Advertisement

Multiscale Modeling of Supported Lipid Bilayers

Chapter
Part of the Handbook of Modern Biophysics book series (HBBT)

Abstract

Cell membranes consist of a multitude of lipid molecules that serve as a framework for the even greater variety of membrane associated proteins [1–4]. As this highly complex (nonequilibrium) system cannot easily be understood and studied in a controlled way, a wide variety of model systems have been devised to understand the dynamics, structure, and thermodynamics in biological membranes. One such model system is a supported lipid bilayer (SLB), a two-dimensional membrane suspended on a surface. SLBs have been realized to be manageable experimentally while reproducing many of the key features of real biological membranes [5,6]. One of the main advantages of supported bilayers is the physical stability due to the solid support that enables a wide range of surface characterization techniques not available to free or unsupported membranes. As SLBs maintain some of the crucial structural and dynamic properties of biological membranes, they provide an important bridge to natural systems. In order to mimic cell membranes reliably, certain structural and dynamic features have to be reliably reproduced in the artificially constructed lipid bilayers. SLBs should display lateral mobility as in living cells, because many membrane activities involve transport, recruitment, or assembly of specific components. It is also critical for membranes to exhibit the correct thermodynamic phase, namely, a fluid lipid bilayer, to respond to environmental stress such as temperature and pressure changes [7]. There are several ways to fabricate supported lipid bilayers (SLBs) on planar substrates. One can use vesicle fusion on solid substrates [5,8–10] as well as Langmuir-Blodgett deposition [11,12]. Proteoliposome adsorption and subsequent membrane formation on a mica surface was first demonstrated by Brian and McConnell [13]. Because of its simplicity and reproducibility, this is one of the most common approaches to prepare supported membranes. A diverse range of different solid substrates has been used as support material below the bilayer [14,15]. Silicon oxide is the material of choice for vesicle fusion [16]. Polymer cushions dampen the effect of hard surfaces and therefore have been actively investigated [17–20]. However, it is not fully understood which changes the introduction of a solid support introduces into such a biomimetic system. Experimentally it is almost impossible to address such changes, as extremely highresolution data would be required.

Keywords

Molecular Dynamic Simulation Lipid Bilayer MULTISCALE Modeling Support Lipid Bilayer Martini Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kusumi A, Tsuda M, Akino T, Ohnishi S, Terayama Y. 1983. Protein–phospholipid–cholesterol interaction in the photolysis of invertebrate rhodopsin. Biochemistry 22:1165–1170.CrossRefGoogle Scholar
  2. 2.
    Falck E, Patra M, Karttunen M, Hyvonen MT, Vattulainen I. 2004. Lessons of slicing membranes: interplay of packing, free area, and lateral diffusion in phospholipid/cholesterol bilayers. Biophy J 87:1076–1091.CrossRefGoogle Scholar
  3. 3.
    Pebay-Peyroula E, Rosenbusch JP. 2001. High-resolution structures and dynamics of membrane protein–lipid complexes: a critique. Curr Opin Struct Biol 11:427–432.CrossRefGoogle Scholar
  4. 4.
    London E. 2005. How principles of domain formation in model membranes may explain ambiguities concerning lipid raft formation in cells. Biochim Biophys Acta 1746:203–220.CrossRefGoogle Scholar
  5. 5.
    Sackmann E. 1996. Supported membranes: Scientific and practical applications. Science 271:43–48.ADSCrossRefGoogle Scholar
  6. 6.
    Hianik T. 2006. Structure and physical properties of biomembranes and model membranes. Acta Phys Slov 56:687–806.ADSGoogle Scholar
  7. 7.
    Shinitzky M. 1984. Physiology of membrane fluidity. Boca Raton, FL: CRC Press.Google Scholar
  8. 8.
    Groves JT, Ulman N, Boxer SG. 1997. Micropatterning fluid lipid bilayers on solid supports. Science 275:651–253.CrossRefGoogle Scholar
  9. 9.
    Richter RP, Brisson AR. 2005. Following the formation of supported lipid bilayers on mica: a study combining AFM, QCM-D, and ellipsometry. Biophys J 88:3422–3433.CrossRefGoogle Scholar
  10. 10.
    Weng KC, Stalgren JJR, Risbud SH, Frank CW. 2004. Planar bilayer lipid membranes supported on mesoporous aerogels, xerogels, and Vycor((R)) glass: an epifluorescence microscopy study. J Non-Cryst Solids 350:46–53.ADSCrossRefGoogle Scholar
  11. 11.
    Ulman A. 1991. An introduction to ultrathin organic films: from Langmuir-Blodgett to self-assembly. San Diego: Academic Press.Google Scholar
  12. 12.
    Gaines GL. 1996. Insoluble monolayers at liquid–gas interfaces. New York: John Wiley & Sons.Google Scholar
  13. 13.
    Brian AA, McConnell HM. 1984. Allogeneic stimulation of cytotoxic t cells by supported planar membranes. Proc Natl Acad Sci USA 81:6159–6163.ADSCrossRefGoogle Scholar
  14. 14.
    Groves JT, Ulman N, Cremer PS, Boxer SG. 1998. Substrate–membrane interactions: mechanisms for imposing patterns on a fluid bilayer membrane. Langmuir 14:3347–3350.CrossRefGoogle Scholar
  15. 15.
    Reviakine I, Brisson A. 2000. Formation of supported phospholipid bilayers from unilamellar vesicles investigated by atomic force microscopy. Langmuir 16:1806–1815.CrossRefGoogle Scholar
  16. 16.
    Groves JT, Ulman N, Boxer SG. 1997. Micropatterning fluid lipid bilayers on solid supports. Science 275:651–653.CrossRefGoogle Scholar
  17. 17.
    Knoll W, Frank CW, Heibel C, Naumann R, Offenhusser A, Rhe J, Schmidt EK, Shen WW, Sinner A. 2000. Functional tethered lipid bilayers. J Biotechnol 74:137–158.Google Scholar
  18. 18.
    Sackmann E, Tanaka M. 2000. Supported membranes on soft polymer cushions: fabrication, characterization and applications. Trends Biotechnol 18:58–64.CrossRefGoogle Scholar
  19. 19.
    Wagner ML, Tamm LK. 2000. Tethered polymer-supported planar bilayers for reconstitution of integral membrane proteins: silane–polyethyleneglycol–lipid as a cushion and covalent linker. Biophys J 79:1400–1414.CrossRefGoogle Scholar
  20. 20.
    Shen WW, Boxer SG, Knoll W, Frank CW. 2001. Polymer-supported lipid bilayers on benzophenone-modified substrates. Biomacromolecules 2:70–79.CrossRefGoogle Scholar
  21. 21.
    Israelachvili JN. 1992. Intermolecular and surface forces, 2nd ed. San Diego: Academic Press.Google Scholar
  22. 22.
    Keller CA, Kasemo B. 1998. Surface specific kinetics of lipid vesicles adsorption measured with a quartz crystal microbalance. Biophys J 75:1397–1402.CrossRefGoogle Scholar
  23. 23.
    Leonenko ZV, Carnini A, Cramb DT. 2000. Supported planar bilayer formation by vesicle fusion: the interaction of phospholipid vesicles with surfaces and the effect of gramicidin on bilayer properties using atomic force microscopy. Biochim Biophys Acta 1509:131–147.CrossRefGoogle Scholar
  24. 24.
    Johnson JM, Ha T, Chu S, Boxer SG. 2002. Early steps of supported bilayer formation probed by single vesicle fluorescence assays. Biophys J 83:3371–3379.CrossRefGoogle Scholar
  25. 25.
    Bayerl TM, Bloom M. 1990. Physical properties of single phospholipid bilayers adsorbed to micro glass beads. Biophys J 58:357–362.CrossRefGoogle Scholar
  26. 26.
    Johnson SJ, Bayerl TM, McDermott DC, Adam GW, Rennie AR, Thomas RK, Sackmann E. 1991. Structure of an adsorbed dimyristoylphosphatidylcholine bilayer measured with specular reflection of neutrons. Biophys J 59:289–294.CrossRefGoogle Scholar
  27. 27.
    Krueger S, Koenig BW, Orts WJ, Berk NF, Majkrzak CF, Gawrisch K. 1996. Neutron reflectivity studies of single lipid bilayers supported on planar substrates. Basic Life Sci 64:205–213.Google Scholar
  28. 28.
    Fromherz P, Kiessling V, Kottig K, Zeck G. 1999. Membrane transistor with giant lipid vesicle touching a silicon chip. Appl Phys A: Mater Sci Process 69:571–576.ADSCrossRefGoogle Scholar
  29. 29.
    Miller CE, Majewski J, Gog T, Kuhl TL. 2005. Characterization of biological thin films at the solid–liquid interface by X-ray reflectivity. Phys Rev Lett 94:238104.ADSCrossRefGoogle Scholar
  30. 30.
    Miller CE, Majewski J, Watkins EB, Mulder DJ, Gog T, Kuhl TL. 2008. Probing the local order of single phospholipid membranes using grazing incidence X-ray diffraction. Phys Rev Lett 100:058103–4.ADSCrossRefGoogle Scholar
  31. 31.
    Hogberg CJ, Lyubartsev AP. 2006. A molecular dynamics investigation of the influence of hydration and temperature on structural and dynamical properties of a dimyristoylphosphatidylcholine bilayer. J Phys Chem B 110:14326–14336.CrossRefGoogle Scholar
  32. 32.
    Berger O, Edholm O, Jahnig F. 1997. Molecular dynamics simulations of a fluid bilayer of dipalmitoylphosphatidylcholine at full hydration, constant pressure, and constant temperature. Biophys J 72:2002–2013.CrossRefGoogle Scholar
  33. 33.
    Feller SE, Yin DX, Pastor RW, MacKerell AD. 1997. Molecular dynamics simulation of unsaturated lipid bilayers at low hydration: parameterization and comparison with diffraction studies. Biophys J 73:2269–2279.CrossRefGoogle Scholar
  34. 34.
    Marrink SJ, Mark AE. 2001. Effect of undulations on surface tension in simulated bilayers. J Phys Chem B 105:6122–6127.CrossRefGoogle Scholar
  35. 35.
    Tieleman DP, Berendsen HJC. 1996. Molecular dynamics simulations of a fully hydrated dipalmitoyl phosphatidylcholine bilayer with different macroscopic boundary conditions and parameters. J Chem Phys 105:4871–4880.ADSCrossRefGoogle Scholar
  36. 36.
    Muller M, Katsov K, Schick M. 2006. Biological and synthetic membranes: what can be learned from a coarsegrained description? Phys Rep, 434:113–176.ADSCrossRefGoogle Scholar
  37. 37.
    Tieleman DP, Berendsen HJC. 1996. Molecular dynamics simulations of fully hydrated dipalmitoylphosphatidylcholine bilayer with different macroscopic boundary conditions and parameters. J Chem Phys 105:4871–4880.ADSCrossRefGoogle Scholar
  38. 38.
    Niemela P, Hyvonen MT, Vattulainen I. 2004. Structure and dynamics of sphingomyelin bilayer: insight gained through systematic comparison to phosphatidylcholine. Biophys J 87:2976–2989.CrossRefGoogle Scholar
  39. 39.
    Leekumjorn S, Sum AK. 2006. Molecular simulation study of structural and dynamic properties of mixed DPPC/DPPE bilayers. Biophys J 90:3951–3965.CrossRefGoogle Scholar
  40. 40.
    Gurtovenko A, Patra M, Karttunen M, Vattulainen I. 2004. Cationic DMPC/DMTAP lipid bilayers: molecular dynamics study. Biophys J 86:3461–3472.CrossRefGoogle Scholar
  41. 41.
    Aittoniemi J, Róg T, Niemela P, Pasenkiewicz-Gierula M, Vattulainen I, Karttunen M. 2006. Sterol tilt—major determinant of sterol ordering capability in lipid membranes. J Phys Chem B (Lett) 110:25562–25564.CrossRefGoogle Scholar
  42. 42.
    Pandit SA, Bostick D, Berkowitz ML. 2004. Complexation of phosphatidylcholine lipids with cholesterol. Biophys J 86:1345–1356.CrossRefGoogle Scholar
  43. 43.
    Pandit SA, Jakobsson E, Scott HL. 2004. Simulation of the early stages of nano-domain formation in mixed bilayers of sphingomyelin, cholesterol, and dioleylphosphatidylcholine. Biophys J 87:3312–3322.CrossRefGoogle Scholar
  44. 44.
    Faller R, Marrink SJ. 2004. Simulation of domain formation in DLPC–DSPC mixed bilayers. Langmuir 20:7686–7693.CrossRefGoogle Scholar
  45. 45.
    Goetz R, Lipowsky R. 1998. Computer simulations of bilayer membranes: self-assembly and interfacial tension. J Chem Phys 108:7397–7409.ADSCrossRefGoogle Scholar
  46. 46.
    Marrink SJ, Risselada J, Mark AE. 2005. Simulation of gel phase formation and melting in lipid bilayers using a coarse grained model. Chem Phys Lipids 135:223–244.CrossRefGoogle Scholar
  47. 47.
    Mouritsen OG. 1991. Theoretical models of phospholipid phase transitions. Chem Phys Lipids 57:179–194.CrossRefGoogle Scholar
  48. 48.
    Kandt C, Ash WL, Tieleman DP. 2007. Setting up and running molecular dynamics simulations of membrane proteins. Methods 41:475–488.CrossRefGoogle Scholar
  49. 49.
    Heine DR, Rammohan AR, Balakrishnan J. 2007. Atomistic simulations of the interaction between lipid bilayers and substrates. Mol Simul 33:391–397.CrossRefGoogle Scholar
  50. 50.
    Bennun SV, Dickey AN, Xing CY, Faller R. 2007. Simulations of biomembranes and water: important technical aspects. Fluid Phase Equilib 261:18–25.CrossRefGoogle Scholar
  51. 51.
    Xing C, Faller R. 2008. Interactions of lipid bilayers with supports: a coarse-grained molecular simulation study. J Phys Chem B 112:7086–7094.CrossRefGoogle Scholar
  52. 52.
    Hoopes MI, Deserno M, Longo ML, Faller R. 2008. Coarse-grained modeling of interactions of lipid bilayers with supports. J Phys Chem 129:175102.CrossRefGoogle Scholar
  53. 53.
    Mackerell AD. 2004. Empirical force fields for biological macromolecules: overview and issues. J Comput Chem 25:1584–1604.CrossRefGoogle Scholar
  54. 54.
    Aman K, Lindahl E, Edholm O, Hakansson P, Westlund PO. 2003. Structure and dynamics of interfacial water in an L-alpha phase lipid bilayer from molecular dynamics simulations. Biophys J 84:102–115.CrossRefGoogle Scholar
  55. 55.
    Pasenkiewicz-Gierula M, Takaoka Y, Miyagawa H, Kitamura K, Kusumi A. 1999. Charge pairing of headgroups in phosphatidylcholine membranes: a molecular dynamics simulation study. Biophys J 76:1228–1240.CrossRefGoogle Scholar
  56. 56.
    Hofsass C, Lindahl E, Edholm O. 2003. Molecular dynamics simulations of phospholipid bilayers with cholesterol. Biophys J 84:2192–2206.CrossRefGoogle Scholar
  57. 57.
    Tu KC, Klein ML, Tobias DJ. 1998. Constant-pressure molecular dynamics investigation of cholesterol effects in a dipalmitoylphosphatidylcholine bilayer. Biophys J 75:2147–2156.CrossRefGoogle Scholar
  58. 58.
    Tieleman DP, Marrink SJ, Berendsen HJC. 1997. A computer perspective of membranes: molecular dynamics studies of lipid bilayer systems. Biochim Biophys Acta 1331:235–270.Google Scholar
  59. 59.
    Feller SE, Brown CA, Nizza DT, Gawrisch K. 2002. Nuclear Overhauser enhancement spectroscopy cross-relaxation rates and ethanol distribution across membranes. Biophys J 82:1396–1404.CrossRefGoogle Scholar
  60. 60.
    Pastor RW, Venable RM, Feller SE. 2002. Lipid bilayers, NMR relaxation, and computer simulations. Acc Chem Res 35:438–446.CrossRefGoogle Scholar
  61. 61.
    Shelley JC, Shelley MY, Reeder RC, Bandyopadhyay S, Moore PB, Klein ML. 2001. Simulations of phospholipids using a coarse grain model. J Phys Chem B 105:9785–9792.CrossRefGoogle Scholar
  62. 62.
    Shelley JC, Shelley MY, Reeder RC, Bandyopadhyay S, Klein ML. 2001. A coarse-grain model for phospholipid simulations. J Phys Chem B 105:4464–4470.CrossRefGoogle Scholar
  63. 63.
    Nielsen SO, Lopez CF, Srinivas G, Klein ML. 2004. Coarse grain models and the computer simulation of soft materials. J Phys Cond Matter 16:R481–R512.ADSCrossRefGoogle Scholar
  64. 64.
    Marrink SJ, Mark AE. 2004. Molecular view of hexagonal phase formation in phospholipid membranes. Biophys J 87:3894–3900.CrossRefGoogle Scholar
  65. 65.
    Lopez CF, Moore PB, Shelley JC, Shelley MY, Klein ML. 2002. Computer simulation studies of biomembranes using a coarse grain model. Comput Phys Commun 147:1–6.zbMATHADSMathSciNetCrossRefGoogle Scholar
  66. 66.
    Ayton G, Voth GA. 2002. Bridging microscopic and mesoscopic simulations of lipid bilayers. Biophys J 83:3357–3370.CrossRefGoogle Scholar
  67. 67.
    Smit B, Hilbers PAJ, Esselink K, Rupert LAM, van Os NM, Schlijper AG. 1990. Computer simulations of a water/oil interface in the presence of micelles. Nature 348:624–625.ADSCrossRefGoogle Scholar
  68. 68.
    Goetz R, Gompper G, Lipowsky R. 1999. Mobility and elasticity of self-assembled membranes. Phys Rev Lett 81:221–224.ADSCrossRefGoogle Scholar
  69. 69.
    Mouritsen OG. 2000. Computer simulation of lyotropic liquid crystals as models of biological membranes. In Advances in the computer simulation of liquid crystals, pp. 139–188. Ed C Zannoni. Dordrecht: Kluwer.Google Scholar
  70. 70.
    Soddemann T, Dünweg B, Kremer K. 2001. A generic computer model for amphiphilic systems. Eur Phys J E 6:409–419.CrossRefGoogle Scholar
  71. 71.
    Guo H, Kremer K. 2003. Amphiphilic lamellar model systems under dilation and compression: molecular dynamics study. J Chem Phys 118:7714–7723.ADSCrossRefGoogle Scholar
  72. 72.
    Müller M, Katsov K, Schick M. 2003. Coarse grained models and collective phenomena in membranes: computer simulation of membrane fusion. J Polym Sci B 41:1441–1451.CrossRefGoogle Scholar
  73. 73.
    Kranenburg M, Smit B. 2005. Phase behavior of model lipid bilayers. J Phys Chem B 109:6553–6563.CrossRefGoogle Scholar
  74. 74.
    Marrink SJ, de Vries AH, Mark AE. 2004. Coarse grained model for semiquantitative lipid simulations. J Phys Chem B 108:750–760.CrossRefGoogle Scholar
  75. 75.
    Marrink SJ, Risselada HJ, Yefimov S, Tieleman DP, de Vries AH. 2007. The MARTINI force field: coarse grained model for biomolecular simulations. J Phys Chem B 111:7812–7824.CrossRefGoogle Scholar
  76. 76.
    Dickey AN, Faller R. 2005. Investigating interactions of biomembranes and alcohols: a multiscale approach. J Polym Sci B 43:1025–1032.CrossRefGoogle Scholar
  77. 77.
    Wong BY, Faller R. 2007. Phase behavior and dynamic heterogeneities in lipids: a coarse-grained simulation study of DPPC–DPPE mixtures. Biochim Biophys Acta 1768:620–627.CrossRefGoogle Scholar
  78. 78.
    Nielsen SO, Lopez CF, Srinavas G, Klein ML. 2004. Coarse grain models and the computer simulation of soft materials. J Phys Cond Matter 16:R481–R512.ADSCrossRefGoogle Scholar
  79. 79.
    Marrink SJ, de Vries AH, Mark AE. 2004. Coarse grained model for semi-quantitative lipid simulation. J Phys Chem B 108:750–760.CrossRefGoogle Scholar
  80. 80.
    Marrink SJ, Risselada HJ, Yefimov S, Tieleman DP, de Vries AH. 2007. The MARTINI force field: coarse grained model for biomolecular simulations. J Phys Chem B 111:7812–7824.CrossRefGoogle Scholar
  81. 81.
    Shelley JC, Shelley MY, Reeder RC, Bandyopadhyay S, Klein ML. 2001. A coarse grain model for phospholipid simulations. J Phys Chem B 105:4464–4470.CrossRefGoogle Scholar
  82. 82.
    Sum AK, Faller R, de Pablo JJ. 2003. Molecular simulation study of phospholipid bilayers and insights of the interactions with disaccharides. Biophys J 85:2830–2844.CrossRefGoogle Scholar
  83. 83.
    Brannigan G, Brown FLH. 2004. Solvent-free simulations of fluid membrane bilayers. J Chem Phys 120:1059–1071.ADSCrossRefGoogle Scholar
  84. 84.
    Farago O. 2003. “Water-free” computer model for fluid bilayer membranes. J Chem Phys 119:596–605.ADSCrossRefGoogle Scholar
  85. 85.
    Cooke IR, Kremer K, Deserno M. 2005. Tunable generic model for fluid bilayer membranes. Phys Rev E 72:011506.ADSCrossRefGoogle Scholar
  86. 86.
    Noguchi H, Takasu M. 2001. Self-assembly of amphiphiles into vesicles: a Brownian dynamics simulation. Physl Rev E 64:041913.ADSCrossRefGoogle Scholar
  87. 87.
    Harmandaris VA, Deserno M. 2006. A novel method for measuring the bending rigidity of model lipid membranes by simulating tethers. J Chem Phys 125:204905.ADSCrossRefGoogle Scholar
  88. 88.
    Farago O. 2008. Mode excitation Monte Carlo simulations of mesoscopically large membranes. J Chem Phys 128:184105–4.ADSCrossRefGoogle Scholar
  89. 89.
    Berendsen HJC, Postma JPM, van Gunsteren WF, Hermans J. 1981. Interaction models for water in relation to protein hydration. In Intermolecular forces, pp. 331–342. Ed B Pullman. Dordrecht: Reidel.Google Scholar
  90. 90.
    Patra M, Karttunen M, Hyvönen M, Falck E, Lindqvist P, Vattulainen I. 2003. Molecular dynamics simulations: major artifacts due to truncation of electrostatic interactions. Biophys J 84:3636–3645.CrossRefGoogle Scholar
  91. 91.
    Dickey AN, Faller R. 2007. How alcohol chain-length and concentration modulate hydrogen bond formation in a lipid bilayer. Biophys J 92:2366–2376.CrossRefGoogle Scholar
  92. 92.
    Sackmann E, Tanaka M. 2000. Supported membranes on soft polymer cushions: fabrication, characterization and applications. Trends Biotechnol 18:58–64.CrossRefGoogle Scholar
  93. 93.
    Groves JT, Ulman N, Cremer PS, Boxer SG. 1998. Substrate membrane interactions: mechanisms for imposing patterns on a fluid bilayer membrane. Langmuir 14:3347–3350.CrossRefGoogle Scholar
  94. 94.
    Johnson JM, Ha T, Chu S, Boxer SG. 2002. Early steps of supported bilayer formation probed by single vesicle fluorescence assays. Biophys J 83:3371–3379.CrossRefGoogle Scholar
  95. 95.
    Lenz P, Ajo-Franklin CM, Boxer SG. 2004. Patterned supported lipid bilayers and monolayers on poly(dimethylsiloxane). Langmuir 20:11092–11099.CrossRefGoogle Scholar
  96. 96.
    Schönherr H, Johnson JM, Lenz P, Frank CW, Boxer SG. 2004. Vesicle adsorption and lipid bilayer formation on glass studied by atomic force microscopy. Langmuir 20:11600–11606.CrossRefGoogle Scholar
  97. 97.
    Meuse CW, Krueger S, Majkrzak CF, Dura JA, Fu J, Connor JT, Plant AL. 1998. Hybrid bilayer membranes in air and water: infrared spectroscopy and neutron reflectivity studies. Biophys J 74:1388–1398.CrossRefGoogle Scholar
  98. 98.
    Lindahl E, Hess B, van der Spoel D. 2001. GROMACS 3.0: a package for molecular simulation and trajectory analysis. J Mol Model 7:306–317.Google Scholar
  99. 99.
    Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR. 1984. Molecular dynamics with coupling to an external heat bath. J Chem Phys 81:3684–3690.ADSCrossRefGoogle Scholar
  100. 100.
    Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus M. 1983. A program for macro-molecular energy, minimization, and dynamics calculations. J Comp Chem 4:187–217.CrossRefGoogle Scholar
  101. 101.
    Bennun SV, Longo ML, Faller R. 2007. Phase and mixing behavior in two-component lipid bilayers: a molecular dynamics study in DLPC/DSPC mixtures. J Phys Chem B 111:9504–9512.CrossRefGoogle Scholar
  102. 102.
    Faller R, Marrink S-J. 2004. Simulation of domain formation in mixed DLPC–DSPC lipid bilayers. Langmuir 20:7686–7693.CrossRefGoogle Scholar
  103. 103.
    Bennun S, Longo ML, Faller R. 2007. The molecular scale structure in fluid–gel patterned bilayers: stability of interfaces and transmembrane distribution. Langmuir 23:12465–12468.CrossRefGoogle Scholar
  104. 104.
    Bennun S, Dickey AN, Xing C, Faller R. 2007. Simulations of biomembranes and water: important technical aspects. Fluid Phase Equilib 261:18–25.CrossRefGoogle Scholar
  105. 105.
    Silver B. 1985. Physical chemistry of membranes: an introduction to the structure and dynamics of biological membranes. Dordrecht: Kluwer Academic.Google Scholar
  106. 106.
    Reynwar BJ, Illya G, Harmandaris VA, Müller MM, Kremer K, Deserno M. 2007. Aggregation and vesiculation of membrane proteins by curvature-mediated interactions. Nature 447:461–467.ADSCrossRefGoogle Scholar
  107. 107.
    Weeks JD, Chandler D, Andersen HC. 1971. Role of repulsive forces in determining the equilibrium structure of simple liquids. J Chem Phys 54:5237–5247.ADSCrossRefGoogle Scholar
  108. 108.
    Winter R. 2002. Synchrotron X-ray and neutron small-angle scattering of lyotropic lipid mesophases, model biomembranes and proteins in solution at high pressure. Biochim Biophys Acta 1595:160–184.Google Scholar
  109. 109.
    Sachs JN, Petrache HI, Woolf TB. 2003. Interpretation of small angle X-ray measurements guided by molecular dynamics simulations of lipid bilayers. Chem Phys Lipids 126:211–223.CrossRefGoogle Scholar
  110. 110.
    Rowlinson JS, Widom B. 2002. Molecular theory of capillarity. New York: Dover.Google Scholar

Copyright information

© Humana Press 2009

Authors and Affiliations

  1. 1.University of California Davis Bainer Hall, One Shields Avenue DavisGraduate Group in BiophysicsCAUSA
  2. 2.Department of Chemical Engineering & Materials ScienceUniversity of California Davis Bainer Hall, One Shields Avenue DavisCAUSA

Personalised recommendations