Collective Dynamics in Lipid Membranes: From Pore Formation to Flip-Flops

Part of the Handbook of Modern Biophysics book series (HBBT)


Biological membranes are excellent examples of biologically relevant soft interfaces. They mediate or even govern a large variety of cellular functions [1–3]. Membranes serve as a host for membrane proteins to carry out their functions, and numerous signaling processes are either conducted inside membranes or mediated by them. Additionally, cellular membranes act as a permeability barrier, allowing only desired particles to permeate through the membrane into and out of the cell, besides which membranes are also involved in a variety of large-scale functions such as in maintaining the osmotic pressure and ion density gradients across the plasma membrane. The biological relevance of membranes is emphasized by the rather recently proposed lipid raft model [4–7], which essentially stresses the importance of understanding the interplay between lipids and proteins: membrane proteins function together with lipids. Consequently, lipid membrane structures, lipid domain coexistence, and especially the role of cholesterol in the structural properties of membranes have been paid a considerable amount of attention recently. Meanwhile, the dynamics of membranes [3,8,9] has received much less attention despite its substantial importance in, e.g., signaling, domain formation, and diffusion of lipids and proteins in the plane of the membrane.


Water Pore Lipid Membrane Lipid Bilayer Pore Formation Collective Dynamic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mouritsen, OG. 2005. Life — as a matter of fat. Berlin: Springer-Verlag.Google Scholar
  2. 2.
    Katsaras J, Gutberlet T, eds. 2001. Lipid bilayers: structure and interactions. Berlin: Springer-Verlag.Google Scholar
  3. 3.
    Yeagle PL, ed. 2005. The structure of biological membranes. Boca Raton, FL: CRC Press.Google Scholar
  4. 4.
    Simons K, Ikonen, E. 1997. Functional rafts in cell membranes. Nature 387:569–572.CrossRefADSGoogle Scholar
  5. 5.
    Edidin M. 2003. The state of lipid rafts: from model membranes to cells. Annu Rev Biophys Biomol Struct 32:257–283.CrossRefGoogle Scholar
  6. 6.
    Pike LJ. 2004. Lipid rafts: heterogeneity on the high seas. Biochem J 378:281–292.CrossRefGoogle Scholar
  7. 7.
    Hancock JF. 2006. Lipid rafts: continuous only from simplistic standpoints. Nat Rev Mol Cell Biol 7:456–462.CrossRefGoogle Scholar
  8. 8.
    Saxton MJ, Jacobson K. 1997. Single-particle tracking: applications to membrane dynamics. Annu Rev Biophys Biomol Struct 26:373–399.CrossRefGoogle Scholar
  9. 9.
    Vattulainen I, Mouritsen OG. 2005 Diffusion in membranes. In Diffusion in condensed matter: methods, materials, models, pp. 471–509. Ed P Heithans, J Kärger. Berlin: Springer-Verlag.CrossRefGoogle Scholar
  10. 10.
    Gurtovenko AA, Vattulainen I. 2005. Pore formation coupled to ion transport through lipid membranes as induced by transmembrane ionic charge imbalance: atomistic molecular dynamics study. J Am Chem Soc 127:17570–17571.CrossRefGoogle Scholar
  11. 11.
    Gurtovenko AA, Vattulainen I. 2007. Ion leakage through transient water pores in protein-free lipid membranes driven by transmembrane ionic charge imbalance. Biophys J 92:1878–1890.CrossRefGoogle Scholar
  12. 12.
    Feller SE, Gawrisch K, MacKerell Jr AD. 2001. Polyunsaturated fatty acids in lipid bilayers: intrinsic and environmental contributions to their unique physical properties. J Am Chem Soc 124:318–326.CrossRefGoogle Scholar
  13. 13.
    Doxastakis M, Sum AK, de Pablo JJ. 2005. Modulating membrane properties: the effect of trehalose and cholesterol on a phospholipid bilayer. J Phys Chem B 109:24173–24181.CrossRefGoogle Scholar
  14. 14.
    Klauda JB, Roberts MF, Redfield AG, Brooks BR, Pastor RW. 2008. Rotation of lipids in membranes: molecular dynamics simulation, 31P spin-lattice relaxation, and rigid-body dynamics. Biophys J 94:3074–3083.CrossRefGoogle Scholar
  15. 15.
    Moore PB, Lopez CF, Klein ML. 2001. Dynamical properties of a hydrated lipid bilayer from a multinanosecond molecular dynamics simulation. Biophys J 81:2484–2494.CrossRefGoogle Scholar
  16. 16.
    Niemelä P, Ollila S, Hyvönen MT, Karttunen M, Vattulainen I. 2007. Assessing the nature of lipid raft membranes. PLoS Comput Biol 3:304–312.CrossRefMathSciNetGoogle Scholar
  17. 17.
    Filippov A, Orädd G, Lindblom G. 2006. Sphingomyelin structure influences the lateral diffusion and raft formation in lipid bilayers. Biophys J 90:2086–2092.CrossRefGoogle Scholar
  18. 18.
    Gennis GB. 1989. Biomembranes: molecular structure and function. New York: Springer-Verlag.Google Scholar
  19. 19.
    Zachowski A. 1993. Phospholipids in animal eukaryotic membranes: transverse asymmetry and movement. Biochem J 294:1–14.Google Scholar
  20. 20.
    Manno S, Takakuwa Y, Mohandas N. 2002. Identification of a functional role for lipid asymmetry in biological membranes: phosphatidylserine-skeletal protein interactions modulate membrane stability. Proc Natl Acad Sci USA 99:1943–1948.CrossRefADSGoogle Scholar
  21. 21.
    Latorre R, Hall JE. 1976. Dipole potential measurements in asymmetric membranes. Nature 264:361–363.CrossRefADSGoogle Scholar
  22. 22.
    Gurtovenko AA, Vattulainen I. 2007. Lipid transmembrane asymmetry and intrinsic membrane potential: two sides of the same coin. J Am Chem Soc 129:5358–5359.CrossRefGoogle Scholar
  23. 23.
    Gurtovenko AA, Vattulainen I. 2008. Membrane potential and electrostatics of phospholipid bilayers with asymmetric transmembrane distribution of anionic lipids. J Phys Chem B 112:4629–4634.CrossRefGoogle Scholar
  24. 24.
    Pomorski T, Hrafnsdottir S, Devaux PF, van Meer G. 2001. Lipid distribution and transport across cellular membranes. Semin Cell Dev Biol 12:139–148.CrossRefGoogle Scholar
  25. 25.
    Balasubramanian K, Schroit AJ. 2003. Aminophospholipid asymmetry: a matter of life and death. Annu Rev Physiol 65:701–734.CrossRefGoogle Scholar
  26. 26.
    Bevers EM, Comfurius P, Dekkers DWC, Zwaal RFA. 1999. Lipid translocation across the plasma membrane of mammalian cells. Biochim Biophys Acta 1439:317–330.Google Scholar
  27. 27.
    Pomorski T, Menon AK. 2006. Lipid flippases and their biological functions. Cell Mol Life Sci 63:2908–2921.CrossRefGoogle Scholar
  28. 28.
    Raggers RJ, Pomorski T, Holthuis JCM, Kälin N, van Meer G. 2000. Lipid traffic: the ABC of transbilayer movement. Traffic 1:226–234.CrossRefGoogle Scholar
  29. 29.
    Holthuis JC, Levine TP. 2005. Lipid traffic: floppy drives and a superhighway. Nat Rev Mol Cell Biol 6:209–220.CrossRefGoogle Scholar
  30. 30.
    Kornberg RD, McConnell HM. 1971. Inside–outside transition of phospholipids in vesicle membranes. Biochemistry 10:1111–1120.CrossRefGoogle Scholar
  31. 31.
    Wimley WC, Thompson TE. 1990. Exchange and flip-flop of dimyristoylphosphatidylcholine in liquid-crystalline, gel, and two-component, two-phase large unilamellar vesicles. Biochemistry 29:1296–1303.CrossRefGoogle Scholar
  32. 32.
    Schwarz S, Haest CWM, Deuticke B. 1999. Extensive electroporation abolishes experimentally induced shape transformations of erythrocytes: a consequence of phospholipids symmetrization? Biochim Biophys Acta 1421:361–379.CrossRefGoogle Scholar
  33. 33.
    Tieleman DP, Marrink SJ. 2006. Lipids out of equilibrium: Energetics of desorption and pore mediated flip-flop. J Am Chem Soc 128:12462–12467.CrossRefGoogle Scholar
  34. 34.
    Gurtovenko AA, Vattulainen I. 2007. Molecular mechanism of lipid flip-flop. J Phys Chem B 111:13554–13559.CrossRefGoogle Scholar
  35. 35.
    Tieleman DP, Leotiadou H, Mark AE, Marrink SJ. 2003. Simulation of pore formation in lipid bilayers by mechanical stress and electric fields. J Am Chem Soc 125:6382–6383.CrossRefGoogle Scholar
  36. 36.
    Tieleman DP. 2004. The molecular basis for electroporation. BMC Biochemistry 5:10.CrossRefGoogle Scholar
  37. 37.
    Tarek M. 2005. Membrane electroporation: a molecular dynamics simulation. Biophys J 88:4045–4053.CrossRefGoogle Scholar
  38. 38.
    Leontiadou H, Mark AE, Marrink SJ. 2004. Molecular dynamics simulations of hydrophilic pores in lipid bilayers. Biophys J 86:2156–2164.CrossRefGoogle Scholar
  39. 39.
    Leontiadou H, Mark AE, Marrink SJ. 2007. Ion transport across transmembrane pores. Biophys J 92:4209–4215.CrossRefGoogle Scholar
  40. 40.
    Voet D, Voet JG. 2004. Biochemistry, 3rd ed. New York: John Wiley & Sons.Google Scholar
  41. 41.
    Cevc G, Marsh D. 1987. Phospholipid bilayers: physical principles and models. New York: John Wiley & Sons.Google Scholar
  42. 42.
    Sachs JN, Crozier PS, Woolf TB. 2004. Atomistic simulations of biologically realistic transmembrane potential gradients. J Chem Phys 121:10847–10851.CrossRefADSGoogle Scholar
  43. 43.
    Gurtovenko AA. 2005. Asymmetry of lipid bilayers induced by monovalent salt: atomistic molecular dynamics study. J Chem Phys 122:244902.CrossRefADSGoogle Scholar
  44. 44.
    Böckmann RA, Hac A, Heimburg T, Grubmüller H. 2003. Effect of sodium chloride on a lipid bilayer. Biophys J 85:1647–1655.CrossRefGoogle Scholar
  45. 45.
    Pandit SA, Bostick D, Berkowitz ML. 2003. Molecular dynamics simulation of a dipalmitoylphosphatidylcholine bilayer with NaCl. Biophys J 84:3743–3750.CrossRefGoogle Scholar
  46. 46.
    Gurtovenko AA, Miettinen M, Karttunen M, Vattulainen I. 2005. Effect of monovalent salt on cationic lipid membranes as revealed by molecular dynamics simulations. J Phys Chem B 109:21126–21134.CrossRefGoogle Scholar
  47. 47.
    Gurtovenko AA, Vattulainen I. 2008. Effect of NaCl and KCl on phosphatidylcholine and phosphatidylethanolamine lipid membranes: insight from atomic-scale simulations for understanding salt-induced effects in the plasma membrane. J Phys Chem B 112:1953–1962.CrossRefGoogle Scholar
  48. 48.
    Anchordoguy TJ, Carpenter JF, Crowe JH, Crowe LM. 1992. Temperature-dependent perturbation of phospholipid bilayers by dimethylsulfoxide. Biochim Biophys Acta 1104:117–122.CrossRefGoogle Scholar
  49. 49.
    Rall WF, Fahy GM. 1985. Ice-free cryopreservation of mouse embryos at −196°C by vitrification. Nature 313:573–575.CrossRefADSGoogle Scholar
  50. 50.
    Ahkong QF, Fisher D, Tampion W, Lucy JA. 1975. Mechanisms of cell fusion. Nature 253:194–195.CrossRefADSGoogle Scholar
  51. 51.
    Notman R, Noro M, O'Malley B, Anwar J. 2006. Molecular basis for dimethylsulfoxide (DMSO) action on lipid membrane. J Am Chem Soc 128:13982–13983.CrossRefGoogle Scholar
  52. 52.
    Gurtovenko AA, Anwar J. 2007. Modulating the structure and properties of cell membranes: the molecular mechanism of action of dimethyl sulfoxide. J Phys Chem B 111:10453–10460.CrossRefGoogle Scholar
  53. 53.
    Gurtovenko AA, Anwar J. 2007. Ion transport through chemically induced pores in protein-free phospholipid membranes. J Phys Chem B 111:13379–13382.CrossRefGoogle Scholar
  54. 54.
    Gurtovenko AA, Onike OI, Anwar J. 2008. Chemically-induced phospholipid translocation across biological membranes. Langmuir 24:9656–9660.CrossRefGoogle Scholar
  55. 55.
    Vernier PT, Ziegler MJ, Sun Y, Chang WV, Gundersen MA, Tieleman DP. 2006. Nanopore formation and phosphatidylserine externalization in a phospholipid bilayer at high transmembrane potential. J Am Chem Soc 128:6288–6289.CrossRefGoogle Scholar
  56. 56.
    Vernier PT, Ziegler MJ, Sun Y, Gundersen MA, Tieleman DP. 2006. Nano-pore facilitated, voltage-driven phosphatidylserine translocation in lipid bilayer — in cells and in silico. Phys Biol 3:233–247.CrossRefADSGoogle Scholar
  57. 57.
    Rog T, Stimson LM, Pasenkiewicz-Gierula M, Vattulainen I, Karttunen M. 2008. Replacing the cholesterol hydroxyl group by the ketone group facilitates sterol flip-flop and promotes membrane fluidity. J Phys Chem B 112:1946–1952.CrossRefGoogle Scholar
  58. 58.
    Marrink SJ, de Vries AH, Harroun TA, Katsaras J, Wassall SR. 2008. Cholesterol shows preference for the interior of polyunsaturated lipid membranes. J Am Chem Soc 130:10–11.CrossRefGoogle Scholar
  59. 59.
    Boon JM, Smith BD. 2002. Chemical control of phospholipid distribution across bilayer membranes. Med Res Rev 22:251–281.CrossRefGoogle Scholar
  60. 60.
    Dressler V, Schwister K, Haest CWM, Deuticke B. 1983. Dielectric breakdown of the erythrocyte membrane enhances transbilayer mobility of phospholipids. Biochim Biophys Acta 732:304–307.CrossRefGoogle Scholar
  61. 61.
    Falck E, Rog T, Karttunen M, Vattulainen I. 2008. Lateral diffusion in lipid membranes through collective flows. J Am Chem Soc 130:44–45.CrossRefGoogle Scholar
  62. 62.
    McIntosh TJ, Simon SA. 2006. Role of bilayer material properties in function and distribution of membrane properties. Annu Rev Biophys Biomol Struct 35:177–198.CrossRefGoogle Scholar
  63. 63.
    Lundbaek JA. 2006. Regulation of membrane protein function by lipid bilayer elasticity — a single molecule technology to measure the bilayer properties experienced by an embedded protein. J Phys Cond Matter 18: S1305–S1344.CrossRefADSGoogle Scholar
  64. 64.
    Holthuis JCM, van Meer G, Huitema K. 2003. Lipid microdomains, lipid translocation and the organization of intracellular membrane transport. Mol Membr Biol 20:231–241.CrossRefGoogle Scholar
  65. 65.
    Schekman R. 2004. Merging cultures in the study of membrane traffic. Nat Cell Biol 6:483–486.CrossRefGoogle Scholar
  66. 66.
    Holthuis JCM, Levine TP. 2005. Lipid traffic: floppy drives and a superhighway. Nat Rev Mol Cell Biol 6:209–220.CrossRefGoogle Scholar
  67. 67.
    Lenoir G, Williamson P, Holthuis JC. 2007. On the origin of lipid asymmetry: the flip side of ion transport. Curr Opin Chem Biol 11:654–661.CrossRefGoogle Scholar
  68. 68.
    Bockmann RA, de Groot BL, Kakorin S, Neumann E, Grubmuller H. 2008. Kinetics, statistics, and energetics of lipid membrane electroporation studied by molecular dynamics simulations. Biophys J 95:1837–1850.CrossRefGoogle Scholar

Copyright information

© Humana Press 2009

Authors and Affiliations

  1. 1.Institute of Macromolecular Compounds, Russian Academy of SciencesSt. PetersburgRussia
  2. 2.Computational Biophysics Laboratory, Institute of Pharmaceutical Innovation, University of BradfordWest YorkshireUnited Kingdom
  3. 3.Department of Physics, Tampere University of TechnologyTampereFinland
  4. 4.Helsinki University of TechnologyHelsinkiFinland
  5. 5.MEMPHYS — Center for Biomembrane Physics, University of Southern DenmarkOdenseDenmark

Personalised recommendations