Morphogens, Membranes and Mechanotransduction in Articular Cartilage

Part of the Handbook of Modern Biophysics book series (HBBT)


The three fundamentals of developmental biology are cell growth, cellular differentiation, and morphogenesis. Morphogenesis is the process of the generation of the shape of tissues, organs, and entire organisms from various cells. During embryonic development, as cells reproduce and divide, chemical and mechanical signals induce the cell to sort and differentiate into specialized cells. Morphogenesis is the process by which these cells become distributed and organized into tissues and organs. Morphogenetic responses can be stimulated in organisms by morphogenetic proteins, hormones, and environmental cues. There are different types of molecules that play an important role during morphogenesis and include the transcription factors and morphogens themselves.


Articular Cartilage Articular Chondrocytes Superficial Zone Articular Cartilage Repair Intramedullary Nail Fixation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Further Study

  1. Reddi AH. 2003. Cartilage morphogenetic proteins: role in joint development, homoeostasis, and regeneration. Ann Rheum Dis 62(Suppl 2):73–78.Google Scholar
  2. Reddi AH. 1998. Role of morphogenetic proteins in skeletal tissue engineering and regeneration. Nat Biotechnol 16(3):247–252.CrossRefGoogle Scholar
  3. Khouri RK, Koudsi B, Reddi AH. 1991. Tissue transformation into bone in vivo. JAMA 266:1953–1955.CrossRefGoogle Scholar


  1. 1.
    Fata JE, Werb Z, Bissell MJ. 2004. Regulation of mammary gland branching morphogenesis by the extracellular matrix and its remodeling enzymes. Breast Cancer Res 6(1):1–11.Google Scholar
  2. 2.
    Reddi AH, Huggins C. 1972. Biochemical sequences in the transformation of normal fibroblasts in adolescent rats. Proc Natl Acad Sci USA 69(6):1601–1605.CrossRefADSGoogle Scholar
  3. 3.
    Urist MR. 1965. Bone: formation by autoinduction. Science 150(698):893–899.CrossRefADSGoogle Scholar
  4. 4.
    Luyten FP, Chen P, Paralkar V, Reddi AH. 1994 Recombinant bone morphogenetic protein-4, transforming growth factor-beta 1, and activin A enhance the cartilage phenotype of articular chondrocytes in vitro. Exp Cell Res 210(2):224–229.CrossRefGoogle Scholar
  5. 5.
    Sampath TK, Coughlin JE, Whetstone RM, Banach D, Corbett C, Ridge RJ, Ozkaynak E, Oppermann H, Rueger DC. 1990. Bovine osteogenic protein is composed of dimers of OP-1 and BMP-2A, two members of the transforming growth factor-beta superfamily. J Biol Chem 265(22):13198–131205.Google Scholar
  6. 6.
    Chen P, Carrington JL, Hammonds RG, Reddi AH. 1991 Stimulation of chondrogenesis in limb bud mesoderm cells by recombinant human bone morphogenetic protein 2B (BMP-2B) and modulation by transforming growth factor beta 1 and beta 2. Exp Cell Res 195(2):509–515.CrossRefGoogle Scholar
  7. 7.
    Pecina M, Jelic M, Martinovic S, Haspl M, Vukicevic S. 2002. Articular cartilage repair: the role of bone morphogenetic proteins. Int Orthop 26(3):131–136.CrossRefGoogle Scholar
  8. 8.
    Reddi AH. 2003. Cartilage morphogenetic proteins: role in joint development, homoeostasis, and regeneration. Ann Rheum Dis 62(Suppl 2):73–78.Google Scholar
  9. 9.
    Reddi AH. 1998. Role of morphogenetic proteins in skeletal tissue engineering and regeneration. Nat Biotechnol 16(3):247–252.CrossRefGoogle Scholar
  10. 10.
    Sampath TK, DeSimone DP, Reddi AH. 1982. Extracellular bone matrix-derived growth factor. Exp Cell Res 142(2):460–464.CrossRefGoogle Scholar
  11. 11.
    Asahina I, Sampath TK, Nishimura I, Hauschka PV. 1993. Human osteogenic protein-1 induces both chondroblastic and osteoblastic differentiation of osteoprogenitor cells derived from newborn rat calvaria. J Cell Biol 123(4):921–933.CrossRefGoogle Scholar
  12. 12.
    Vukicevic S, Luyten FP, Reddi AH. 1989. Stimulation of the expression of osteogenic and chondrogenic phenotypes in vitro by osteogenin. Proc Natl Acad Sci USA 86(22):8793–8797.CrossRefADSGoogle Scholar
  13. 13.
    Mow VC, Ratcliffe A, Poole AR. 1992. Cartilage and diarthrodial joints as paradigms for hierarchical materials and structures. Biomaterials 13(2):67–97.CrossRefGoogle Scholar
  14. 14.
    Schumacher BL, Block JA, Schmid TM, Aydelotte MB, Kuettner KE. 1994. A novel proteoglycan synthesized and secreted by chondrocytes of the superficial zone of articular cartilage. Arch Biochem Biophys 311(1):144–152.CrossRefGoogle Scholar
  15. 15.
    Schumacher BL, Hughes CE, Kuettner KE, Caterson B, Aydelotte MB. 1999. Immunodetection and partial cDNA sequence of the proteoglycan, superficial zone protein, synthesized by cells lining synovial joints. J Orthop Res 17(1):110–120.CrossRefGoogle Scholar
  16. 16.
    Rees SG, Davies JR, Tudor D, Flannery CR, Hughes CE, Dent CM, Caterson B. 2002. Immunolocalisation and expression of proteoglycan 4 (cartilage superficial zone proteoglycan) in tendon. Matrix Biol 21(7):593–602.CrossRefGoogle Scholar
  17. 17.
    Schumacher BL, Schmidt TA, Voegtline MS, Chen AC, Sah RL. 2005. Proteoglycan 4 (PRG4) synthesis and immunolocalization in bovine meniscus. J Orthop Res 23(3):562–568.CrossRefGoogle Scholar
  18. 18.
    Radin E L, Swann DA, Weisser PA. 1970 Separation of a hyaluronate-free lubricating fraction from synovial fluid. Nature 228(5269):377–378.CrossRefADSGoogle Scholar
  19. 19.
    Swann DA Silver FH, Slayter HS, Stafford W, Shore E. 1985. The molecular structure and lubricating activity of lubricin isolated from bovine and human synovial fluids. Biochem J 225(1):195–201.Google Scholar
  20. 20.
    Swann DA, Slayter HS, Silver FH. 1981. The molecular structure of lubricating glycoprotein-I, the boundary lubricant for articular cartilage. J Biol Chem 256(11):5921–5925.Google Scholar
  21. 21.
    Jay GD, Britt DE, Cha CJ. 2000. Lubricin is a product of megakaryocyte stimulating factor gene expression by human synovial fibroblasts. J Rheumatol 27(3):594–600.Google Scholar
  22. 22.
    Jay GD, Haberstroh K, Cha CJ. 1998. Comparison of the boundary-lubricating ability of bovine synovial fluid, lubricin, and Healon. J Biomed Mater Res 40(3):414–418.CrossRefGoogle Scholar
  23. 23.
    Jay GD, Tantravahi U, Britt DE, Barrach HJ, Cha CJ. 2001. Homology of lubricin and superficial zone protein (SZP): products of megakaryocyte stimulating factor (MSF) gene expression by human synovial fibroblasts and articular chondrocytes localized to chromosome 1q25. J Orthop Res 19(4):677–687.CrossRefGoogle Scholar
  24. 24.
    Bahabri SA, Suwairi WM, Laxer RM, Polinkovsky A, Dalaan AA, Warman ML. 1998. The camptodactyly-arthropathy-coxa vara-pericarditis syndrome: clinical features and genetic mapping to human chromosome 1. Arthr Rheum 41(4):730–735.CrossRefGoogle Scholar
  25. 25.
    Marcelino J, Carpten JD, Suwairi WM, Gutierrez OM, Schwartz S, Robbins C, Sood R, Makalowska I, Baxevanis A, Johnstone B, Laxer RM, Zemel L, Kim CA, Herd JK, Ihle J, Williams C, Johnson M, Raman V, Alonso LG, Brunoni D, Gerstein A, Papadopoulos N, Bahabri SA, Trent JM, Warman ML. 1999. CACP, encoding a secreted proteoglycan, is mutated in camptodactyly-arthropathy-coxa vara-pericarditis syndrome. Nat Genet 23(3):319–322.CrossRefGoogle Scholar
  26. 26.
    Trippel SB. 2004. Growth factor inhibition: potential role in the etiopathogenesis of osteoarthritis. Clin Orthop Relat Res 427(Suppl):S47–S52.Google Scholar
  27. 27.
    O'Connor WJ, Botti T, Khan SN, Lane JM. 2000. The use of growth factors in cartilage repair. Orthop Clin North Am 31(3):399–410.CrossRefGoogle Scholar
  28. 28.
    Khalafi A, Schmid TM, Neu C, Reddi AH. 2007. Increased accumulation of superficial zone protein (SZP) in articular cartilage in response to bone morphogenetic protein-7 and growth factors. J Orthop Res 225(3):293–303.CrossRefGoogle Scholar
  29. 29.
    Niikura T, Reddi AH. 2007. Differential regulation of lubricin/superficial zone protein by transforming growth factor beta/bone morphogenetic protein superfamily members in articular chondrocytes and synoviocytes. Arthr Rheum 56(7):2312–2321.CrossRefGoogle Scholar
  30. 30.
    Reddi AH. 2005. BMPs: from bone morphogenetic proetin to body morphogenetic proteins. Cytokine Growth Factor Rev 16:249–250.CrossRefGoogle Scholar
  31. 31.
    Paul JP. 1976. Force actions transmitted by joints in the human body. Proc R Soc Lond B Biol Sci 192(1107): 163–172.CrossRefADSGoogle Scholar
  32. 32.
    Wu G, Millon D. 2008. Joint kinetics during Tai Chi gait and normal walking gait in young and elderly Tai Chi Chuan practitioners. Clin Biomech 23(6):787–795.CrossRefGoogle Scholar
  33. 33.
    Taylor WR, Heller MO, Bergmann G, Duda GN. 2004. Tibio-femoral loading during human gait and stair climbing. J Orthop Res 22(3):625–632.CrossRefGoogle Scholar
  34. 34.
    Flynn TW, Soutas-Little RW. 1995. Patellofemoral joint compressive forces in forward and backward running. J Orthop Sports Phys Ther 21(5):277–282.Google Scholar
  35. 35.
    Scott SH, Winter DA. 1990. Internal forces of chronic running injury sites. Med Sci Sports Exerc 22(3):357–369.Google Scholar
  36. 36.
    Nagura T, Dyrby CO, Alexander EJ, Andriacchi TP. 2002. Mechanical loads at the knee joint during deep flexion. J Orthop Res 20(4):881–886.CrossRefGoogle Scholar
  37. 37.
    Chen SS, Falcovitz YH, Schneiderman R, Maroudas A, Sah RL. 2001. Depth-dependent compressive properties of normal aged human femoral head articular cartilage: relationship to fixed charge density. Osteoarthritis Cartilage 9(6):561–569.CrossRefGoogle Scholar
  38. 38.
    Barker MK, Seedhom BB. 2001. The relationship of the compressive modulus of articular cartilage with its deformation response to cyclic loading: does cartilage optimize its modulus so as to minimize the strains arising in it due to the prevalent loading regime? Rheumatology (Oxford) 40(3):274–284.CrossRefGoogle Scholar
  39. 39.
    Wong BL, Bae WC, Chun J, Gratz KR, Lotz M, Sah RL. 2008. Biomechanics of cartilage articulation: effects of lubrication and degeneration on shear deformation. Arthr Rheum 58(7):2065–2074.CrossRefGoogle Scholar
  40. 40.
    Buckley MR, Gleghorn JP, Bonassar LJ, Cohen I. 2008. Mapping the depth dependence of shear properties in articular cartilage. J Biomech 41(11):2430–2437.CrossRefGoogle Scholar
  41. 41.
    Lewis PR, McCutchen CW. 1959. Mechanism of animal joints. Nature 184:1285.CrossRefADSGoogle Scholar
  42. 42.
    Walker PS, Dowson D, Longfield MD, Wright V. 1968. “Boosted lubrication” in synovial joints by fluid entrapment and enrichment. Ann Rheum Dis 27(6):512–520.CrossRefGoogle Scholar
  43. 43.
    Kim YJ, Sah RL, Grodzinsky AJ, Plaas AH, Sandy JD. 1994. Mechanical regulation of cartilage biosynthetic behavior: physical stimuli. Arch Biochem Biophys 311(1):1–12.CrossRefGoogle Scholar
  44. 44.
    Buschmann MD, Kim YJ, Wong M, Frank E, Hunziker EB, Grodzinsky AJ. 1999. Stimulation of aggrecan synthesis in cartilage explants by cyclic loading is localized to regions of high interstitial fluid flow. Arch Biochem Biophys 366(1):1–7.CrossRefGoogle Scholar
  45. 45.
    Nugent GE, Aneloski NM, Schmidt TA, Schumacher BL, Voegtline MS, Sah RL. 2006. Dynamic shear stimulation of bovine cartilage biosynthesis of proteoglycan 4. Arthr Rheum 54(6):1888–1896.CrossRefGoogle Scholar
  46. 46.
    Jones AR, Flannery CR. 2007. Bioregulation of lubricin expression by growth factors and cytokines. Eur Cell Mater 13:40–45.Google Scholar
  47. 47.
    Lee SY, Niikura T, Reddi AH. 2008. Superficial zone protein (lubricin) in the different tissue compartments of the knee joint: modulation by transforming growth factor beta 1 and interleukin-1 beta. Tissue Eng Part A 14(11):1799–1808.CrossRefGoogle Scholar
  48. 48.
    Neu CP, Khalafi A, Komvopoulos K, Schmid TM, Reddi AH. 2007. Mechanotransduction of bovine articular cartilage superficial zone protein by transforming growth factor beta signaling. Arthr Rheum 56(11):3706–3714.CrossRefGoogle Scholar
  49. 49.
    Millward-Sadler SJ, Salter DM. 2004. Integrin-dependent signal cascades in chondrocyte mechanotransduction. Ann Biomed Eng 32(3):435–446.CrossRefGoogle Scholar
  50. 50.
    Tschumperlin DJ, Dai G, Maly IV, Kikuchi T, Laiho LH, McVittie AK, Haley KJ, Lilly CM, So PT, Lauffenburger DA, Kamm RD, Drazen JM. 2004. Mechanotransduction through growth-factor shedding into the extracellular space. Nature 429(6987):83–86.CrossRefADSGoogle Scholar

Copyright information

© Humana Press 2009

Authors and Affiliations

  1. 1.Department of Orthopaedic SurgeryLawrence Ellison Center for Tissue Regeneration, University of California Davis, School of MedicineSacramentoCalifornia
  2. 2.Department of Biomedical SciencesFaculty of Science, Tshwane University of TechnologyPretoriaSouth Africa

Personalised recommendations