Advertisement

Structure and Dynamics of Lipid Monolayers: Theory and Applications

Chapter
Part of the Handbook of Modern Biophysics book series (HBBT)

Abstract

Lipid monolayers at the air/water interface offer excellent model systems for various areas in science. They can be used as models to study two-dimensional and surface phenomena in physics and chemistry, such as adsorption, surface activity, wetting, ordering, and phase transitions. In biology, lipid monolayers represent models for biological membranes and biologically important interfaces, such as the gas exchange interface in the lungs and tear film in the eyes. Experimental and theoretical studies on monolayers have been carried out for more than a hundred years, pioneered by the works of Rayleigh, Pockels, and Langmuir. Computational studies on Computer simulations provide information on monolayer properties at small scales but at a high temporal (picoseconds–microseconds) and spatial (Ångstroms–micrometers) resolution, and thus can complement experimental data and theoretical models. This chapter summarizes the basic properties of lipid monolayers and gives an overview of experimental and theoretical methods for monolayers. We describe the properties of lung surfactant as an example of biological applications of lipid monolayers. We then proceed to the main focus of this chapter: computer simulations of lipid monolayers at the air/water interface.

Keywords

Surface Pressure Lipid Molecule Lung Surfactant Lipid Monolayer Molecular Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Refrences

  1. 1.
    Fahy E, Subramaniam S, Brown HA, Glass CK, Merrill AH, Murphy RC, Raetz CRH, Russell DW, Seyama Y, Shaw W, Shimizu T, Spener F, van Meer G, Van Nieuwenhze MS, White SH, Witztum JL, Dennis EA. 2005. A comprehensive classification system for lipids. Eur J Lipid Sci Technol 107(5):337–364.CrossRefGoogle Scholar
  2. 2.
    Mouritsen OG. 2005. Life — as a matter of fat. Heidelberg: Springer.Google Scholar
  3. 3.
    Aveyard R, Haydon DA. 1973. An introduction to the principles of surface chemistry. New York: Cambridge UP.Google Scholar
  4. 4.
    Marsh D. 1996. Lateral pressure in membranes. Biochim Biophys Acta 1286(3):183–223.MathSciNetGoogle Scholar
  5. 5.
    Knobler CM, Desai RC. 1992. Phase transitions in monolayers. Annu Rev Phys Chem 43:207–236.CrossRefADSGoogle Scholar
  6. 6.
    Ruckenstein E Li, BQ. 1998. Surface equation of state for insoluble surfactant monolayers at the air/water interface. J Phys Chem B 102(6):981–989.CrossRefGoogle Scholar
  7. 7.
    Kaganer VM, Mohwald H, Dutta P. 1999. Structure and phase transitions in Langmuir monolayers. Rev Mod Phys 71(3):779–819.CrossRefADSGoogle Scholar
  8. 8.
    Wustneck R, Perez-Gil J, Wustneck N, Cruz A, Fainerman VB, Pison U. 2005. Interfacial properties of pulmonary surfactant layers. Adv Colloid Interface Sci 117(1–3):33–58.CrossRefGoogle Scholar
  9. 9.
    Gaines GL. 1966. Insoluble monolayers at liquid-gas interfaces. New York: Wiley Interscience.Google Scholar
  10. 10.
    Crane JM, Putz G, Hall SB. 1999. Persistence of phase coexistence in disaturated phosphatidylcholine monolayers at high surface pressures. Biophys J 77(6):3134–3143.CrossRefGoogle Scholar
  11. 11.
    Rugonyi S, Smith EC, Hall SB. 2004. Transformation diagrams for the collapse of a phospholipid monolayer. Langmuir 20(23):10100–10106.CrossRefGoogle Scholar
  12. 12.
    Lu WX, Knobler CM, Bruinsma RF, Twardos M, Dennin M. 2002. Folding Langmuir monolayers. Phys Rev Lett 89(14):146107.CrossRefADSGoogle Scholar
  13. 13.
    Bachofen H, Schurch S. 2001. Alveolar surface forces and lung architecture. Comp Biochem Physiol A: Mol Integr Physiol 129(1):183–93.CrossRefGoogle Scholar
  14. 14.
    Lipp MM, Lee KYC, Takamoto DY, Zasadzinski JA, Waring AJ. 1998. Coexistence of buckled and flat monolayers. Phys Rev Lett 81(8):1650–1653.CrossRefADSGoogle Scholar
  15. 15.
    Bangham AD, Morley CJ, Phillips MC. 1979. The physical properties of an effective lung surfactant. Biochim Biophys Acta 573(3):552–556.Google Scholar
  16. 16.
    Clements JA. 1977. Functions of alveolar lining. Am Rev Respir Dis 115(6):67–71.Google Scholar
  17. 17.
    Piknova B, Schief WR, Vogel V, Discher BM, Hall SB. 2001. Discrepancy between phase behavior of lung surfactant phospholipids and the classical model of surfactant function. Biophys J 81(4)2172–2180.CrossRefGoogle Scholar
  18. 18.
    Takamoto DY, Lipp MM, von Nahmen A, Lee KYC, Waring AJ, Zasadzinski JA. 2001. Interaction of lung surfactant proteins with anionic phospholipids. Biophys J 81(1):153–169.CrossRefGoogle Scholar
  19. 19.
    Yu SH, Possmayer F. 2003. Lipid compositional analysis of pulmonary surfactant monolayers and monolayer-associated reservoirs. J Lipid Res 44(3):621–629.CrossRefGoogle Scholar
  20. 20.
    Serrano AG, Perez-Gil J. 2006. Protein-lipid interactions and surface activity in the pulmonary surfactant system. Chem Phys Lipids 141(1–2):105–118.CrossRefGoogle Scholar
  21. 21.
    von Nahmen A, Schenk M, Sieber M, Amrein M. 1997. The structure of a model pulmonary surfactant as revealed by scanning force microscopy. Biophys J 72(1):463–469.CrossRefGoogle Scholar
  22. 22.
    Sullivan DA, Stern ME, Tsubota K, Dartt DA, Sullivan RM, Bromberg BB. 2002. Lacrimal gland, tear film and dry eye syndromes 3. Boston: Springer.Google Scholar
  23. 23.
    Clements JA. 1957. Surface tension of lung extracts. Proc Soc Exp Biol Med 95(1):170–172.Google Scholar
  24. 24.
    Weis RM. 1991. Fluorescence microscopy of phospholipid monolayer phase transitions. Chem Phys Lipids 57(2–3):227–239.CrossRefGoogle Scholar
  25. 25.
    Knobler CM. 1990. Seeing phenomena in flatland—studies of monolayers by fluorescence microscopy. Science 249(4971):870–874.CrossRefADSGoogle Scholar
  26. 26.
    Meunier J. 2000. Why a Brewster angle microscope? Colloids Surf 171(1–3):33–40.Google Scholar
  27. 27.
    Schurch S, Bachofen H, Goerke J, Possmayer F. 1989. A captive bubble method reproduces the in situ behavior of lung surfactant monolayers. J Appl Physiol 67(6):2389–2396.Google Scholar
  28. 28.
    Israelachvili J. 1994. Self-assembly in 2 dimensions—surface micelles and domain formation in monolayers. Langmuir 10(10):3774–3781.CrossRefGoogle Scholar
  29. 29.
    Lindahl E, Hess B, van der Spoel D. 2001. GROMACS 3.0: a package for molecular simulation and trajectory analysis. J Mol Model 7(8):306–317.Google Scholar
  30. 30.
    van Gunsteren WF. 1987. GROMOS: Groningen molecular simulation program package. Groningen: University of Groningen.Google Scholar
  31. 31.
    Marrink SJ, Risselada HJ, Yefimov S, Tieleman DP, Vries AH. 2007. The MARTINI force field: coarse-grained model for biomolecular simulations. J Phys Chem B 111(27):7812–7824.CrossRefGoogle Scholar
  32. 32.
    Ahlstrom P, Berendsen HJC. 1993. A molecular dynamics study of lecithin monolayers. J Phys Chem 97:13691–13702.CrossRefGoogle Scholar
  33. 33.
    Feller SE, Zhang YH, Pastor RW. 1995. Computer-simulation of liquid/liquid interfaces, 2: surface-tension area dependence of a bilayer and monolayer. J Chem Phys 103(23):10267–10276.CrossRefADSGoogle Scholar
  34. 34.
    Zhang YH, Feller SE, Brooks BR, Pastor RW. 1995. Computer-simulation of liquid/liquid interfaces, 1: theory and application to octane/water. J Chem Phys 103(23):10252–10266.CrossRefADSGoogle Scholar
  35. 35.
    Lindahl E, Edholm O. 2000. Mesoscopic undulations and thickness fluctuations in lipid bilayers from molecular dynamics simulations. Biophys J 79(1):426–433.CrossRefGoogle Scholar
  36. 36.
    MacKerell AD, Bashford D, Bellott M, Dunbrack RL, Evanseck JD, Field MJ, Fischer S, Gao J, Guo H, Ha S, Joseph-McCarthy D, Kuchnir L, Kuczera K, Lau FTK, Mattos C, Michnick S, Ngo T, Nguyen DT, Prodhom B, Reiher WE, Roux B, Schlenkrich M, Smith JC, Stote R, Straub J, Watanabe M, Wiorkiewicz-Kuczera J, Yin D, Karplus M. 1998. All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102(18):3586–3616.CrossRefGoogle Scholar
  37. 37.
    Case DA, Cheatham TE, Darden T, Gohlke H, Luo R, Merz KM, Onufriev A, Simmerling C, Wang B, Woods RJ. 2005. The Amber biomolecular simulation programs. J Comput Chem 26(16):1668–1688.CrossRefGoogle Scholar
  38. 38.
    Dominguez H, Smondyrev AM, Berkowitz ML. 1999. Computer simulations of phosphatidylcholine monolayers at air/water and CCl4/water interfaces. J Physic Chem B 103(44):9582–9588.CrossRefGoogle Scholar
  39. 39.
    Knecht V, Muller M, Bonn M, Marrink SJ, Mark AE. 2005. Simulation studies of pore and domain formation in a phospholipid monolayer. J Chem Phys 122(2):024704.CrossRefADSGoogle Scholar
  40. 40.
    Mauk AW, Chaikof EL, Ludovice PJ. 1998. Structural characterization of self-assembled lipid monolayers by N pi T simulation. Langmuir 14(18):5255–5266.CrossRefGoogle Scholar
  41. 41.
    Skibinsky A, Venable RM, Pastor RW. 2005. A molecular dynamics study of the response of lipid bilayers and monolayers to trehalose. Biophys J 89(6):4111–4121.CrossRefGoogle Scholar
  42. 42.
    Baoukina S, Monticelli L, Marrink SJ, Tieleman DP. 2007. Pressure-area isotherm of a lipid monolayer from molecular dynamics simulations. Langmuir 23(25):12617–12623.CrossRefGoogle Scholar
  43. 43.
    Duncan SL, Larson RG. 2008. Comparing experimental and simulated pressure-area isotherms for DPPC. Biophys J 93(8):2965–2986.CrossRefGoogle Scholar
  44. 44.
    Baoukina S, Monticelli L, Amrein M, Tieleman DP. 2007. The molecular mechanism of monolayer-bilayer transformations of lung surfactant from molecular dynamics simulations. Biophys J 93(11):3775–3782.CrossRefGoogle Scholar

Copyright information

© Humana Press 2009

Authors and Affiliations

  1. 1.Department of Biological SciencesUniversity of CalgaryCanada
  2. 2.Department of Biophysical Chemistry, University of GroningenGroningen Biomolecular Sciences and Biotechnology InstituteNijenborghThe Netherlands

Personalised recommendations