):613-9.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert B. Lorsbach .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Lorsbach, R.B. (2010). Mouse Models of Myeloid Leukemia. In: Jones, D. (eds) Neoplastic Hematopathology. Contemporary Hematology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-384-8_37

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-384-8_37

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-383-1

  • Online ISBN: 978-1-60761-384-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics