Citrus Products and Their Use Against Bacteria: Potential Health and Cost Benefits

  • Todd R. CallawayEmail author
  • Jeff A. Carroll
  • John D. Arthington
  • Tom S. Edrington
  • Robin C. Anderson
  • Steve C. Ricke
  • Phil Crandall
  • Chad Collier
  • David J. Nisbet
Part of the Nutrition and Health book series (NH)

Key Points

  • Citrus pulp and dried peel are by products of juice production.

  • Citrus oils can kill bacteria, including pathogenic bacteria.

  • Citrus pulp can be used as a high quality feedstuff for animals and are fed currently.

  • Research has shown that these products can kill foodborne pathogenic bacteria.

  • These products can be used to improve human and animal health at a feasible cost.


Escherichia coli O157:H7 Orange pulp Preharvest intervention Salmonella 


  1. 1.
    Nam IS, Garnsworthy PC, Ahn JH. Supplementation of essential oil extracted from citrus peel to animal feeds decreases microbial activity and aflatoxin contamination without disrupting in vitro ruminal fermentation. Asian Austral J Anim. 2006;19(11):1617–22.Google Scholar
  2. 2.
    Nam IS, Garnsworthy PC, Ahn JH. Effects of freeze-dried citrus peel on feed preservation, aflatoxin contamination and in vitro ruminal fermentation. Asian Austral J Anim. 2009;22(5):674–80.Google Scholar
  3. 3.
    Kroismayr A, Schedle K, Sehm J, et al. Effects of antimicrobial feed additives on gut microbiology and blood parameters of weaned piglets. Bodenkultur. 2008;59(1–4):111–20.Google Scholar
  4. 4.
    Nannapaneni R, Muthaiyan A, Crandall PG, et al. Antimicrobial activity of commercial citrus-based natural extracts against Escherichia coli O157:H7 isolates and mutant strains. Foodborne Pathog Dis. 2008;5(5):695–9.PubMedCrossRefGoogle Scholar
  5. 5.
    Callaway TR, Carroll JA, Arthington JD, et al. Citrus products decrease growth of E. coli O157:H7 and Salmonella typhimurium in pure culture and in fermentation with mixed ruminal microorganisms in vitro. Foodborne Pathog Dis. 2008;5(5):621–7.PubMedCrossRefGoogle Scholar
  6. 6.
    Friedman M, Henika PR, Mandrell RE. Bactericidal activities of plant essential oils and some of their isolated constituents against Campylobacter jejuni, Escherichia coli, Listeria monocytogenes, and Salmonella enterica. J Food Prot. 2002;65(10):1545–60.PubMedGoogle Scholar
  7. 7.
    Harris PL, Poland GL. Organic acids of the ripe banana. Food Res. 1937;2:135–42.Google Scholar
  8. 8.
    Vickery HB, Pucher GW. Organic acids of plants. Annu Rev Biochem. 1940;9:529–44.CrossRefGoogle Scholar
  9. 9.
    Dorman HJD, Deans SG, Deans SG. Antimicrobial agents from plants: antibacterial activity of plant volatile oils. J Appl Microbiol. 2000;88:308–16.PubMedCrossRefGoogle Scholar
  10. 10.
    Jones NL, Shabib S, Sherman PM. Capsaicin as an inhibitor of the growth of the gastric pathogen Helicobacter pylori. FEMS Microbiol Lett. 1997;146:223–7.PubMedCrossRefGoogle Scholar
  11. 11.
    Neirotti E, Moscatelli M, Tiscornia S. Antimicrobial activity of the limonene. Arq Biol Technol. 1996;39(2):233–7.Google Scholar
  12. 12.
    Fisher K, Phillips CA. The effect of lemon, orange and bergamot essential oils and their components on the ­survival of Campylobacter jejuni, Escherichia coli O157, Listeria monocytogenes, Bacillus cereus and Staphylococcus aureus in vitro and in food systems. J Appl Microbiol. 2006;101(6):1232–40.PubMedCrossRefGoogle Scholar
  13. 13.
    Kim J, Marshall MR, Wei CI. Antibacterial activity of some essential oil components against five foodborne pathogens. J Agric Food Chem. 1995;43(11):2839–45.CrossRefGoogle Scholar
  14. 14.
    Deyhim F, Villarreal A, Garcia K, et al. Orange pulp improves antioxidant status and suppresses lipid peroxidation in orchidectomized male rats. Nutrition. 2007;23(7–8):617–21.PubMedCrossRefGoogle Scholar
  15. 15.
    Dusan F, Marian S, Katarina D, Dobroslava B. Essential oils-their antimicrobial activity against Escherichia coli and effect on intestinal cell viability. Toxicol In Vitro. 2006;20(8):1435–45.PubMedCrossRefGoogle Scholar
  16. 16.
    Huang R, Xia R, Hu L, Lu Y, Wang M. Antioxidant activity and oxygen-scavenging system in orange pulp during fruit ripening and maturation. Sci Hortic. 2007;113(2):166–72.CrossRefGoogle Scholar
  17. 17.
    Mkaddem M, Bouajila J, Ennajar M, Lebrihi A, Mathieu F, Romdhane M. Chemical composition and antimicrobial and antioxidant activities of mentha (longifolia L. and viridis) essential oils. J Food Sci. 2009;74(7):358.CrossRefGoogle Scholar
  18. 18.
    Witte W. Antibiotic use in animal husbandry and resistance development in human infections. APUA. 1999;16:1–7.Google Scholar
  19. 19.
    APUA. Facts about antibiotics in animals and their impact on resistance. Accessed 23 October 2002.
  20. 20.
    Taylor DJ. Effects of antimicrobials and their alternatives. Br Poult Sci. 2001;42(Suppl):S67–8.Google Scholar
  21. 21.
    Warnke PH, Becker ST, Podschun R, et al. The battle against multi-resistant strains: renaissance of antimicrobial essential oils as a promising force to fight hospital-acquired infections. J Cranio Maxill Surg. 2009;37(7):392–7.CrossRefGoogle Scholar
  22. 22.
    Hristov AN, Ivan M, McAllister TA. In vitro effects of feed oils, ionophores, tannic acid, saponin-containing plant extracts and other bioactive agents on ruminal fermentation and protozoal activity. J Dairy Sci. 2001;84 Suppl 1:360.Google Scholar
  23. 23.
    Arthington JD, Kunkle WE, Martin AM. Citrus pulp for cattle. In: Rogers G, Poore M, editors. The veterinary clinics of North America – food animal practice. Philadelphia, PA: W. B. Saunders; 2002. p. 317–28.Google Scholar
  24. 24.
    Ohno T, Kita M, Yamaoka Y, et al. Antimicrobial activity of essential oils against Helicobacter pylori. Helicobacter. 2003;8(3):207–15.PubMedCrossRefGoogle Scholar
  25. 25.
    Oliver SP, Patel DA, Callaway TR, Torrence ME. ASAS centennial paper: developments and future outlook for preharvest food safety. J Anim Sci. 2008;87:419–37.PubMedCrossRefGoogle Scholar
  26. 26.
    Al-Reza SM, Rahman A, Lee J, Kang SC. Potential roles of essential oil and organic extracts of Zizyphus jujuba in inhibiting food-borne pathogens. Food Chem. 2010;119(3):981–6.CrossRefGoogle Scholar
  27. 27.
    Barbosa LN, Rall VLM, Fernandes AAH, Ushimaru PI, Da Silva Probst I, Fernandes Jr A. Essential oils against foodborne pathogens and spoilage bacteria in minced meat. Foodborne Pathog Dis. 2009;6(6):725–8.PubMedCrossRefGoogle Scholar
  28. 28.
    Fisher K, Phillips C, McWatt L. The use of an antimicrobial citrus vapour to reduce Enterococcus sp. on salad products. Int J Food Sci Technol. 2009;44(9):1748–54.CrossRefGoogle Scholar
  29. 29.
    Cantore PLO, Vellasamy S, Nicola SI. Antibacterial activity of essential oil components and their potential use in seed disinfection. J Agric Food Chem. 2009;57(20):9454–61.PubMedCrossRefGoogle Scholar
  30. 30.
    Gursoy UK, Gursoy M, Gursoy OV, Cakmakci L, Könönen E, Uitto VJ. Anti-biofilm properties of Satureja hortensis L. essential oil against periodontal pathogens. Anaerobe. 2009;15(4):164–7.PubMedCrossRefGoogle Scholar
  31. 31.
    Reichling J, Schnitzler P, Suschke U, Saller R. Essential oils of aromatic plants with antibacterial, antifungal, antiviral, and cytotoxic properties – an overview. Forsch Komplement Med. 2009;16(2):79–90.Google Scholar
  32. 32.
    Gill AO, Holley RA. Disruption of Escherichia coli, Listeria monocytogenes and Lactobacillus sakei cellular membranes by plant oil aromatics. Int J Food Microbiol. 2006;108(1):1–9.PubMedCrossRefGoogle Scholar
  33. 33.
    Nogueira MCL, Oyarzabal OA, Gombas DE. Inactivation of Escherichia coli O157:H7, Listeria monocytogenes, and Salmonella in cranberry, lemon, and lime juice concentrates. J Food Prot. 2003;66(9):1637–41.PubMedGoogle Scholar
  34. 34.
    Hemmerling A, Potts M, Walsh J, Young-Holt B, Whaley K, Stefanski DA. Lime juice as a candidate microbicide? An open-label safety trial of 10% and 20% lime juice used vaginally. J Womens Health. 2007;16(7):1041–51.CrossRefGoogle Scholar
  35. 35.
    Tao NG, Liu YJ, Tang YF, Zhang JH, Zhang ML, Zeng HY. Essential oil composition and antimicrobial activity of citrus reticulata. Chem Nat Comp. 2009;32:1–2.Google Scholar
  36. 36.
    Robinson RK. Handbook of Citrus By-products and Processing Technology. Food Chem. 1999;71:155–187.Google Scholar
  37. 37.
    Caccioni DRL, Guizzardi M, Biondi DM, Renda A, Ruberto G. Relationship between volatile components of citrus fruit essential oils and antimicrobial action on Penicillium digitatum and Penicillium italicum. Int J Food Microbiol. 1998;43(1–2):73–9.PubMedCrossRefGoogle Scholar
  38. 38.
    Di Pasqua R, Betts G, Hoskins N, Edwards M, Ercolini D, Mauriello G. Membrane toxicity of antimicrobial compounds from essential oils. J Agric Food Chem. 2007;55(12):4863–70.PubMedCrossRefGoogle Scholar
  39. 39.
    Fisher K, Phillips C. The mechanism of action of a citrus oil blend against Enterococcus faecium and Enterococcus faecalis. J Appl Microbiol. 2009;106(4):1343–9.PubMedCrossRefGoogle Scholar
  40. 40.
    Dabbah R, Edwards VM, Moats WA. Antimicrobial action of some citrus fruit oils on selected food-borne bacteria. Appl Microbiol. 1970;19(1):27–31.PubMedGoogle Scholar
  41. 41.
    Di Pasqua R, Hoskins N, Betts G, Mauriello G. Changes in membrane fatty acids composition of microbial cells induced by addiction of thymol, carvacrol, limonene, cinnamaldehyde, and eugenol in the growing media. J Agric Food Chem. 2006;54(7):2745–9.PubMedCrossRefGoogle Scholar
  42. 42.
    Abo-El Seoud MA, Sarhan MM, Omar AE, Helal MM. Biocides formulation of essential oils having antimicrobial activity. Arch Phytopathol Plant Prot. 2005;38(3):175–84.CrossRefGoogle Scholar
  43. 43.
    Fisher K, Phillips C. Potential antimicrobial uses of essential oils in food: is citrus the answer? Trends Food Sci Technol. 2008;19(3):156–64.CrossRefGoogle Scholar
  44. 44.
    Viuda-Martos M, Ruiz-Navajas Y, Fernández-López J, Perez-Ãlvarez J. Antibacterial activity of lemon (Citrus lemon L.), mandarin (Citrus reticulata L.), grapefruit (Citrus paradisi L.) and orange (Citrus sinensis L.) essential oils. J Food Saf. 2008;28(4):567–76.CrossRefGoogle Scholar
  45. 45.
    Parish ME, Baum D, Kryger R, Goodrich R, Baum R. Fate of Salmonellae in citrus oils and aqueous aroma. J Food Prot. 2003;66(9):1704–7.PubMedGoogle Scholar
  46. 46.
    O’Bryan CA, Crandall PG, Chalova VI, Ricke SC. Orange essential oils antimicrobial activities against Salmonella spp. J Food Sci. 2008;73(6):264–7.CrossRefGoogle Scholar
  47. 47.
    Friedly EC, Crandall PG, Ricke SC, Roman M, O’Bryan CA, Chalova VI. In vitro anti-listerial effects of citrus oil fractions in combination with organic acids. J Food Sci. 2009;74:M67–72.PubMedCrossRefGoogle Scholar
  48. 48.
    Nannapaneni R, Chalova VI, Crandall PG, Ricke SC, Johnson MG, O’Bryan CA. Campylobacter and Arcobacter species sensitivity to commercial orange oil fractions. Int J Food Microbiol. 2008;129:43–9.PubMedCrossRefGoogle Scholar
  49. 49.
    Chao S, Young G, Oberg C, Nakaoka K. Inhibition of methicillin-resistant Staphylococcus aureus (MRSA) by essential oils. Flav Frag J. 2008;23(6):444–9.CrossRefGoogle Scholar
  50. 50.
    Tohidpour A, Sattari M, Omidbaigi R, Yadegar A, Nazemi J. Antibacterial effect of essential oils from two medicinal plants against Methicillin-resistant Staphylococcus aureus (MRSA). Phytomed. 2010;17(2):142–5.CrossRefGoogle Scholar
  51. 51.
    Klein E, Smith D, Laxminarayan R. Hospitalizations and deaths caused by Methicillin-Resistant Staphylococcus aureus, United States, 1999–2005. Emerg Infect Dis. 2007;13:1840–7.PubMedGoogle Scholar
  52. 52.
    Mayaud L, Carricajo A, Zhiri A, Aubert G. Comparison of bacteriostatic and bactericidal activity of 13 essential oils against strains with varying sensitivity to antibiotics. Lett Appl Microbiol. 2008;47(3):167–73.PubMedCrossRefGoogle Scholar
  53. 53.
    Gaunt LF, Higgins SC, Hughes JF. Interaction of air ions and bactericidal vapours to control micro-organisms. J Appl Microbiol. 2005;99(6):1324–9.PubMedCrossRefGoogle Scholar
  54. 54.
    Nannapaneni R, Chalova VI, Story R, et al. Ciprofloxacin-sensitive and ciprofloxacin-resistant Campylobacter jejuni are equally sensitive to natural orange oil-based antimicrobials. J Environ Sci Health B. 2009;44:571–7.PubMedCrossRefGoogle Scholar
  55. 55.
    ERS/USDA. ERS estimates foodborne disease costs at $6.9 billion per year. Accessed 28 April 2004.
  56. 56.
    Mead PS, Slutsker L, Dietz V, et al. Food-related illness and death in the United States. Emerg Infect Dis. 1999;5:607–25.PubMedCrossRefGoogle Scholar
  57. 57.
    Callaway TR, Edrington TS, Brabban AD, 3, et al. Fecal prevalence of Escherichia coli O157, Salmonella, Listeria, and bacteriophage infecting E. coli O157:H7 in feedlot cattle in the southern plains region of the United States. Foodborne Pathog Dis. 2006;3:234–44.PubMedCrossRefGoogle Scholar
  58. 58.
    Morrow WEM, Davies PR, See T, et al. Prevalence of Salmonella spp. in the feces on farm and ceca at slaughter for a cohort of finishing pigs. Paper presented at 3 rd International Symposium on Epidemiology and Control of Salmonella in Pork, Washington, DC, 1999.Google Scholar
  59. 59.
    Borland ED. Salmonella infection in poultry. Vet Rec. 1975;97(21):406–8.PubMedCrossRefGoogle Scholar
  60. 60.
    Barkocy-Gallagher GA, Arthur TM, Rivera-Betancourt M, et al. Seasonal prevalence of shiga toxin-producing Escherichia coli, including O157:H7 and non-O157 serotypes, and Salmonella in commercial beef processing plants. J Food Prot. 2003;66:1978–86.PubMedGoogle Scholar
  61. 61.
    Barkocy-Gallagher GA, Arthur TM, Rivera-Betancourt M, et al. Characterization of O157:H7 and other Escherichia coli isolates recovered from cattle hides, feces, and carcasses. J Food Prot. 2004;67(5):993–8.PubMedGoogle Scholar
  62. 62.
    Low JC, McKendrick IJ, McKechnie C, et al. Rectal carriage of enterohemorrhagic Escherichia coli O157 in slaughtered cattle. Appl Environ Microbiol. 2005;71:93–7.PubMedCrossRefGoogle Scholar
  63. 63.
    Reid CA, Small A, Avery SM, Buncic S. Presence of foodborne pathogens on cattle hides. Food Control. 2002;13:411–5.CrossRefGoogle Scholar
  64. 64.
    Aslam M, Nattress F, Greer G, Yost C, Gill C, McMullen L. Origin of contamination and genetic diversity of Escherichia coli in beef cattle. Appl Environ Microbiol. 2003;69:2794–9.PubMedCrossRefGoogle Scholar
  65. 65.
    Oliver SP, Jayarao BM, Almeida RA. Foodborne pathogens in milk and the dairy farm environment: food safety and public health implications. Foodborne Pathog Dis. 2005;2(2):115–29.PubMedCrossRefGoogle Scholar
  66. 66.
    Callaway TR, Edrington TS, Anderson RC, Byrd JA, Nisbet DJ. Gastrointestinal microbial ecology and the safety of our food supply as related to Salmonella. J Anim Sci September 18, 2007 2007:457–468.Google Scholar
  67. 67.
    Anonymous. Waterborne outbreak of gastroenteritis associated with a contaminated municipal water supply, Walkerton, Ontario, May-June 2000. Can Commun Dis Rep 2000; 26:170–173.Google Scholar
  68. 68.
    Pritchard GC, Willshaw GA, Bailey JR, Carson T, Cheasty T. Verocytotoxin-producing Escherichia coli O157 on a farm open to the public: outbreak investigation and longitudinal bacteriological study. Vet Rec. 2000;147:259–64.PubMedCrossRefGoogle Scholar
  69. 69.
    Doyle MP, Erickson MC. Reducing the carriage of foodborne pathogens in livestock and poultry. Poult Sci. 2006;85(6):960–73.PubMedGoogle Scholar
  70. 70.
    Callaway TR, Anderson RC, Edrington TS, et al. Recent pre-harvest supplementation strategies to reduce carriage and shedding of zoonotic enteric bacterial pathogens in food animals. Anim Health Res Rev. 2004;5(1):35–47.PubMedCrossRefGoogle Scholar
  71. 71.
    Loneragan GH, Brashears MM. Pre-harvest interventions to reduce carriage of E. coli O157 by harvest-ready feedlot cattle. Meat Sci. 2005;71(1):72.CrossRefGoogle Scholar
  72. 72.
    Sargeant JM, Amezcua MR, Rajic A, Waddell L. Pre-harvest interventions to reduce the shedding of E. coli O157 in the faeces of weaned domestic ruminants: a systematic review. Zoonoses Pub Health. 2007;54:260–77.CrossRefGoogle Scholar
  73. 73.
    WHO. Global principles for the containment of antimicrobial resistance in animals intended for food. Genevea, Switzerland: WHO; 2000.Google Scholar
  74. 74.
    FDA. Evaluating the safety of antimicrobial new animal drugs with regard to their microbiological effects on bacteria of human health concern. Fed Regist 2002; 67: Docket#98D-1146:58058–58060.Google Scholar
  75. 75.
    FDA. Consideration of the human health impact of the microbial effects of antimicrobial new animal drugs intended for use in food producing animals. Fed Regist. 1999;64:70715–6.Google Scholar
  76. 76.
    Patra AK, Saxena J. Dietary phytochemicals as rumen modifiers: a review of the effects on microbial populations. Antonie Leeuwenhoek. 2009;39:1–13.Google Scholar
  77. 77.
    Barnhart ET, Sarlin LL, Caldwell DJ, Byrd JA, Corrier DE, Hargis BM. Evaluation of potential disinfectants for preslaughter broiler crop decontamination. Poult Sci. 1999;78(1):32–7.PubMedGoogle Scholar
  78. 78.
    Shin S. Anti-Salmonella activity of lemongrass oil alone and in combination with antibiotics. Nat Prod Sci. 2005;11(3):160–4.Google Scholar
  79. 79.
    Yokoyama MG, Johnson KA. Microbiology of the rumen and intestine. In: Church DC, editor. The ruminant animal: digestive physiology and nutrition. Englewood Cliffs, NJ: Waveland; 1988. p. 125–44.Google Scholar
  80. 80.
    NRC. Nutrient requirements of swine. 10th ed. Washington, DC: National Academy, National Research Council; 1998.Google Scholar
  81. 81.
    NRC. Nutrient requirements of beef cattle. 7th ed. Washington, DC: National Academy; 2000.Google Scholar
  82. 82.
    Volanis M, Zoiopoulos P, Panagou E, Tzerakis C. Utilization of an ensiled citrus pulp mixture in the feeding of lactating dairy ewes. Small Rum Res. 2006;64(1–2):190–5.CrossRefGoogle Scholar
  83. 83.
    Matlack MB. The fatty constituents of California Valencia orange pulp (Citrus Aurantium sinensis L.). J Org Chem. 1940;5(5):504–7.CrossRefGoogle Scholar
  84. 84.
    Kossoy G, Ben-Hur H, Stark A, Zusman I, Madar Z. Effects of a 15% orange-pulp diet on tumorigenesis and immune response in rats with colon tumors. Oncol Rep. 2001;8(6):1387–91.PubMedGoogle Scholar
  85. 85.
    Chalova VI, Crandall PG, Ricke SC. Comparative radical scavenging and microbial inhibitory activities of cold pressed terpeneless Valencia orange oils in different dispersing agents. J Sci Food Agric 2010; (in press).Google Scholar
  86. 86.
    Bertschinger HU. Postweaning Escherichia coli diarrhea and edema disease. In: Straw BE, D’Allaire S, Mengeling WL, Taylor DJ, editors. Diseases of swine. 8th ed. Ames, IA: Iowa State University Press; 1999. p. 441–54.Google Scholar
  87. 87.
    Fairbrother JM. Neonatal Escherichia coli diarrhea. Diseases of Swine. 8th ed. Ames, IA: Iowa State University Press; 1999. p. 433–41.Google Scholar
  88. 88.
    Kyriakis SC, Tsiloyiannis VK, Vlemmas J, et al. The effect of probiotic LSP 122 on the control of post-weaning diarrhea syndrome of piglets. Res Vet Sci. 2001;67:223–38.CrossRefGoogle Scholar
  89. 89.
    Bomba A, Nemcova R, Gancarcikova S, Herich R, Kastel R. Potentiation of the effectiveness of Lactobacillus casei in the prevention of E. coli induced diarrhea in conventional and gnotobiotic pigs. In: Paul PS, Francis DH, editors. Mechanisms in the pathogenesis of enteric diseases 2. New York: Kluwer/Plenum; 1999. p. 185–90.Google Scholar
  90. 90.
    Montagne L, Cavaney FS, Hampson DJ, Lalles JP, Pluske JR. Effect of diet composition on postweaning colibacillosis in piglets. J Anim Sci. 2004;82(8):2364–74.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Todd R. Callaway
    • 1
    Email author
  • Jeff A. Carroll
  • John D. Arthington
  • Tom S. Edrington
  • Robin C. Anderson
  • Steve C. Ricke
  • Phil Crandall
  • Chad Collier
  • David J. Nisbet
  1. 1.Food and Feed Safety Research UnitSouthern Plains Agricultural Research Center, Agricultural Research Service, USDACollege StationUSA

Personalised recommendations