Advertisement

Targeting Apolipoproteins in Magnetic Resonance Imaging

Chapter
  • 874 Downloads
Part of the Handbook of Modern Biophysics book series (HBBT)

Abstract

Maintaining normal physiological homeostasis depends upon a coordinated metabolism of both water-soluble and -insoluble substrates. In humans the body derives these molecules — such as glucose, amino acids, and fatty acids — from complex food matter. Water-soluble substrates can circulate readily in blood, while water-insoluble molecules — such as fatty acid, triacylglycerol, and cholesterol — require ampiphathic carriers to transport them from the site of biosynthesis (liver and intestine) to the target tissue. For fatty acid, albumin serves as the major transporter. For triacylglycerol and cholesterol, however, macromolecular complexes aggregate the hydrophobic molecules into the core and cover the surface with amphiphatic proteins and phospholipids to solubilize the particles in the lymphatic and circulatory systems. These macromolecules belong to a class of proteins, plasma lipoproteins, with specific functions and cellular targets. In the clinic these lipoproteins prognosticate the risk of cardiovascular disease (CVD). Lipoproteins divide usually into five major types: chylomicron, very-low-density lipoprotein (VLDL), intermediate-density lipoprotein (IDL), low-density lipoprotein (LDL), and high-density lipoprotein (HDL). Each lipoprotein type exhibits characteristic density, size, and composition. As implied in the name, the density varies from the low-density chylomicron (<0.95 g/ml) to the high-density HDL (1.2 g/ml). Size also varies. The chylomicron has the largest diameter (75–1,200 nm), and HDL has the smallest (5–12 nm). The physical property variation arises from each lipoprotein’s distinct composition. In a chylomicron, cholesterol, triacylglycerol, and phospholipid predominate and constitute about 90% of the particle. Protein constitutes only about 10%. In contrast, the smaller HDL has less cholesterol, triacylglycerol, and phospholipid (65% of the particle) but more protein (over 30%).

Keywords

Contrast Agent Cholesteryl Ester Familial Hypercholesteremia Arterioscler Thromb Vasc Biol Lecithin Cholesterol Acyl Transferase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Further Study

  1. Oram JF. 2003. HDL apolipoproteins and ABCA1: partners in the removal of excess cellular cholesterol. Arterioscler Thromb Vasc Biol 23(5):720–727.CrossRefGoogle Scholar
  2. Martin DDO, Budamagunta MS, Ryan RO, Voss JC, Oda MN. 2006. Apolipoprotein A-I assumes a “looped belt” conformation on reconstituted high density lipoprotein. J Biol Chem 281(29):20418–20426.CrossRefGoogle Scholar
  3. Oda MN, Forte TM, Ryan RO, Voss JC. 2003. The C-terminal domain of apolipoprotein A-I contains a lipid-sensitive conformational trigger. Nat Struct Biol 10:455–460.CrossRefGoogle Scholar

References

  1. 1.
    Fielding CJ, Fielding PE. 1985. Metabolism of cholesterol and lipoproteins. In Biochemistry of lipids and membranes, pp. 404–474. Ed DE Vance, JE Vance. Menlo Park: Benjamin/Cummings.Google Scholar
  2. 2.
    Zubay G, Parson W, Vance D. 2006. Principles of biochemistry. New York: William C. Brown.Google Scholar
  3. 3.
    Rutledge JC, Huser T, Voss J, Chan J, Parikh A. 2009. Lifecycle of a lipoprotein from a biophysical perspective. In Biomembrane frontiers: nanostructures, models, and design of life. Ed R Faller, T Jue, M Longo, S Risbud. New York: Springer.Google Scholar
  4. 4.
    Goldberg IJ, Kako Y, Lutz EP. 2000. Responses to eating: lipoproteins, lipolytic products, and atherosclerosis. Curr Opin Lipidol 11:235–241.CrossRefGoogle Scholar
  5. 5.
    Brown MS, Goldstein JL. 1984. How LDL receptors influence cholesterol and atherosclerosis. Sci Am 251:58–66.CrossRefGoogle Scholar
  6. 6.
    Cater NB, Garg A. 1997. Serum low-density lipoprotein cholesterol response to modification of saturated fat intake: recent insights. Curr Opin Lipidol 8:332–336.CrossRefGoogle Scholar
  7. 7.
    Stalenhoef AFH, de Graaf J. 2009. Association of fasting and nonfasting serum triglycerides with cardiovascular disease and the role of remnant-like lipoproteins and small dense LDL. Curr Opin Lipidol 19:355–361.CrossRefGoogle Scholar
  8. 8.
    Kritchevsky D. 1986. Atherosclerosis and nutrition. Nutr Int 2:290–297.Google Scholar
  9. 9.
    Glomset JA. 1968. The plasma lecithins:cholesterol acyltransferase reaction. J Lipid Res 9:155–167.Google Scholar
  10. 10.
    Rosenson RS. 2005. Low HDL-C: a secondary target of dyslipidemia therapy. Am J Med 118:1067–1077.CrossRefGoogle Scholar
  11. 11.
    Packard CJ, Rader DJ. 2006. Lipids and atherosclerosis: advances in translational medical science. Abingdon: Taylor & Francis.Google Scholar
  12. 12.
    Baigent C, Keech A, Kearney P, Blackwell L, Buck G, Pollicino C, Kirby A, Sourjina T, Peto R, Collins R, Simes R; Cholesterol Treatment Trialists' (CTT) Collaborators. 2005. Efficacy and safety of cholesterol-lowering treatment: prospective meta-analysis of data from 90,056 participants in 14 randomised trials of statins. Lancet 366:1267–1278.CrossRefGoogle Scholar
  13. 13.
    Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). 2002. Final report. Circulation 106:3144–3421.Google Scholar
  14. 14.
    Luc G, Bard JM, Ferrières J, Evans A, Amouyel P, Arveiler D, Fruchart JC, Ducimetière P. 2002. Value of HDL cholesterol, apolipoprotein A-I, lipoprotein A-I, and lipoprotein A-I/A-II in prediction of coronary heart disease: The PRIME Study. Arterioscler Thromb Vasc Biol 22:1155–1161.CrossRefGoogle Scholar
  15. 15.
    Miller GJ, Miller NE. 1975. Plasma-high-density-lipoprotein concentration and development of ischaemic heart-disease. Lancet 1:16–19.CrossRefGoogle Scholar
  16. 16.
    Kinosian B, Glick H, Garland G. 1994. Cholesterol and coronary heart disease:predicting risks by levels and ratios. Ann Intern Med 121:641–647.Google Scholar
  17. 17.
    Walldius G, Jungner I. 2006. The apoB/apoA-I ratio: a strong, new risk factor for cardiovascular disease and a target for lipid-lowering therapy: a review of the evidence. J Intern Med 259:493–519.CrossRefGoogle Scholar
  18. 18.
    Sniderman A, Furberg C, Keech A, Roeters van Lennep JE, Frohlich J, Jungner I, Walldius G. 2003. Apolipo-proteins versus lipids as indices of coronary risk and as targets for statin treatment. Lancet 361:777–780.CrossRefGoogle Scholar
  19. 19.
    Walldius G, Jungner I, Aastveit AH, Holme I, Furberg CD, Sniderman AD. 2004. The apoB/apoA-I ratio is better than the cholesterol ratios to estimate the balance between plasma proatherogenic and antiatherogenic lipoproteins and to predict coronary risk. Clin Chem Lab Med 42:1355–1363.CrossRefGoogle Scholar
  20. 20.
    Marcovina S, Packard CJ. 2006. Measurement and meaning of apolipoprotein AI and apolipoprotein B plasma levels. J Intern Med 259:437–446.CrossRefGoogle Scholar
  21. 21.
    Sniderman AD, Jungner I, Holme I, Aastveit A, Walldius G. 2006. Errors that result from using the TC/HDL-C ratio rather than apoB/apoA-I ratio to define the lipoprotein related risk of vascular disease. J Intern Med 259:455–461.CrossRefGoogle Scholar
  22. 22.
    Marcovina SM, Albers JJ, Henderson LO, Hannon WH. 1993. International Federation of Clinical Chemistry standardization project for measurements of apolipoproteins A-I and B, III: comparability of apolipoprotein A-I values by use of international reference material. Clin Chem 39:773–781.Google Scholar
  23. 23.
    Rader DJ. 2006. Molecular regulation of HDL metabolism and function: implications for novel therapies. J Clin Invest 116:3090–3100.CrossRefGoogle Scholar
  24. 24.
    Brewer HB. 2004. High-density lipoproteins: a new potential therapeutic target for the prevention of cardiovascular disease. Arterioscler Thromb Vasc Biol 24:387–391.CrossRefGoogle Scholar
  25. 25.
    Shah PK, Nilsson KSCB. 2001. Exploiting the vascular protective effects of high-density lipoprotein and its apolipoproteins: an idea whose time for testing is coming, part I. Circulation 104(2376):2383.Google Scholar
  26. 26.
    Navab M, Anantharamaiah GM, Reddy ST, Hama S, Hough G, Grijalva VR, Wagner AC, Frank JS, Datta G, Garber D, Fogelman AM. 2004. Oral D-4F causes formation of pre-beta high-density lipoprotein and improves high-density lipoprotein-mediated cholesterol efflux and reverse cholesterol transport from macrophages in apolipoprotein E-null mice. Circulation 109:3215–3220.CrossRefGoogle Scholar
  27. 27.
    Shah PK, Nilsson KSCB. 2001. Exploiting the vascular protective effects of high-density lipoprotein and its apolipoproteins: an idea whose time for testing is coming, part II. Circulation 104(2498):2502.Google Scholar
  28. 28.
    Franceschini G, Sirtori CR, Capurso A, Weisgraber KH, Mahley RW. 1980. A-I Milano apoprotein. Decreased high density lipoprotein cholesterol levels with significant lipoprotein modifications and without clinical atherosclerosis in an Italian family. J Clin Invest 66(5):892–900.CrossRefGoogle Scholar
  29. 29.
    Gualandri V, Franceschini G, Sirtori CR, Gianfranceschi G, Orsini GB, Cerrone A, Menotti A. 1985. AI Milano apoprotein identification of the complete kindred and evidence of a dominant genetic transmission. Am J Hum Genet 37(6):1083–1097.Google Scholar
  30. 30.
    Weisgraber KH, Rall SC, Bersot TP, Mahley RW, Franceschini G, Sirtori CR. 1983. Apolipoprotein A-IMilano: detection of normal A-I in affected subjects and evidence for a cysteine for arginine substitution in the variant A-I. J Biol Chem 258(4):2508–2513.Google Scholar
  31. 31.
    Avorn J. 2009. Torcetraib and atorvastatin—should marketing drive the research agenda? N Engl J Med 352:2573–2576.CrossRefGoogle Scholar
  32. 32.
    Shaffer C. 2009. Pfizer jettisons Esperion. Nat Biotech 26:724–725.CrossRefGoogle Scholar
  33. 33.
    Gilles RJ. 1994. NMR in physiology and biomedicine. San Diego: Academic Press.Google Scholar
  34. 34.
    Aime S, Barge A, Cabella C, Crich SG, Gianolio E. 2004. Targeting cells with MR imaging probes based on paramagnetic Gd(III) chelates. Curr Pharm Biotechnol 5:509–518.CrossRefGoogle Scholar
  35. 35.
    Artemov D, Bhujwalla ZM, Bulte JW. 2004. Magnetic resonance imaging of cell surface receptors using targeted contrast agents. Curr Pharm Biotechnol 5:485–494.CrossRefGoogle Scholar
  36. 36.
    Lanza GM, Winter P, Caruthers S, Schmeider A, Crowder K, Morawski A, Morawski A, Zhang H, Scott MJ, Wickline SA. 2004. Novel paramagnetic contrast agents for molecular imaging and targeted drug delivery. Curr Pharm Biotechnol 5:495–507.CrossRefGoogle Scholar
  37. 37.
    Anderson SA, Rader RK, Westlin WF, Null C, Jackson D, Lanza CM, Wickline SA, Kotyk JJ. 2000. Magnetic resonance contrast enhancement of neovasculature with alpha(v)beta(3)-targeted nanoparticles. Magn Reson Med 44(3):433–439.CrossRefGoogle Scholar
  38. 38.
    Kasili PM, Song JM, Vo-Dinh T. 2004. Optical sensor for the detection of caspase-9 activity in a single cell. J Am Chem Soc 126(9):2799–2806.CrossRefGoogle Scholar
  39. 39.
    Quintana A, Raczka E, Piehler L, Lee I, Myc A, Majoros I, Patri AK, Thomas T, Mulé J, Baker Jr JR. 2002. Design and function of a dendrimer-based therapeutic nanodevice targeted to tumor cells through the folate receptor. Pharm Res 19(9):1310–1316.CrossRefGoogle Scholar
  40. 40.
    Roy I, Ohulchanskyy TY, Pudavar HE, Bergey EJ, Oseroff AR, Morgan J, Dougherty TJ, Prasad PN. 2003. Ceramic-based nanoparticles entrapping water-insoluble photosensitizing anticancer drugs: a novel drug-carrier system for photodynamic therapy. J Am Chem Soc 125(26):7860–7865.CrossRefGoogle Scholar
  41. 41.
    Ruoslahti E. 2002. Antiangiogenics meet nanotechnology. Cancer Cell 2(2):97–98.CrossRefGoogle Scholar
  42. 42.
    Hood JD, Bednarski M, Frausto R, Guccione S, Reisfeld RA, Xiang R, Cheresh DA. 2002. Tumor regression by targeted gene delivery to the neovasculature. Science 296(5577):2404–2407.CrossRefADSGoogle Scholar
  43. 43.
    Corbin IR, Li H, Chen J, Lund-Katz S, Zhou R, Glickson JD, Zheng G. 2006. Low-density lipoprotein nanoparticles asmagnetic resonance imaging contrast agents. Neoplasia 8:488–498.CrossRefGoogle Scholar
  44. 44.
    Thonon D, Jacques V, Desreux JF. 2007. A gadolinium triacetic monamide DOTA derivative with a methanethiosulfonate anchor groiup: relaxivity properties and conjugation with albumin and thiolated particles. Contrast Media Mol Imaging 2:24–34.CrossRefGoogle Scholar
  45. 45.
    Lagerstedt JO, Budamagunta MS, Oda MN, Voss JC. 2007. Electron paramagnetic resonance spectroscopy of site-directed spin labels reveals the structural heterogeneity in the N-terminal domain of ApoA-I in solution. J Biol Chem 282(12):9143–9149.CrossRefGoogle Scholar
  46. 46.
    Martin DD, Budamagunta MS, Ryan RO, Voss JC, Oda MN. 2006. Apolipoprotein A-I assumes a “looped belt” conformation on reconstituted high density lipoprotein. J Biol Chem 281(29):20418–20426.CrossRefGoogle Scholar
  47. 47.
    Haacke EM, Brown RW, Venkatesan R, Thompson MR. 2006. Magnetic resonance imaging: physical principles and sequence design. New York: Wiley-Liss.Google Scholar
  48. 48.
    Bourasset F, Dencausse A, Bourrinet P, Ducret M, Corot C. 2001. Comparison of plasma and peritoneal concentrations of various categories of MRI blood pool agents in a murine experimental pharmacokinetic model. MAGMA 12(2–3):82–87.CrossRefGoogle Scholar

Copyright information

© Humana Press 2009

Authors and Affiliations

  1. 1.Department of Biochemistry & Molecular MedicineUniversity of California Davis One Shields Avenue DavisCAUSA
  2. 2.Coordination and Radiochemistry Sart Tilman-B16 University of LiègeLiègeBelgium

Personalised recommendations