Can You Be Born a Couch Potato? The Genomic Regulation of Physical Activity

  • J. Timothy LightfootEmail author
Part of the Molecular and Translational Medicine book series (MOLEMED)


Most behaviors are controlled by a combination of environmental and genetic/biological factors. The regulation of daily physical activity levels, however, has primarily been considered to be environmental in origin. A growing body of recent data suggests that, in actuality, the primary controller of physical activity levels may be genetic in origin, especially in adults. Thus, the purpose of this chapter is to describe the current “state of the art” regarding physical activity genetics. Extensive human and animal models have produced an initial genomic map indicating potential genomic locations associated with physical activity. This map in addition to other criteria has produced several potential candidate genes associated with physical activity with varying levels of support for their candidacy. The literature has quantified the influence of genetics on activity and identified some potential responsible genes. Yet, much work is needed to establish the mechanisms through which these genes control physical activity as well as the regulatory factors located outside the genomic boundary of annotated genes (i.e., within the intergenic areas) associated with physical activity regulation.


Physical activity Exercise Genetics Candidate genes Quantitative trait loci Positional cloning Heritability of activity Human heritability of activity Mouse heritability of activity 



A generous grant (R01AR050085) from the NIH National Institute of Arthritis and Musculoskeletal Diseases (NIAMS) supported the writing of this chapter and some of the data collected within.


  1. 1.
    Blair SN, LaMonte MJ, Nichaman MZ. The evolution of physical activity recommendations: how much is enough? Am J Clin Nutr. 2004;79(5):913S–20.PubMedGoogle Scholar
  2. 2.
    Chakravarthy MV, Booth FW. Eating, exercise, and “thrifty” genotypes: connecting the dots toward an evolutionary understanding of modern chronic diseases. J Appl Physiol. 2004;96(1):3–10.PubMedCrossRefGoogle Scholar
  3. 3.
    Cooper DM, Nemet D, Galassetti P. Exercise, stress, and inflammation in the growing child: from the bench to the playground. Curr Opin Pediatr. 2004;16(3):286–92.PubMedCrossRefGoogle Scholar
  4. 4.
    Lees SJ, Booth FW. Sedentary death syndrome. Can J Appl Physiol. 2004;29(4):447–60. discussion 444-6.PubMedCrossRefGoogle Scholar
  5. 5.
    Manson JE, Skerrett PJ, Greenland P, VanItallie TB. The escalating pandemics of obesity and sedentary lifestyle. A call to action for clinicians. Arch Intern Med. 2004;164(3):249–58.PubMedCrossRefGoogle Scholar
  6. 6.
    Roberts CK, Barnard RJ. Effects of exercise and diet on chronic disease. J Appl Physiol. 2005;98(1):3–30.PubMedCrossRefGoogle Scholar
  7. 7.
    Mokdad AH, Marks JS, Stroup DF, Gerberding JL. Actual causes of death in the United States, 2000. JAMA. 2004;291(10):1238–45.PubMedCrossRefGoogle Scholar
  8. 8.
    Booth FW, Gordon SE, Carlson CJ, Hamilton MT. Waging war on modern chronic diseases: primary prevention through exercise biology. J Appl Physiol. 2000;88(2):774–87.PubMedGoogle Scholar
  9. 9.
    Manson JE, Hu FB, Rich-Edwards JW, Colditz GA, Stampfer MJ, Willett WC, et al. A prospective study of walking as compared with vigorous exercise in the prevention of coronary heart disease in women. N Engl J Med. 1999;341(9):650–8.PubMedCrossRefGoogle Scholar
  10. 10.
    Manson JE, Nathan DM, Krolewski AS, Stampfer MJ, Willett WC, Hennekens CH. A prospective study of exercise and incidence of diabetes among US male physicians. JAMA. 1992;268(1):63–7.PubMedCrossRefGoogle Scholar
  11. 11.
    McTiernan A, Ulrich C, Slate S, Potter J. Physical activity and cancer etiology: associations and mechanisms. Cancer Causes Control. 1998;9(5):487–509.PubMedCrossRefGoogle Scholar
  12. 12.
    Baumgartner RN, Waters DL, Gallagher D, Morley JE, Garry PJ. Predictors of skeletal muscle mass in elderly men and women. Mech Ageing Dev. 1999;107(2):123–36.PubMedCrossRefGoogle Scholar
  13. 13.
    Troiano RP, Berrigan D, Dodd KW, Masse LC, Tilert T, McDowell M. Physical activity in the United States measured by accelerometer. Med Sci Sports Exerc. 2008;40(1):181–8.PubMedGoogle Scholar
  14. 14.
    Owen N, Leslie E, Salmon J, Fotheringham MJ. Environmental determinants of physical activity and sedentary behavior. Exerc Sport Sci Rev. 2000;28(4):153–8.PubMedGoogle Scholar
  15. 15.
    Dunton GF, Kaplan J, Wolch J, Jerrett M, Reynolds KD. Physical environmental correlates of childhood obesity: a systematic review. Obes Rev. 2009;10(4):393–402.PubMedCrossRefGoogle Scholar
  16. 16.
    Rowland TW. The biological basis of physical activity. Med Sci Sports Exerc. 1998;30(3):392–9.PubMedGoogle Scholar
  17. 17.
    Lightfoot JT. Sex hormones’ regulation of rodent physical activity: a review. Int J Biol Sci. 2008;4(3):126–32.PubMedGoogle Scholar
  18. 18.
    Eisenmann JC, Wickel EE, Kelly SA, Middleton KM, Garland Jr T. Day-to-day variability in voluntary wheel running among genetically differentiated lines of mice that vary in activity level. Eur J Appl Physiol. 2009;106(4):613–9.PubMedCrossRefGoogle Scholar
  19. 19.
    Mattocks C, Leary S, Ness A, et al. Intraindividual variation of objectively measured physical activity in children. Med Sci Sports Exerc. 2007;39(4):622–9.PubMedCrossRefGoogle Scholar
  20. 20.
    Wickel EE, Eisenmann JC. Within- and between-individual variability in estimated energy expenditure and habitual physical activity among young adults. Eur J Clin Nutr. 2006;60(4):538–44.PubMedCrossRefGoogle Scholar
  21. 21.
    Wickel EE, Eisenmann JC, Pangrazi RP, Graser SV, Raustorp A, Tomson LM, et al. Do children take the same number of steps every day? Am J Hum Biol. 2007;19(4):537–43.PubMedCrossRefGoogle Scholar
  22. 22.
    Wilkin TJ, Mallam KM, Metcalf BS, Jeffery AN, Voss LD. Variation in physical activity lies with the child, not his environment: evidence for an ‘activitystat’ in young children (EarlyBird 16). Int J Obes (Lond). 2006;30(7):1050–5.CrossRefGoogle Scholar
  23. 23.
    Falconer DS, Mackay TFC. Introduction to quantitative genetics. 4th ed. Essex, England: Longman; 1996.Google Scholar
  24. 24.
    Sesardic N. Making sense of heritability: how not to think about behavior genetics. New York: Cambridge University Press; 2005.Google Scholar
  25. 25.
    Festing MFW. Strategy in the use of inbred strains. In: Festing MFW, editor. Inbred strains in biomedical research. New York: Oxford University Press; 1979. p. 122–31.Google Scholar
  26. 26.
    Festing MFW. Notes on genetic analysis. In: Festing MFW, editor. Inbred strains in biomedical research. New York: Oxford University Press; 1979. p. 80–98.Google Scholar
  27. 27.
    Kaprio J, Koskenvuo M, Sarna S. Cigarette smoking, use of alcohol, and leisure-time physical activity among same-sexed adult male twins. Prog Clin Biol Res. 1981;69:37–46.PubMedGoogle Scholar
  28. 28.
    Lauderdale DS, Fabsitz R, Meyer JM, Sholinsky P, Ramakrishnan V, Goldberg J. Familial determinants of moderate and intense physical activity: a twin study. Med Sci Sports Exerc. 1997;29(8):1062–8.PubMedGoogle Scholar
  29. 29.
    Carlsson S, Andersson T, Lichtenstein P, Michaelsson K, Ahlbom A. Genetic effects on physical activity: results from the Swedish twin registry. Med Sci Sports Exerc. 2006;38(8):1396–401.PubMedCrossRefGoogle Scholar
  30. 30.
    Stubbe JH, Boomsma DI, Vink JM, Cornes BK, Martin NG, Skythe A, et al. Genetic influences on exercise participation in 37,051 twin pairs from seven countries. PLoS One. 2006;1:e22.PubMedCrossRefGoogle Scholar
  31. 31.
    Perusse L, Tremblay A, Leblanc C, Bouchard C. Genetic and environmental influences on level of habitual physical activity and exercise participation. Am J Epidemiol. 1989;129(5):1012–22.PubMedGoogle Scholar
  32. 32.
    Stubbe JH, Boomsma DI, De Geus EJ. Sports participation during adolescence: a shift from environmental to genetic factors. Med Sci Sports Exerc. 2005;37(4):563–70.PubMedCrossRefGoogle Scholar
  33. 33.
    Joosen AM, Gielen M, Vlietinck R, Westerterp KR. Genetic analysis of physical activity in twins. Am J Clin Nutr. 2005;82(6):1253–9.PubMedGoogle Scholar
  34. 34.
    Macera CA, Ham SA, Yore MM, Jones DA, Ainsworth BE, Kimsey CD, et al. Prevalence of physical activity in the United States: behavioral risk factor surveillance system, 2001. Prev Chronic Dis. 2005;2(2):A17.PubMedGoogle Scholar
  35. 35.
    Shephard RJ. Limits to the measurement of habitual physical activity by questionnaires. Br J Sports Med. 2003;37(3):197–206. discussion 206.PubMedCrossRefGoogle Scholar
  36. 36.
    Knab AM, Bowen RS, Moore-Harrison T, Hamilton AT, Turner MJ, Lightfoot JT. Repeatability of exercise behaviors in mice. Physiol Behav. 2009;98(4):433–40.PubMedCrossRefGoogle Scholar
  37. 37.
    Eikelboom R. Human parallel to voluntary wheel running: exercise. Anim Behav. 1999;57(3):F11–2.PubMedCrossRefGoogle Scholar
  38. 38.
    Lightfoot JT, Turner MJ, Pomp D, Kleeberger SR, Leamy LJ. Quantitative trait loci for physical activity traits in mice. Physiol Genomics. 2008;32(3):401–8.PubMedGoogle Scholar
  39. 39.
    American Physiological Society. Resource book for the design of animal exercise protocols. 1887.;
  40. 40.
    Festing MF. Wheel activity in 26 strains of mouse. Lab Anim. 1977;11(4):257–8.PubMedCrossRefGoogle Scholar
  41. 41.
    Lightfoot JT, Turner MJ, Daves M, Vordermark A, Kleeberger SR. Genetic influence on daily wheel running activity level. Physiol Genomics. 2004;19(3):270–6.PubMedCrossRefGoogle Scholar
  42. 42.
    Lerman I, Harrison BC, Freeman K, Hewett, TE, Allen DL, Robbins J, et al. Genetic variability in forced and voluntary endurance exercise performance in seven inbred mouse strains. J Appl Physiol. 2002;92(6):2245–55.PubMedGoogle Scholar
  43. 43.
    Swallow JG, Carter PA, Garland Jr T. Artificial selection for increased wheel-running behavior in house mice. Behav Genet. 1998;28(3):227–37.PubMedCrossRefGoogle Scholar
  44. 44.
    Garland Jr T, Kelly SA. Phenotypic plasticity and experimental evolution. J Exp Biol. 2006;209(Pt 12):2344–61.PubMedCrossRefGoogle Scholar
  45. 45.
    Rezende EL, Chappell MA, Gomes FR, Malisch JL, Garland Jr T. Maximal metabolic rates during voluntary exercise, forced exercise, and cold exposure in house mice selectively bred for high wheel-running. J Exp Biol. 2005;208(Pt 12):2447–58.PubMedCrossRefGoogle Scholar
  46. 46.
    Turner MJ, Kleeberger SR, Lightfoot JT. Influence of genetic background on daily running-wheel activity differs with aging. Physiol Genomics. 2005;22(1):76–85.PubMedCrossRefGoogle Scholar
  47. 47.
    Ponting CP, Goodstadt L. Separating derived from ancestral features of mouse and human genomes. Biochem Soc Trans. 2009;37(Pt 4):734–9.PubMedCrossRefGoogle Scholar
  48. 48.
    Cho HY, Kleeberger SR. Genetic mechanisms of susceptibility to oxidative lung injury in mice. Free Radic Biol Med. 2007;42(4):433–45.PubMedCrossRefGoogle Scholar
  49. 49.
    De Moor MH, Liu YJ, Boomsma DI, Li J, Hamilton JJ, Hottenga JJ, et al. Genome-wide association study of exercise behavior in Dutch and American adults. Med Sci Sports Exerc. 2009;41(10):1887–1895.PubMedCrossRefGoogle Scholar
  50. 50.
    Haley CS, Knott SA. A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity. 1992;69(4):315–24.PubMedGoogle Scholar
  51. 51.
    Lander E, Kruglyak L. Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nat Genet. 1995;11(3):241–7.PubMedCrossRefGoogle Scholar
  52. 52.
    Lander ES, Botstein D. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics. 1989;121(1):185–99.PubMedGoogle Scholar
  53. 53.
    Wakefield J. Bayes factors for genome-wide association studies: comparison with P-values. Genet Epidemiol. 2009;33(1):79–86.PubMedCrossRefGoogle Scholar
  54. 54.
    Guan Y, Stephens M. Practical issues in imputation-based association mapping. PLoS Genet. 2008;4(12):e1000279.PubMedCrossRefGoogle Scholar
  55. 55.
    Servin B, Stephens M. Imputation-based analysis of association studies: candidate regions and quantitative traits. PLoS Genet. 2007;3(7):e114.PubMedCrossRefGoogle Scholar
  56. 56.
    Varona L, Gomez-Raya L, Rauw WM, Clop A, Ovilo C, Noguera JL. Derivation of a Bayes factor to distinguish between linked or pleiotropic quantitative trait loci. Genetics. 2004;166(2):1025–35.PubMedCrossRefGoogle Scholar
  57. 57.
    Broman KW. Review of statistical methods for QTL mapping in experimental crosses. Lab Anim (NY). 2001;30(7):44–52.Google Scholar
  58. 58.
    Abiola O, Angel JM, Avner P, Bachmanov AA, Belknap JK, Bennett B, et al. The nature and identification of quantitative trait loci: a community’s view. Nat Rev Genet. 2003;4(11):911–6.PubMedCrossRefGoogle Scholar
  59. 59.
    Silver LM. Mouse genetics: concepts and applications. New York: Oxford University Press; 1995.Google Scholar
  60. 60.
    Leamy LJ, Pomp D, Lightfoot JT. An epistatic genetic basis for physical activity traits in mice. J Hered. 2008;99(6):639–46.PubMedCrossRefGoogle Scholar
  61. 61.
    Hartmann J, Garland Jr T, Hannon RM, Kelly SA, Munoz G, Pomp D. Fine mapping of “mini-muscle,” a recessive mutation causing reduced hindlimb muscle mass in mice. J Hered. 2008;99(6):679–87.PubMedCrossRefGoogle Scholar
  62. 62.
    Nehrenberg DL, Wang S, Hannon RM, Garland Jr T, Pomp D. QTL underlying voluntary exercise in mice: interactions with the “mini muscle” locus and sex. J Hered. 2010;101(1):42–53.PubMedCrossRefGoogle Scholar
  63. 63.
    Garland Jr T, Morgan MT, Swallow JG, Rhodes JS, Girard I, Belter JG, et al. Evolution of a small-muscle polymorphism in lines of house mice selected for high activity levels. Evolution. 2002;56(6):1267–75.PubMedCrossRefGoogle Scholar
  64. 64.
    Gomes FR, Rezende EL, Malisch JL, Lee SK, Rivas DA, Kelly SA, et al. Glycogen storage and muscle glucose transporters (GLUT-4) of mice selectively bred for high voluntary wheel running. J Exp Biol. 2009;212(Pt 2):238–48.PubMedCrossRefGoogle Scholar
  65. 65.
    Frazer KA, Eskin E, Kang HM, Bogue MA, Hinds DA, Beilharz EJ, et al. A sequence-based variation map of 8.27 million SNPs in inbred mouse strains. Nature. 2007;448(7157):1050–3.PubMedCrossRefGoogle Scholar
  66. 66.
    Churchill GA, Airey DC, Allayee H, Angel JM, Attie AD, Beatty J, et al. The collaborative cross, a community resource for the genetic analysis of complex traits. Nat Genet. 2004;36(11):1133–7.PubMedCrossRefGoogle Scholar
  67. 67.
    Simonen RL, Rankinen T, Perusse L, Rice T, Rao DC, Chagnon Y, et al. Genome-wide linkage scan for physical activity levels in the Quebec family study. Med Sci Sports Exerc. 2003;35(8):1355–9.PubMedCrossRefGoogle Scholar
  68. 68.
    Simonen RL, Perusse L, Rankinen T, Rice T, Rao DC, Bouchard C. Familial aggregation of physical activity levels in the Quebec family study. Med Sci Sports Exerc. 2002;34(7):1137–42.PubMedCrossRefGoogle Scholar
  69. 69.
    Cai G, Cole SA, Butte N, Bacino C, Diego V, Tan K, et al. A quantitative trait locus on chromosome 18q for physical activity and dietary intake in Hispanic children. Obesity (Silver Spring). 2006;14(9):1596–604.CrossRefGoogle Scholar
  70. 70.
    Flint J, Valdar W, Shifman S, Mott R. Strategies for mapping and cloning quantitative trait genes in rodents. Nat Rev Genet. 2005;6(4):271–86.PubMedCrossRefGoogle Scholar
  71. 71.
    DiPetrillo K, Wang X, Stylianou IM, Paigen B. Bioinformatics toolbox for narrowing rodent quantitative trait loci. Trends Genet. 2005;21(12):683–92.PubMedCrossRefGoogle Scholar
  72. 72.
    Rhodes JS, Garland T. Differential sensitivity to acute administration of ritalin, apomorphine, SCH 23390, but not raclopride in mice selectively bred for hyperactive wheel-running behavior. Psychopharmacology (Berl). 2003;167(3):242–50.Google Scholar
  73. 73.
    Rhodes JS, Hosack GR, Girard I, Kelley AE, Mitchell GS, Garland Jr T. Differential sensitivity to acute administration of cocaine, GBR 12909, and fluoxetine in mice selectively bred for hyperactive wheel-running behavior. Psychopharmacology (Berl). 2001;158(2):120–31.CrossRefGoogle Scholar
  74. 74.
    Knab AM, Bowen RS, Hamilton AT, Gulledge AA, Lightfoot JT. Altered dopaminergic profiles: implications for the regulation of voluntary physical activity. Behav Brain Res. 2009;204(1):147–52.PubMedCrossRefGoogle Scholar
  75. 75.
    Knab AM, Bowen RS, Hamilton AT, Moore-Harrison TL, Ferguson DP, Lightfoot JT. Central control of physical activity in mice is mediated by dopamine 1 (D1) receptors and the tyrosine hydroxylase enzyme. Med Sci Sports Exerc. 2009;41(5):S183.Google Scholar
  76. 76.
    Smith Y, Villalba R. Striatal and extrastriatal dopamine in the basal ganglia: an overview of its anatomical organization in normal and Parkinsonian brains. Mov Disord. 2008;23 Suppl 3:S534–47.PubMedCrossRefGoogle Scholar
  77. 77.
    Ceaser T, Lightfoot JT. Interval specific haplotype analysis between high and low active mice within identified quantitative trait loci for physical activity [Masters]. Charlotte: University of North Carolina Charlotte; 2009.Google Scholar
  78. 78.
    Fox DL, Vella KR, Good DJ. Energy balance pathways converging on the Nhlh2 transcription factor. Front Biosci. 2007;12:3983–93.PubMedCrossRefGoogle Scholar
  79. 79.
    Good DJ, Coyle CA, Fox DL. Nhlh2: a basic helix-loop-helix transcription factor controlling physical activity. Exerc Sport Sci Rev. 2008;36(4):187–92.PubMedCrossRefGoogle Scholar
  80. 80.
    Morgan MA, Schulkin J, Pfaff DW. Estrogens and non-reproductive behaviors related to activity and fear. Neurosci Biobehav Rev. 2004;28(1):55–63.PubMedCrossRefGoogle Scholar
  81. 81.
    Gorzek JF, Hendrickson KC, Forstner JP, Rixen JL, Moran AL, Lowe DA. Estradiol and tamoxifen reverse ovariectomy-induced physical inactivity in mice. Med Sci Sports Exerc. 2007;39(2):248–56.PubMedCrossRefGoogle Scholar
  82. 82.
    Roy EJ, Wade GN. Role of estrogens in androgen-induced spontaneous activity in male rats. J Comp Physiol Psychol. 1975;89(6):573–9.PubMedCrossRefGoogle Scholar
  83. 83.
    Tsao TS, Li J, Chang KS, Stenbit AE, Galuska D, Anderson JE, et al. Metabolic adaptations in skeletal muscle overexpressing GLUT4: effects on muscle and physical activity. FASEB J. 2001;15(6):958–69.PubMedCrossRefGoogle Scholar
  84. 84.
    Bult CJ, Eppig JT, Kadin JA, Richardson JE, Blake JA, Mouse Genome Database Group. The mouse genome database (MGD): mouse biology and model systems. Nucleic Acids Res. 2008;36(Database issue):D724–8.PubMedCrossRefGoogle Scholar
  85. 85.
    Novak CM, Escande C, Gerber SM, Chini EN, Zhang M, Britton SL, et al. Endurance capacity, not body size, determines physical activity levels: role of skeletal muscle PEPCK. PLoS One. 2009;4(6):e5869.PubMedCrossRefGoogle Scholar
  86. 86.
    Friedman WA, Garland Jr T, Dohm MR. Individual variation in locomotor behavior and maximal oxygen consumption in mice. Physiol Behav. 1992;52(1):97–104.PubMedCrossRefGoogle Scholar
  87. 87.
    Lambert MI, Van Zyl C, Jaunky R, Lambert EV, Noakes TD. Tests of running performance do not predict subsequent spontaneous running in rats. Physiol Behav. 1996;60(1):171–6.PubMedCrossRefGoogle Scholar
  88. 88.
    Lightfoot JT, Turner MJ, Debate KA, Kleeberger SR. Interstrain variation in murine aerobic capacity. Med Sci Sports Exerc. 2001;33(12):2053–7.PubMedCrossRefGoogle Scholar
  89. 89.
    Meek TH, Lonquich BP, Hannon RM, Garland Jr T. Endurance capacity of mice selectively bred for high voluntary wheel running. J Exp Biol. 2009;212(18):2908–17.PubMedCrossRefGoogle Scholar
  90. 90.
    Bouchard C, Rankinen T, Chagnon YC, Rice T, Perusse L, Gagnon J, et al. Genomic scan for maximal oxygen uptake and its response to training in the HERITAGE family study. J Appl Physiol. 2000;88(2):551–9.PubMedGoogle Scholar
  91. 91.
    Rico-Sanz J, Rankinen T, Rice T, lean AS, Skinner JS, Wilmore JH, et al. Quantitative trait loci for maximal exercise capacity phenotypes and their responses to training in the HERITAGE family study. Physiol Genomics. 2004;16(2):256–60.PubMedGoogle Scholar
  92. 92.
    Ways JA, Smith BM, Barbato JC, Ramdath RS, Pettee KM, DeRaedt SJ, et al. Congenic strains confirm aerobic running capacity quantitative trait loci on rat chromosome 16 and identify possible intermediate phenotypes. Physiol Genomics. 2007;29(1):91–7.PubMedGoogle Scholar
  93. 93.
    Ways JA, Cicila GT, Garrett MR, Koch LG. A genome scan for loci associated with aerobic running capacity in rats. Genomics. 2002;80(1):13–20.PubMedCrossRefGoogle Scholar
  94. 94.
    Koch LG, Meredith TA, Fraker TD, Metting PJ, Britton SL. Heritability of treadmill running endurance in rats. Am J Physiol. 1998;275(5 Pt 2):R1455–60.PubMedGoogle Scholar
  95. 95.
    Wang YX, Zhang CL, Yu RT, Cho HK, Nelson MC, Bayuaga-Ocampo CR, et al. Regulation of muscle fiber type and running endurance by PPARdelta. PLoS Biol. 2004;2(10):e294.PubMedCrossRefGoogle Scholar
  96. 96.
    Evans RM, Barish GD, Wang YX. PPARs and the complex journey to obesity. Nat Med. 2004;10(4):355–61.PubMedCrossRefGoogle Scholar
  97. 97.
    Narkar VA, Downes M, Yu RT, Embler E, Wang YX, Banayo E, et al. AMPK and PPARdelta agonists are exercise mimetics. Cell. 2008;134(3):405–15.PubMedCrossRefGoogle Scholar
  98. 98.
    Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 1998;391(6669):806–11.PubMedCrossRefGoogle Scholar
  99. 99.
    Axtell MJ, Snyder JA, Bartel DP. Common functions for diverse small RNAs of land plants. Plant Cell. 2007;19(6):1750–69.PubMedCrossRefGoogle Scholar
  100. 100.
    Siepel A. Darwinian alchemy: human genes from noncoding DNA. Genome Res. 2009;19(10):1693–5.PubMedCrossRefGoogle Scholar
  101. 101.
    Forrest AR, Abdelhamid RF, Carninci P. Annotating non-coding transcription using functional genomics strategies. Brief Funct Genomic Proteomic. 2009;8(6):437–43.PubMedCrossRefGoogle Scholar
  102. 102.
    Roth SM. Last word on viewpoint: perspective on the future use of genomics in exercise prescription. J Appl Physiol. 2008;104(4):1254.PubMedCrossRefGoogle Scholar
  103. 103.
    Chenoweth D, Leutzinger J. The economic cost of physical inactivity and excess weight in American adults. J Phys Act Health. 2006;3(2):148–63.Google Scholar
  104. 104.
    Centers for Disease Control and Prevention (U.S.). Chronic diseases and their risk factors: the nation’s leading causes of death. Atlanta, GA: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention; 1999.Google Scholar
  105. 105.
    Bronstein PM, Wolkoff FD, Levine WJ. Sex-related differences in rats open-field activity. Behav Biol. 1975;13(1):133–8.PubMedCrossRefGoogle Scholar
  106. 106.
    Craft RM, Clark JL, Hart SP, Pinckney MK. Sex differences in locomotor effects of morphine in the rat. Pharmacol Biochem Behav. 2006;85(4):850–8.PubMedCrossRefGoogle Scholar
  107. 107.
    Koteja P, Swallow JG, Carter PA, Garland Jr T. Energy cost of wheel running in house mice: implications for coadaptation of locomotion and energy budgets. Physiol Biochem Zool. 1999;72(2):238–49.PubMedCrossRefGoogle Scholar
  108. 108.
    Leslie PW, Bindon JR, Baker PT. Caloric requirements of human populations: a model. Hum Ecol. 1984;12(2):137–62. Scholar
  109. 109.
    Li JS, Huang YC. Early androgen treatment influences the pattern and amount of locomotion activity differently and sexually differentially in an animal model of ADHD. Behav Brain Res. 2006;175(1):176–82.PubMedCrossRefGoogle Scholar
  110. 110.
    McCracken M, Jiles R, Blanck HM. Health behaviors of the young adult U.S. population: behavioral risk factor surveillance system, 2003. Prev Chronic Dis. 2007;4(2):A25.PubMedGoogle Scholar
  111. 111.
    Panter-Brick C. Seasonal and sex variation in physical activity levels among agro-pastoralists in Nepal. Am J Phys Anthropol. 1996;100(1):7–21.PubMedCrossRefGoogle Scholar
  112. 112.
    Doran DM. Comparative locomotor behavior of chimpanzees and bonobos: the influence of morphology on locomotion. Am J Phys Anthropol. 1993;91(1):83–98.PubMedCrossRefGoogle Scholar
  113. 113.
    Fox EA, van Schaik CP, Sitompul A, Wright DN. Intra-and interpopulational differences in orangutan (Pongo pygmaeus) activity and diet: implications for the invention of tool use. Am J Phys Anthropol. 2004;125(2):162–74.PubMedCrossRefGoogle Scholar
  114. 114.
    Pontzer H, Wrangham RW. Climbing and the daily energy cost of locomotion in wild ­chimpanzees: implications for hominoid locomotor evolution. J Hum Evol. 2004;46(3):317–35.PubMedCrossRefGoogle Scholar
  115. 115.
    Mouse phenome database. Accessed 1 Sept 2009.
  116. 116.
    Salmen T, Heikkinen AM, Mahonen A, Kroger H, Komulainen M, Pallonen H, et al. Relation of aromatase gene polymorphism and hormone replacement therapy to serum estradiol levels, bone mineral density, and fracture risk in early postmenopausal women. Ann Med. 2003;35(4):282–8.PubMedCrossRefGoogle Scholar
  117. 117.
    Fuentes RM, Perola M, Nissinen A, Tuomilehto J. ACE gene and physical activity, blood pressure, and hypertension: a population study in Finland. J Appl Physiol. 2002;92(6):2508–12.PubMedGoogle Scholar
  118. 118.
    Winnicki M, Accurso V, Hoffmann M, Pawlowski R, Dorigatti F, Santonastaso M, et al. Physical activity and angiotensin-converting enzyme gene polymorphism in mild hypertensives. Am J Med Genet A. 2004;125A(1):38–44.PubMedCrossRefGoogle Scholar
  119. 119.
    Roltsch MH, Brown MD, Hand BD, Kostek MC, Phares DA, Huberty A, et al. No association between ACE I/D polymorphism and cardiovascular hemodynamics during exercise in young women. Int J Sports Med. 2005;26(8):638–44.PubMedCrossRefGoogle Scholar
  120. 120.
    Simonen RL, Rankinen T, Perusse L, Leon AS, Skinner JS, Wilmore JH, et al. A dopamine D2 receptor gene polymorphism and physical activity in two family studies. Physiol Behav. 2003;78(4–5):751–7.PubMedCrossRefGoogle Scholar
  121. 121.
    Rose Jr FF, Mattis VB, Rindt H, Lorson CL. Delivery of recombinant follistatin lessens disease severity in a mouse model of spinal muscular atrophy. Hum Mol Genet. 2009;18(6):997–1005.PubMedCrossRefGoogle Scholar
  122. 122.
    Loos RJ, Lindgren CM, Li S, Wheeler E, Zhao JH, Prokopenko I, et al. Common variants near MC4R are associated with fat mass, weight and risk of obesity. Nat Genet. 2008;40(6):768–75.PubMedCrossRefGoogle Scholar
  123. 123.
    Richert L, Chevalley T, Manen D, Bonjour JP, Rizzoli R, Ferrari S. Bone mass in prepubertal boys is associated with a Gln223Arg amino acid substitution in the leptin receptor. J Clin Endocrinol Metab. 2007;92(11):4380–6.PubMedCrossRefGoogle Scholar
  124. 124.
    Lorentzon M, Lorentzon R, Lerner UH, Nordstrom P. Calcium sensing receptor gene polymorphism, circulating calcium concentrations and bone mineral density in healthy adolescent girls. Eur J Endocrinol. 2001;144(3):257–61.PubMedCrossRefGoogle Scholar
  125. 125.
    Gentil P, de Lima Lins TC, Lima RM, de Abreu BS, Grattapaglia D, Bottaro M, et al. Vitamin-D-receptor genotypes and bone-mineral density in postmenopausal women: interaction with physical activity. J Aging Phys Act. 2009;17(1):31–45.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Health and Kinesiology, Sydney and JL Huffines Institute for Sports Medicine and Human PerformanceTexas A&M UniversityCollege StationUSA

Personalised recommendations