Skip to main content

Genetic Aspects of Muscular Strength and Size

Part of the Molecular and Translational Medicine book series (MOLEMED)

Abstract

This chapter reviews common genetic variants (single nucleotide polymorphisms; SNPs) that reportedly influence baseline and resistance training induced changes in skeletal muscle size and strength. Genetic variants associated with strength and size have been found in a structural gene (alpha-actinin 3), growth factor genes (e.g., insulin-like growth factor 1 and myostatin), and inflammatory genes (e.g., interleukin 6 and tumor necrosis factor alpha). The biological basis for each of these three categories of genes is discussed and SNP association studies are highlighted. In most cases, single variants and single genes account for low percentages of trait variability on their own and few interactions between multiple genetic variations have been investigated to date. Future studies would benefit from emerging high throughput genotyping methods to enable comparisons across multiple genes, which can enhance identification of multiple gene/loci associations. Potential practical applications of exercise/muscle genomics include the ability to identify individuals with gene variants associated with increased athletic performance, optimization of training and rehabilitation strategies via individually tailored programs, and enhanced musculoskeletal health over the lifespan through the development of gene and pathway targeted therapeutics.

Keywords

  • Hypertrophy
  • Resistance training
  • Genetic variants
  • Genotype association
  • Single nucleotide polymorphism
  • Adaptation
  • Fiber type
  • Alpha-actinin 3
  • Protein synthesis
  • Growth factors
  • Phosphatidylinositol-3-kinase
  • Protein kinase B
  • Mammalian target of rapamycin
  • Insulin-like growth factor
  • Mechano growth factor
  • Myostatin
  • Inflammatory factors
  • Cytokines
  • Tumor necrosis factor alpha
  • Interleukin-6
  • Interleukin-15
  • Exercise genomics
  • Polygenic traits
  • Genome wide association study
  • Next generation sequencing
  • Genetic testing
  • Angiotensin converting enzyme
  • Protein phosphatase 3 regulatory subunit B
  • Insulin-like growth factor binding protein

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-60761-355-8_7
  • Chapter length: 22 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-1-60761-355-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   219.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 7.1
Fig. 7.2

References

  1. Baechle T, Earle R, editors. Essentials of Strength Training and Conditioning: Human Kinetics, 2008.

    Google Scholar 

  2. Sale DG. Neural adaptation to resistance training. Med Sci Sports Exerc. 1988;20 (5 Suppl):S135–45.

    PubMed  CAS  Google Scholar 

  3. Hubal MJ, Gordish-Dressman H, Thompson PD, Price TB, Hoffman EP, Angelopoulos TJ, et al. Variability in muscle size and strength gain after unilateral resistance training. Med Sci Sports Exerc. 2005;37(6):964–72.

    PubMed  CAS  Google Scholar 

  4. Thomis MA, Beunen GP, Van Leemputte M, Maes HH, Blimkie CJ, Claessens AL, et al. Inheritance of static and dynamic arm strength and some of its determinants. Acta Physiol Scand. 1998;163(1):59–71.

    PubMed  CAS  Google Scholar 

  5. Thomis MA, Beunen GP, Maes HH, Blimkie CJ, Van Leemputte M, Claessens AL, et al. Strength training: importance of genetic factors. Med Sci Sports Exerc. 1998;30(5):724–31.

    PubMed  CAS  Google Scholar 

  6. Perusse L, Lortie G, Leblanc C, Tremblay A, Theriault G, Bouchard C. Genetic and environmental sources of variation in physical fitness. Ann Hum Biol. 1987;14(5):425–34.

    PubMed  CAS  Google Scholar 

  7. Seeman E, Hopper JL, Young NR, Formica C, Goss P, Tsalamandris C. Do genetic factors explain associations between muscle strength, lean mass, and bone density? A twin study. Am J Physiol. 1996;270(2 Pt 1):E320–7.

    PubMed  CAS  Google Scholar 

  8. Nguyen TV, Howard GM, Kelly PJ, Eisman JA. Bone mass, lean mass, and fat mass: same genes or same environments? Am J Epidemiol. 1998;147(1):3–16.

    PubMed  CAS  Google Scholar 

  9. Forbes GB, Sauer EP, Weitkamp LR. Lean body mass in twins. Metabolism. 1995;44(11):1442–6.

    PubMed  CAS  Google Scholar 

  10. Calvo M, Rodas G, Vallejo M, Estruch A, Arcas A, Javierre C, et al. Heritability of explosive power and anaerobic capacity in humans. Eur J Appl Physiol. 2002;86(3):218–25.

    PubMed  CAS  Google Scholar 

  11. Baar K, Nader G, Bodine S. Resistance exercise, muscle loading/unloading and the control of muscle mass. Essays Biochem. 2006;42:61–74.

    PubMed  CAS  Google Scholar 

  12. Weiss A, Leinwand LA. The mammalian myosin heavy chain gene family. Annu Rev Cell Dev Biol. 1996;12:417–39.

    PubMed  CAS  Google Scholar 

  13. Delmonico MJ, Kostek MC, Doldo NA, Hand BD, Walsh S, Conway JM, et al. Alpha-actinin-3 (ACTN3) R577X polymorphism influences knee extensor peak power response to strength training in older men and women. J Gerontol A Biol Sci Med Sci. 2007;62(2):206–12.

    PubMed  Google Scholar 

  14. MacArthur DG, North KN. A gene for speed? The evolution and function of alpha-actinin-3. Bioessays. 2004;26(7):786–95.

    PubMed  CAS  Google Scholar 

  15. MacArthur DG, North KN. ACTN3: A genetic influence on muscle function and athletic performance. Exerc Sport Sci Rev. 2007;35(1):30–4.

    PubMed  Google Scholar 

  16. Norman B, Esbjornsson M, Rundqvist H, Osterlund T, von Walden F, Tesch PA. Strength, power, fiber types, and mRNA expression in trained men and women with different ACTN3 R577X genotypes. J Appl Physiol. 2009;106(3):959–65.

    PubMed  CAS  Google Scholar 

  17. Clarkson PM, Devaney JM, Gordish-Dressman H, Thompson PD, Hubal MJ, Urso M, et al. ACTN3 genotype is associated with increases in muscle strength in response to resistance training in women. J Appl Physiol. 2005;99(1):154–63.

    PubMed  CAS  Google Scholar 

  18. Yang N, MacArthur DG, Gulbin JP, Hahn AG, Beggs AH, Easteal S, et al. ACTN3 genotype is associated with human elite athletic performance. Am J Hum Genet. 2003;73(3):627–31.

    PubMed  CAS  Google Scholar 

  19. Vincent B, De Bock K, Ramaekers M, Van den Eede E, Van Leemputte M, Hespel P, et al. ACTN3 (R577X) genotype is associated with fiber type distribution. Physiol Genomics. 2007;32(1):58–63.

    PubMed  CAS  Google Scholar 

  20. MacArthur DG, Seto JT, Chan S, Quinlan KG, Raftery JM, Turner N, et al. An Actn3 knockout mouse provides mechanistic insights into the association between alpha-actinin-3 deficiency and human athletic performance. Hum Mol Genet. 2008;17(8):1076–86.

    PubMed  CAS  Google Scholar 

  21. MacArthur DG, Seto JT, Raftery JM, Quinlan KG, Huttley GA, Hook JW, et al. Loss of ACTN3 gene function alters mouse muscle metabolism and shows evidence of positive selection in humans. Nat Genet. 2007;39(10):1261–5.

    PubMed  CAS  Google Scholar 

  22. Chan S, Seto JT, MacArthur DG, Yang N, North KN, Head SI. A gene for speed: contractile properties of isolated whole EDL muscle from an alpha-actinin-3 knockout mouse. Am J Physiol Cell Physiol. 2008;295(4):C897–904.

    PubMed  CAS  Google Scholar 

  23. Friden J. Changes in human skeletal muscle induced by long-term eccentric exercise. Cell Tissue Res. 1984;236(2):365–72.

    PubMed  CAS  Google Scholar 

  24. Friden J, Sjostrom M, Ekblom B. Myofibrillar damage following intense eccentric exercise in man. Int J Sports Med. 1983;4(3):170–6.

    PubMed  CAS  Google Scholar 

  25. Clarkson PM, Hoffman EP, Zambraski E, Gordish-Dressman H, Kearns A, Hubal M, et al. ACTN3 and MLCK genotype associations with exertional muscle damage. J Appl Physiol. 2005;99(2):564–9.

    PubMed  CAS  Google Scholar 

  26. Phillips SM, Tipton KD, Aarsland A, Wolf SE, Wolfe RR. Mixed muscle protein synthesis and breakdown after resistance exercise in humans. Am J Physiol. 1997;273(1 Pt 1):E99–107.

    PubMed  CAS  Google Scholar 

  27. Biolo G. Increased rates of muscle protein turnover and amino acid transport after resistance exercise in humans. Am J Physiol Endocrinol Metab. 1995;268:E514–E20.

    PubMed  CAS  Google Scholar 

  28. Macdougall JD, Gibala, MJ, Tarnapolsky, MA. The time course for elevated muscle protein synthesis following heavy resistance exercise. Can J Appl Physiol. 1995;20:480–6.

    PubMed  CAS  Google Scholar 

  29. Zanchi NE, Lancha AH, Jr. Mechanical stimuli of skeletal muscle: implications on mTOR/p70s6k and protein synthesis. Eur J Appl Physiol. 2008;102(3):253–63.

    PubMed  CAS  Google Scholar 

  30. Trendelenburg AU, Meyer A, Rohner D, Boyle J, Hatakeyama S, Glass DJ. Myostatin reduces Akt/TORC1/p70S6K signaling, inhibiting myoblast differentiation and myotube size. Am J Physiol Cell Physiol. 2009;296(6):C1258–70.

    PubMed  CAS  Google Scholar 

  31. Sacheck JM, Ohtsuka A, McLary SC, Goldberg AL. IGF-I stimulates muscle growth by suppressing protein breakdown and expression of atrophy-related ubiquitin ligases, atrogin-1 and MuRF1. Am J Physiol Endocrinol Metab. 2004;287(4):E591–601.

    PubMed  CAS  Google Scholar 

  32. Deldicque L, Louis M, Theisen D, Nielens H, Dehoux M, Thissen JP, et al. Increased IGF mRNA in human skeletal muscle after creatine supplementation. Med Sci Sports Exerc. 2005;37(5):731–6.

    PubMed  CAS  Google Scholar 

  33. Latres E, Amini AR, Amini AA, Griffiths J, Martin FJ, Wei Y, et al. Insulin-like growth factor-1 (IGF-1) inversely regulates atrophy-induced genes via the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin (PI3K/Akt/mTOR) pathway. J Biol Chem. 2005;280(4):2737–44.

    PubMed  CAS  Google Scholar 

  34. Goldspink G. Mechanical Signals, IGF-I Gene Splicing, and Muscle Adaptation. Physiology. 2005;20(4):232–8.

    CAS  Google Scholar 

  35. Cheema U, Brown R, Mudera V, Yang SY, McGrouther G, Goldspink G. Mechanical signals and IGF-I gene splicing in vitro in relation to development of skeletal muscle. J Cell Physiol. 2005;202(1):67–75.

    PubMed  CAS  Google Scholar 

  36. Bamman MM, Petrella JK, Kim JS, Mayhew DL, Cross JM. Cluster analysis tests the importance of myogenic gene expression during myofiber hypertrophy in humans. J Appl Physiol. 2007;102(6):2232–9.

    PubMed  CAS  Google Scholar 

  37. Greig CA, Hameed M, Young A, Goldspink G, Noble B. Skeletal muscle IGF-I isoform expression in healthy women after isometric exercise. Growth Horm IGF Res. 2006;16(5-6):373–6.

    PubMed  CAS  Google Scholar 

  38. Psilander N, Damsgaard R, Pilegaard H. Resistance exercise alters MRF and IGF-I mRNA content in human skeletal muscle. J Appl Physiol. 2003;95(3):1038–44.

    PubMed  CAS  Google Scholar 

  39. Coffey VG, Reeder DW, Lancaster GI, Yeo WK, Febbraio MA, Yaspelkis BB, 3rd, et al. Effect of high-frequency resistance exercise on adaptive responses in skeletal muscle. Med Sci Sports Exerc. 2007;39(12):2135–44.

    PubMed  Google Scholar 

  40. Musaro A, McCullagh KJ, Naya FJ, Olson EN, Rosenthal N. IGF-1 induces skeletal myocyte hypertrophy through calcineurin in association with GATA-2 and NF-ATc1. Nature. 1999;400(6744):581–5.

    PubMed  CAS  Google Scholar 

  41. Ferry RJ, Jr., Katz LE, Grimberg A, Cohen P, Weinzimer SA. Cellular actions of insulin-like growth factor binding proteins. Horm Metab Res. 1999;31(2-3):192–202.

    PubMed  CAS  Google Scholar 

  42. Jones JI, Clemmons DR. Insulin-like growth factors and their binding proteins: biological actions. Endocr Rev. 1995;16(1):3–34.

    PubMed  CAS  Google Scholar 

  43. Goldberg AL, Etlinger JD, Goldspink DF, Jablecki C. Mechanism of work-induced hypertrophy of skeletal muscle. Med Sci Sports. 1975;7(3):185–98.

    PubMed  CAS  Google Scholar 

  44. Marsh DR, Criswell DS, Hamilton MT, Booth FW. Association of insulin-like growth factor mRNA expressions with muscle regeneration in young, adult, and old rats. Am J Physiol. 1997;273(1 Pt 2):R353–8.

    PubMed  CAS  Google Scholar 

  45. McPherron AC, Lawler AM, Lee SJ. Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature. 1997;387(6628):83–90.

    PubMed  CAS  Google Scholar 

  46. Grobet L, Martin LJ, Poncelet D, Pirottin D, Brouwers B, Riquet J, et al. A deletion in the bovine myostatin gene causes the double-muscled phenotype in cattle. Nat Genet. 1997;17(1):71–4.

    PubMed  CAS  Google Scholar 

  47. Gonzalez-Cadavid NF, Taylor WE, Yarasheski K, Sinha-Hikim I, Ma K, Ezzat S, et al. Organization of the human myostatin gene and expression in healthy men and HIV-infected men with muscle wasting. Proc Natl Acad Sci. 1998;95(25):14938–43.

    PubMed  CAS  Google Scholar 

  48. Roth SM, Martel GF, Ferrell RE, Metter EJ, Hurley BF, Rogers MA. Myostatin gene expression is reduced in humans with heavy-resistance strength training: a brief communication. Exp Biol Med. 2003;228(6):706–9.

    CAS  Google Scholar 

  49. Kostek MC, Delmonico MJ, Reichel JB, Roth SM, Douglass L, Ferrell RE, et al. Muscle strength response to strength training is influenced by insulin-like growth factor 1 genotype in older adults. J Appl Physiol. 2005;98(6):2147–54.

    PubMed  CAS  Google Scholar 

  50. Hand BD, Kostek MC, Ferrell RE, Delmonico MJ, Douglass LW, Roth SM, et al. Influence of promoter region variants of insulin-like growth factor pathway genes on the strength-training response of muscle phenotypes in older adults. J Appl Physiol. 2007;103(5):1678–87.

    PubMed  CAS  Google Scholar 

  51. Sayer AA, Syddall H, O’Dell SD, Chen XH, Briggs PJ, Briggs R, et al. Polymorphism of the IGF2 gene, birth weight and grip strength in adult men. Age Ageing. 2002;31(6):468–70.

    PubMed  Google Scholar 

  52. Schrager MA, Roth SM, Ferrell RE, Metter EJ, Russek-Cohen E, Lynch NA, et al. Insulin-like growth factor-2 genotype, fat-free mass, and muscle performance across the adult life span. J Appl Physiol. 2004;97(6):2176–83.

    PubMed  CAS  Google Scholar 

  53. Devaney JM, Hoffman EP, Gordish-Dressman H, Kearns A, Zambraski E, Clarkson PM. IGF-II gene region polymorphisms related to exertional muscle damage. J Appl Physiol. 2007;102(5):1815–23.

    PubMed  CAS  Google Scholar 

  54. Clarkson PM, Hubal MJ. Exercise-induced muscle damage in humans. Am J Phys Med Rehabil. 2002;81(11 Suppl):S52–69.

    PubMed  Google Scholar 

  55. Yu JG, Carlsson L, Thornell LE. Evidence for myofibril remodeling as opposed to myofibril damage in human muscles with DOMS: an ultrastructural and immunoelectron microscopic study. Histochem Cell Biol. 2004;121(3):219–27.

    PubMed  CAS  Google Scholar 

  56. Yu JG, Furst DO, Thornell LE. The mode of myofibril remodelling in human skeletal muscle affected by DOMS induced by eccentric contractions. Histochem Cell Biol. 2003;119(5):383–93.

    PubMed  CAS  Google Scholar 

  57. Schuelke M, Wagner KR, Stolz LE, Hubner C, Riebel T, Komen W, et al. Myostatin mutation associated with gross muscle hypertrophy in a child. N Engl J Med. 2004;350(26):2682–8.

    PubMed  CAS  Google Scholar 

  58. Ferrell RE, Conte V, Lawrence EC, Roth SM, Hagberg JM, Hurley BF. Frequent sequence variation in the human myostatin (GDF8) gene as a marker for analysis of muscle-related phenotypes. Genomics. 1999;62(2):203–7.

    PubMed  CAS  Google Scholar 

  59. Ivey FM, Roth SM, Ferrell RE, Tracy BL, Lemmer JT, Hurlbut DE, et al. Effects of age, gender, and myostatin genotype on the hypertrophic response to heavy resistance strength training. J Gerontol A Biol Sci Med Sci. 2000;55(11):M641–8.

    PubMed  CAS  Google Scholar 

  60. Walsh S, Metter EJ, Ferrucci L, Roth SM. Activin-type II receptor B (ACVR2B) and follistatin haplotype associations with muscle mass and strength in humans. J Appl Physiol. 2007;102(6):2142–8.

    PubMed  CAS  Google Scholar 

  61. Saunders MA, Good JM, Lawrence EC, Ferrell RE, Li WH, Nachman MW. Human adaptive evolution at Myostatin (GDF8), a regulator of muscle growth. Am J Hum Genet. 2006;79(6):1089–97.

    PubMed  CAS  Google Scholar 

  62. Kostek MA, Angelopoulos TJ, Clarkson PM, Gordon PM, Moyna NM, Visich PS, et al. Myostatin and follistatin polymorphisms interact with muscle phenotypes and ethnicity. Med Sci Sports Exerc. 2009;41(5):1063–71.

    PubMed  CAS  Google Scholar 

  63. Frost RA, Lang CH. Protein kinase B/Akt: a nexus of growth factor and cytokine signaling in determining muscle mass. J Appl Physiol. 2007;103(1):378–87.

    PubMed  CAS  Google Scholar 

  64. Tidball JG. Inflammatory processes in muscle injury and repair. Am J Physiol Regul Integr Comp Physiol. 2005;288(2):R345–53.

    PubMed  CAS  Google Scholar 

  65. Pahl HL. Activators and target genes of Rel/NF-kappaB transcription factors. Oncogene. 1999;18(49):6853–66.

    PubMed  CAS  Google Scholar 

  66. Costelli P, Carbo N, Tessitore L, Bagby GJ, Lopez-Soriano FJ, Argiles JM, et al. Tumor necrosis factor-alpha mediates changes in tissue protein turnover in a rat cancer cachexia model. J Clin Invest. 1993;92(6):2783–9.

    PubMed  CAS  Google Scholar 

  67. Breuille D, Farge MC, Rose F, Arnal M, Attaix D, Obled C. Pentoxifylline decreases body weight loss and muscle protein wasting characteristics of sepsis. Am J Physiol. 1993;265(4 Pt 1):E660–6.

    PubMed  CAS  Google Scholar 

  68. Fernandez-Celemin L, Pasko N, Blomart V, Thissen JP. Inhibition of muscle insulin-like growth factor I expression by tumor necrosis factor-alpha. Am J Physiol Endocrinol Metab. 2002;283(6):E1279–90.

    PubMed  CAS  Google Scholar 

  69. Langen RC, Schols AM, Kelders MC, Wouters EF, Janssen-Heininger YM. Inflammatory cytokines inhibit myogenic differentiation through activation of nuclear factor-kappaB. Faseb J. 2001;15(7):1169–80.

    PubMed  CAS  Google Scholar 

  70. Greiwe JS, Cheng B, Rubin DC, Yarasheski KE, Semenkovich CF. Resistance exercise decreases skeletal muscle tumor necrosis factor alpha in frail elderly humans. Faseb J. 2001;15(2):475–82.

    PubMed  CAS  Google Scholar 

  71. Bruunsgaard H, Bjerregaard E, Schroll M, Pedersen BK. Muscle strength after resistance training is inversely correlated with baseline levels of soluble tumor necrosis factor receptors in the oldest old. J Am Geriatr Soc. 2004;52(2):237–41.

    PubMed  Google Scholar 

  72. Malm C, Nyberg P, Engstrom M, Sjodin B, Lenkei R, Ekblom B, et al. Immunological changes in human skeletal muscle and blood after eccentric exercise and multiple biopsies. J Physiol. 2000;529 Pt 1:243–62.

    PubMed  CAS  Google Scholar 

  73. Dahlman JM, Wang J, Bakkar N, Guttridge DC. The RelA/p65 subunit of NF-kappaB specifically regulates cyclin D1 protein stability: implications for cell cycle withdrawal and skeletal myogenesis. J Cell Biochem. 2009;106(1):42–51.

    PubMed  CAS  Google Scholar 

  74. Grounds MD, Radley HG, Gebski BL, Bogoyevitch MA, Shavlakadze T. Implications of cross-talk between tumour necrosis factor and insulin-like growth factor-1 signalling in skeletal muscle. Clin Exp Pharmacol Physiol. 2008;35(7):846–51.

    PubMed  CAS  Google Scholar 

  75. Guttridge DC, Albanese C, Reuther JY, Pestell RG, Baldwin AS, Jr. NF-kappaB controls cell growth and differentiation through transcriptional regulation of cyclin D1. Mol Cell Biol. 1999;19(8):5785–99.

    PubMed  CAS  Google Scholar 

  76. Guttridge DC, Mayo MW, Madrid LV, Wang CY, Baldwin AS, Jr. NF-kappaB-induced loss of MyoD messenger RNA: possible role in muscle decay and cachexia. Science. 2000;289(5488):2363–6.

    PubMed  CAS  Google Scholar 

  77. Millino C, Fanin M, Vettori A, Laveder P, Mostacciuolo ML, Angelini C, et al. Different atrophy-hypertrophy transcription pathways in muscles affected by severe and mild spinal muscular atrophy. BMC Med. 2009;7:14.

    PubMed  Google Scholar 

  78. Vary TC, Deiter G, Lang CH. Diminished ERK 1/2 and p38 MAPK phosphorylation in skeletal muscle during sepsis. Shock. 2004;22(6):548–54.

    PubMed  CAS  Google Scholar 

  79. Buford TW, Cooke MB, Willoughby DS. Resistance exercise-induced changes of inflammatory gene expression within human skeletal muscle. Eur J Appl Physiol. 2009;107(4):463–71.

    PubMed  CAS  Google Scholar 

  80. Febbraio MA, Pedersen BK. Muscle-derived interleukin-6: mechanisms for activation and possible biological roles. Faseb J. 2002;16(11):1335–47.

    PubMed  CAS  Google Scholar 

  81. Pedersen BK, Febbraio MA. Muscle as an endocrine organ: focus on muscle-derived interleukin-6. Physiol Rev. 2008;88(4):1379–406.

    PubMed  CAS  Google Scholar 

  82. Ip NY, Yancopoulos GD. Ciliary neurotrophic factor and its receptor complex. Prog Growth Factor Res. 1992;4(2):139–55.

    PubMed  CAS  Google Scholar 

  83. Dennis RA, Zhu H, Kortebein PM, Bush HM, Harvey JF, Sullivan DH, et al. Muscle expression of genes associated with inflammation, growth, and remodeling is strongly correlated in older adults with resistance training outcomes. Physiol Genomics. 2009;38(2):169–75.

    PubMed  CAS  Google Scholar 

  84. Nielsen AR, Mounier R, Plomgaard P, Mortensen OH, Penkowa M, Speerschneider T, et al. Expression of interleukin-15 in human skeletal muscle effect of exercise and muscle fibre type composition. J Physiol. 2007;584 (Pt 1):305–12.

    PubMed  CAS  Google Scholar 

  85. Furmanczyk PS, Quinn LS. Interleukin-15 increases myosin accretion in human skeletal myogenic cultures. Cell Biol Int. 2003;27(10):845–51.

    PubMed  CAS  Google Scholar 

  86. Quinn LS, Anderson BG, Drivdahl RH, Alvarez B, Argiles JM. Overexpression of interleukin-15 induces skeletal muscle hypertrophy in vitro: implications for treatment of muscle wasting disorders. Exp Cell Res. 2002;280(1):55–63.

    PubMed  CAS  Google Scholar 

  87. Hubal MJ, Chen TC, Thompson PD, Clarkson PM. Inflammatory gene changes associated with the repeated-bout effect. Am J Physiol Regul Integr Comp Physiol. 2008;294(5):R1628–37.

    PubMed  Google Scholar 

  88. Chen YW, Hubal MJ, Hoffman EP, Thompson PD, Clarkson PM. Molecular responses of human muscle to eccentric exercise. J Appl Physiol. 2003;95(6):2485–94.

    PubMed  CAS  Google Scholar 

  89. Chazaud B, Sonnet C, Lafuste P, Bassez G, Rimaniol AC, Poron F, et al. Satellite cells attract monocytes and use macrophages as a support to escape apoptosis and enhance muscle growth. J Cell Biol. 2003;163(5):1133–43.

    PubMed  CAS  Google Scholar 

  90. McDermott DH, Yang Q, Kathiresan S, Cupples LA, Massaro JM, Keaney JF, Jr., et al. CCL2 polymorphisms are associated with serum monocyte chemoattractant protein-1 levels and myocardial infarction in the Framingham Heart Study. Circulation. 2005;112(8):1113–20.

    PubMed  CAS  Google Scholar 

  91. Liu D, Metter EJ, Ferrucci L, Roth SM. TNF promoter polymorphisms associated with muscle phenotypes in humans. J Appl Physiol. 2008;105(3):859–67.

    PubMed  CAS  Google Scholar 

  92. Ljungman P, Bellander T, Nyberg F, Lampa E, Jacquemin B, Kolz M, et al. DNA variants, plasma levels and variability of interleukin-6 in myocardial infarction survivors: results from the AIRGENE study. Thromb Res. 2009;124(1):57–64.

    PubMed  CAS  Google Scholar 

  93. Roth SM, Schrager MA, Lee MR, Metter EJ, Hurley BF, Ferrell RE. Interleukin-6 (IL6) genotype is associated with fat-free mass in men but not women. J Gerontol A Biol Sci Med Sci. 2003;58(12):B1085–8.

    PubMed  Google Scholar 

  94. Ruiz JR, Buxens A, Artieda M, Arteta D, Santiago C, Rodriguez-Romo G, et al. The -174 G/C polymorphism of the IL6 gene is associated with elite power performance. J Sci Med Sport. 2009.

    PubMed  Google Scholar 

  95. Walston J, Arking DE, Fallin D, Li T, Beamer B, Xue Q, et al. IL-6 gene variation is not associated with increased serum levels of IL-6, muscle, weakness, or frailty in older women. Exp Gerontol. 2005;40(4):344–52.

    PubMed  CAS  Google Scholar 

  96. Pistilli EE, Devaney JM, Gordish-Dressman H, Bradbury MK, Seip RL, Thompson PD, et al. Interleukin-15 and interleukin-15R alpha SNPs and associations with muscle, bone, and predictors of the metabolic syndrome. Cytokine. 2008;43(1):45–53.

    PubMed  CAS  Google Scholar 

  97. Riechman SE, Balasekaran G, Roth SM, Ferrell RE. Association of interleukin-15 protein and interleukin-15 receptor genetic variation with resistance exercise training responses. J Appl Physiol. 2004;97(6):2214–9.

    PubMed  CAS  Google Scholar 

  98. Roth SM, Metter EJ, Lee MR, Hurley BF, Ferrell RE. C174T polymorphism in the CNTF receptor gene is associated with fat-free mass in men and women. J Appl Physiol. 2003;95(4):1425–30.

    PubMed  CAS  Google Scholar 

  99. Arking DE, Fallin DM, Fried LP, Li T, Beamer BA, Xue QL, et al. Variation in the ciliary neurotrophic factor gene and muscle strength in older Caucasian women. J Am Geriatr Soc. 2006;54(5):823–6.

    PubMed  Google Scholar 

  100. De Mars G, Windelinckx A, Beunen G, Delecluse C, Lefevre J, Thomis MA. Polymorphisms in the CNTF and CNTF receptor genes are associated with muscle strength in men and women. J Appl Physiol. 2007;102(5):1824–31.

    PubMed  Google Scholar 

  101. Walsh S, Kelsey BK, Angelopoulos TJ, Clarkson PM, Gordon PM, Moyna NM, et al. CNTF 1357 G -> A polymorphism and the muscle strength response to resistance training. J Appl Physiol. 2009;107(4):1235–40.

    PubMed  CAS  Google Scholar 

  102. Conwit RA, Ling S, Roth S, Stashuk D, Hurley B, Ferrell R, et al. The relationship between ciliary neurotrophic factor (CNTF) genotype and motor unit physiology: preliminary studies. BMC Physiol. 2005;5:15.

    PubMed  Google Scholar 

  103. Bray MS, Hagberg JM, Perusse L, Rankinen T, Roth SM, Wolfarth B, et al. The human gene map for performance and health-related fitness phenotypes: the 2006-2007 update. Med Sci Sports Exerc. 2009;41(1):35–73.

    PubMed  Google Scholar 

  104. Folland J, Leach B, Little T, Hawker K, Myerson S, Montgomery H, et al. Angiotensin-converting enzyme genotype affects the response of human skeletal muscle to functional overload. Exp Physiol. 2000;85(5):575–9.

    PubMed  CAS  Google Scholar 

  105. Pescatello LS, Kostek MA, Gordish-Dressman H, Thompson PD, Seip RL, Price TB, et al. ACE ID genotype and the muscle strength and size response to unilateral resistance training. Med Sci Sports Exerc. 2006;38(6):1074–81.

    PubMed  CAS  Google Scholar 

  106. McCauley T, Mastana SS, Hossack J, Macdonald M, Folland JP. Human angiotensin-converting enzyme I/D and alpha-actinin 3 R577X genotypes and muscle functional and contractile properties. Exp Physiol. 2009;94(1):81–9.

    PubMed  CAS  Google Scholar 

  107. Pfeifer M, Begerow B, Minne HW. Vitamin D and muscle function. Osteoporos Int. 2002;13(3):187–94.

    PubMed  CAS  Google Scholar 

  108. Windelinckx A, De Mars G, Beunen G, Aerssens J, Delecluse C, Lefevre J, et al. Polymorphisms in the vitamin D receptor gene are associated with muscle strength in men and women. Osteoporos Int. 2007;18(9):1235–42.

    PubMed  CAS  Google Scholar 

  109. Grundberg E, Brandstrom H, Ribom EL, Ljunggren O, Mallmin H, Kindmark A. Genetic variation in the human vitamin D receptor is associated with muscle strength, fat mass and body weight in Swedish women. Eur J Endocrinol. 2004;150(3):323–8.

    PubMed  CAS  Google Scholar 

  110. Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ, et al. Finding the missing heritability of complex diseases. Nature. 2009;461(7265):747–53.

    PubMed  CAS  Google Scholar 

  111. Liu XG, Tan LJ, Lei SF, Liu YJ, Shen H, Wang L, et al. Genome-wide association and replication studies identified TRHR as an important gene for lean body mass. Am J Hum Genet. 2009;84(3):418–23.

    PubMed  CAS  Google Scholar 

  112. Tucker T, Marra M, Friedman JM. Massively parallel sequencing: the next big thing in genetic medicine. Am J Hum Genet 2009;85(2):142–54.

    PubMed  CAS  Google Scholar 

  113. Schadt EE. Molecular networks as sensors and drivers of common human diseases. Nature. 2009;461(7261):218–23.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monica J. Hubal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Hubal, M.J., Urso, M.L., Clarkson, P.M. (2011). Genetic Aspects of Muscular Strength and Size. In: Pescatello, L., Roth, S. (eds) Exercise Genomics. Molecular and Translational Medicine. Humana Press. https://doi.org/10.1007/978-1-60761-355-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-355-8_7

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-354-1

  • Online ISBN: 978-1-60761-355-8

  • eBook Packages: MedicineMedicine (R0)