Advertisement

Membrane Elasticity and Mediated Interactions in Continuum Theory: A Differential Geometric Approach

Chapter
Part of the Handbook of Modern Biophysics book series (HBBT)

Abstract

Biomembranes are fantastically complex systems [1–4]: hundreds of different lipid and protein species self-assemble into a large two-dimensional aggregate of locally complex and laterally inhomogeneous structure, and a globally potentially daunting topology. Thermal motion of this elastically soft system contributes prominently to its properties, and active processes constantly drive it away from equilibrium. How can we ever hope to learn something quantitative about such a complicated thing? The route to success lies — as so often in physics — in the observation that we can frefectly well described by an effective Hamiltonian, whose small number of phenomenological parameters depend on — and can in principle be determined from — the underlying microscopic physics. Yet, establishing this micro–macro relation is not prerequisite to a successful ing steps can be performed, thus constructing a hierarchy of scales with much beautiful physics in the different tiers. For instance, the laws of quantum mechanics explain everything about water that we need to know — e.g., how water structure and hydrogen bonds give rise to many of water’s anomalies — but we can often just describe it effectively as a substance with some measurable material parameters, such as density, heat of vaporization, melting point, and compressibility. And even of these parameters many become irrelevant if we’re only interested in large-scale fluid motion, for which density and viscosity are often the only relevant properties. Having gotten so used to this separability, we sometimes even forget that the success of physics as a science rests entirely on it. If phenomena on different scales could not be disentangled, we would for instance not be able to describe the motion of the liquid in a stirred cup of coffee without a thorough appreciation of its atomic structure. Or, maybe we’d even need to understand quarks? Or strings? The fact that for all intents and purposes we can master our surrounding world quite well, without knowing what the ultimate structure of matter and the form of a Grand Unified Theory is, provides a vivid proof for the power of scale separation.

Keywords

Stress Tensor Curvature Tensor Grand Unify Theory Riemann Tensor Membrane Elasticity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lodish H, Berk A, Zipursky SL, Matsudaira P, Baltimore D, Darnell J. 2000. Molecular cell biology, 4th ed. New York: W.H. Freeman & Company.Google Scholar
  2. 2.
    Karp G. 2007. Cell and molecular biology: concepts and experiments, 5th ed. Hoboken, NJ: Wiley.Google Scholar
  3. 3.
    Heimburg T. 2007. Thermal biophysics of membranes. Weinheim: Wiley VCH.CrossRefGoogle Scholar
  4. 4.
    Lipowsky R, Sackmann E, eds. 1995. Structure and dynamics of membranes, i: from cells to vesicles. Amsterdam: Elsevier.Google Scholar
  5. 5.
    Jones RAL. 2002. Soft condensed matter. Oxford: Oxford UP.Google Scholar
  6. 6.
    Hemmingsen AM. 1960. Energy metabolism as related to body size and respiratory surfaces, and its evolution. Rep Steno Meml Hosp (Copenhagen) 9:1–110.Google Scholar
  7. 7.
    Brown JH, West GB, eds. 2000. Scaling in biology. Oxford: Oxford UP.zbMATHGoogle Scholar
  8. 8.
    Canham PB. 1970. Minimum energy of bending as a possible explanation of biconcave shape of human red blood cell. J Theor Biol 26(1):61–81.CrossRefGoogle Scholar
  9. 9.
    Helfrich W. 1973. Elastic properties of lipid bilayers — theory and possible experiments. Z Naturforsch C 28(11):693–703.Google Scholar
  10. 10.
    Kwok R, Evans E. 1981. Thermoelasticity of large lecithin bilayer vesicles. Biophy J 35(3):637–652.CrossRefGoogle Scholar
  11. 11.
    Rawicz W, Olbrich KC, McIntosh T, Needham D, Evans E. 2000. Effect of chain length and unsaturation on elasticity of lipid bilayers. Biophys J 79(1):328–339.CrossRefGoogle Scholar
  12. 12.
    Landau LD, Lifshitz EM. 1999. Theory of elasticity, 3rd ed. Oxford: Butterworth-Heinemann.Google Scholar
  13. 13.
    Do Carmo M. 1976. Differential geometry of curves and surfaces. Englewood Cliffs, NJ: Prentice Hall.zbMATHGoogle Scholar
  14. 14.
    Spivak M. 1979. A comprehensive introduction to differential geometry, 2nd ed. Boston: Publish or Perish.Google Scholar
  15. 15.
    Kreyszig E. 1991. Differential geometry. New York: Dover.Google Scholar
  16. 16.
    Hartle JB. 2003. Gravity: an introduction to Einstein's general relativity. San Francisco: Addison-Wesley.Google Scholar
  17. 17.
    Capovilla R, Guven J, Santiago JA. 2003. Deformations of the geometry of lipid vesicles. J Phys A: Math Gen 36(23):6281–6295.zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Seifert U. 1997. Configurations of fluid membranes and vesicles. Adv Phys 46(1):13–137.CrossRefADSGoogle Scholar
  19. 19.
    Goetz R, Helfrich W. 1996. The egg carton: theory of a periodic superstructure of some lipid membranes. J Phys II 6(2):215–223.CrossRefGoogle Scholar
  20. 20.
    Nelson P, Powers T. 1992. Rigid chiral membranes. Phys Rev Lett 69(23):3409–3412.CrossRefADSGoogle Scholar
  21. 21.
    Nelson P, Powers T. 1993. Renormalization of chiral couplings in tilted bilayer-membranes. J Phys II 3(10):1535–1569.CrossRefGoogle Scholar
  22. 22.
    Capovilla R, Guven J. 2002. Stresses in lipid membranes. J Phys A: Math Gen 35(30):6233–6247.zbMATHCrossRefADSMathSciNetGoogle Scholar
  23. 23.
    Capovilla R, Guven J. 2002. Geometry of lipid vesicle adhesion. Phys Rev E 66(4):041604.CrossRefADSMathSciNetGoogle Scholar
  24. 24.
    Capovilla R, Guven J. 2004. Stress and geometry of lipid vesicles. J Phys Cond Matter 16(22):S2187–S2191.CrossRefGoogle Scholar
  25. 25.
    Guven J. 2004. Membrane geometry with auxiliary variables and quadratic constraints. J Phys A: Math Gen 37(28):L313–L319.zbMATHCrossRefADSMathSciNetGoogle Scholar
  26. 26.
    Capovilla R, Guven J. 2005. Helfrich-Canham bending energy as a constrained nonlinear sigma model. J Phys A: Math Gen 38(12):2593–2597.zbMATHCrossRefADSMathSciNetGoogle Scholar
  27. 27.
    Müller MM, Deserno M, Guven J. 2005. Interface-mediated interactions between particles: a geometrical approach. Phys Rev E 72(6):061407.CrossRefADSMathSciNetGoogle Scholar
  28. 28.
    Binney J-J, Dowrick NJ, Fisher AJ, Newman MEJ. 1995. The theory of critical phenomena. Oxford: Clarendon Press.Google Scholar
  29. 29.
    Krech M. 1994. The Casimir effect in critical systems. Singapore: World Scientific.Google Scholar
  30. 30.
    Krech M. 1997. Casimir forces in binary liquid mixtures. Phys Rev E 56(2):1642–1659.CrossRefADSGoogle Scholar
  31. 31.
    Krech M. 1999. Fluctuation-induced forces in critical fluids. J Phys Cond Matter 11(37):R391–R412.CrossRefADSGoogle Scholar
  32. 32.
    Brown LS. 1980. Dimensional regularization of composite-operators in scalar field-theory. Ann Phys 126(1):135–153.CrossRefADSGoogle Scholar
  33. 33.
    Eisenriegler E, Stapper M. 1994. Critical behavior near a symmetry-breaking surface and the stress tensor. Phys Rev B 50(14):10009–10026.CrossRefADSGoogle Scholar
  34. 34.
    Mouritsen OG, Bloom M. 1984. Mattress model of lipid-protein interactions in membranes. Biophys J 46(2):141–153.CrossRefGoogle Scholar
  35. 35.
    Fattal DR, Ben Shaul A. 1993. A molecular model for lipid-protein interaction in membranes—the role of hydrophobic mismatch. Biophys J 65(5):1795–1809.CrossRefGoogle Scholar
  36. 36.
    Aranda Espinoza H, Berman A, Dan N, Pincus P, Safran S. 1996. Interaction between inclusions embedded in membranes. Biophys J 71(2):648–656.CrossRefGoogle Scholar
  37. 37.
    Nielsen C, Goulian M, Andersen OS. 1998. Energetics of inclusion-induced bilayer deformations. Biophys J 74(4):1966–1983.CrossRefGoogle Scholar
  38. 38.
    May S, Ben Shaul A. 1999. Molecular theory of lipid-protein interaction and the L-alpha–H-II transition. Biophys J 76(2):751–767.CrossRefGoogle Scholar
  39. 39.
    May S, Ben Shaul A. 2000. A molecular model for lipid-mediated interaction between proteins in membranes. Phys Chem Chem Phys 2(20):4494–4502.CrossRefGoogle Scholar
  40. 40.
    Gil T, Sabra MC, Ipsen JH, Mouritsen OG. 1997. Wetting and capillary condensation as means of protein organization in membranes. Biophys J 73(4):1728–1741.CrossRefGoogle Scholar
  41. 41.
    Gil T, Ipsen JH. 1997. Capillary condensation between disks in two dimensions. Phys Rev E 55(2):1713–1721.CrossRefADSGoogle Scholar
  42. 42.
    Gil T, Ipsen JH, Mouritsen OG, Sabra MC, Sperotto MM, Zuckermann MJ. 1998. Theoretical analysis of protein organization in lipid membranes. Biochim Biophys Acta 1376(3):245–266.Google Scholar
  43. 43.
    Gil T, Ipsen JH, Tejero CF. 1998. Wetting controlled phase transitions in two-dimensional systems of colloids. Phys Rev E 57(3):3123–3133.CrossRefADSGoogle Scholar
  44. 44.
    May S, Harries D, Ben Shaul A. 2000. Lipid demixing and protein–protein interactions in the adsorption of charged proteins on mixed membranes. Biophys J 79(4):1747–1760.CrossRefGoogle Scholar
  45. 45.
    May S, Harries D, Ben Shaul A. 2002. Macroion-induced compositional instability of binary fluid membranes. Phys Rev Lett 89(26):268102.CrossRefADSGoogle Scholar
  46. 46.
    Mbamala EC, Ben Shaul A, May S. 2005. Domain formation induced by the adsorption of charged proteins on mixed lipid membranes. Biophys J 88(3):1702–1714.CrossRefGoogle Scholar
  47. 47.
    Goulian M, Bruinsma R, Pincus P. 1993. Long-range forces in heterogeneous fluid membranes. Europhys Lett 22(2):145–150.CrossRefADSGoogle Scholar
  48. 48.
    Goulian M, Bruinsma R, Pincus P. 1993. Long-range forces in heterogeneous fluid membranes (Vol. 22, p. 145, 1993). Europhys Lett 23(2):155.CrossRefADSGoogle Scholar
  49. 49.
    Park JM, Lubensky TC. 1996. Interactions between membrane inclusions on fluctuating membranes. J Phys I 6(9):1217–1235.CrossRefGoogle Scholar
  50. 50.
    Fournier JB, Dommersnes PG. 1997. Long-range forces in heterogeneous fluid membranes—Comment. Europhys Lett 39(6):681–682.CrossRefADSGoogle Scholar
  51. 51.
    Weikl TR, Kozlov MM, Helfrich W. 1998. Interaction of conical membrane inclusions: effect of lateral tension. Phys Rev E 57(6):6988–6995.CrossRefADSGoogle Scholar
  52. 52.
    Dommersnes PG, Fournier JB, Galatola P. 1998. Long-range elastic forces between membrane inclusions in spherical vesicles. Europhys Lett 42(2):233–238.CrossRefADSGoogle Scholar
  53. 53.
    Dommersnes PG, Fournier JB. 1999. N-body study of anisotropic membrane inclusions: membrane-mediated interactions and ordered aggregation. Eur Phys J B 12(1):9–12.CrossRefADSGoogle Scholar
  54. 54.
    Turner MS, Sens P. 1999. Inclusions on fluid membranes anchored to elastic media. Biophys J 76(1):564–572.CrossRefGoogle Scholar
  55. 55.
    Marchenko VI, Misbah C. 2002. Elastic interaction of point defects on biological membranes. Eur Phys J E 8(5):477–484.Google Scholar
  56. 56.
    Fournier JB, Dommersnes PG, Galatola P. 2003. Dynamin recruitment by clathrin coats: a physical step? CR Biol 326(5):467–476.CrossRefGoogle Scholar
  57. 57.
    Bartolo D, Fournier JB. 2003. Elastic interaction between “hard” or “soft” pointwise inclusions on biological membranes. Eur Phys J E 11(2):141–146.CrossRefGoogle Scholar
  58. 58.
    Evans AR, Turner MS, Sens P. 2003. Interactions between proteins bound to biomembranes. Phys Rev E 67(4):041907.CrossRefADSGoogle Scholar
  59. 59.
    Weikl TR. 2003. Indirect interactions of membrane–adsorbed cylinders. Eur Phys J E 12(2):265–273.CrossRefGoogle Scholar
  60. 60.
    Sens P, Turner MS. 2004. Theoretical model for the formation of caveolae and similar membrane invaginations. Biophys J 86(4):2049–2057.CrossRefGoogle Scholar
  61. 61.
    Müller MM, Deserno M, Guven J. 2005. Geometry of surface-mediated interactions. Europhys Lett 69(3):482–488.CrossRefADSGoogle Scholar
  62. 62.
    Müller MM, Deserno M, Guven J. 2007. Balancing torques in membrane-mediated interactions: exact results and numerical illustrations. Phys Rev E 76(1):011921.CrossRefADSGoogle Scholar
  63. 63.
    Reynwar BJ, Illya G, Harmandaris VA, Müller MM, Kremer K, Deserno M. 2007. Aggregation and vesiculation of membrane proteins by curvature-mediated interactions. Nature 447(7143):461–464.CrossRefADSGoogle Scholar
  64. 64.
    Nicolson MM. 1949. The Interaction between floating particles. Proc Cambr Philos Soc 45(2):288–295.zbMATHCrossRefGoogle Scholar
  65. 65.
    Abramowitz M, Stegun IA. 1972. Handbook of mathematical functions. New York: Dover.zbMATHGoogle Scholar
  66. 66.
    Deserno M, Müller MM, Guven J. 2007. Contact lines for fluid surface adhesion. Phys Rev E 76(1):011605.CrossRefADSGoogle Scholar
  67. 67.
    Fournier JB. 2007. On the stress and torque tensors in fluid membranes. Soft Matter 3(7):883–888.CrossRefGoogle Scholar
  68. 68.
    Lee HJ, Peterson EL, Phillips R, Klug WS, Wiggins PA. 2005. Membrane shape as a reporter for applied forces Proc Natl Acad Sci USA 105(49):19253–19257.CrossRefADSGoogle Scholar
  69. 69.
    Fournier JB, Barbetta C. 2008. Direct calculation from the stress tensor of the lateral surface tension of fluctuating fluid membranes. Phys Rev Lett 100(7):078103.CrossRefADSGoogle Scholar
  70. 70.
    Nelson D, Piran T, Weinberg S, eds. 2004. Statistical mechanics of membranes and surfaces, 2nd ed. Singapore: World Scientific.zbMATHGoogle Scholar
  71. 71.
    Frankel T. 2003. The geometry of physics, 2nd ed. Cambridge: Cambridge UP.Google Scholar
  72. 72.
    Lovelock D, Rund H. 1989. Tensors, differential forms, and variational principles. New York: Dover.Google Scholar
  73. 73.
    Müller MM. 2007. Theoretical studies of fluid membrane mechanics. Accessed at <http://ubm.opus.hbznrw.de/volltexte/2007/1475/>.

Copyright information

© Humana Press 2009

Authors and Affiliations

  1. 1.Department of PhysicsCarnegie Mellon UniversityPennsylvaniaUSA

Personalised recommendations