Skip to main content

Part of the book series: Molecular and Translational Medicine ((MOLEMED))

Abstract

Thiopurines are antimetabolite prodrugs used clinically as antineoplastics and as immunosuppressants. The first clinically effective thiopurines, thioguanine and mercaptopurine, were developed in the 1950s by Wellcome Research Laboratory scientists Gertrude Elion and George Hitchings [1]. After the approval of mercaptopurine in 1953 by FDA for the treatment of leukemia, it was discovered that when it was combined with other anticancer agents, childhood leukemia could be cured. The development of these compounds contributed to Elion and Hitchings being awarded the Nobel Prize in medicine in 1988. Today, there are three thiopurine drugs (mercaptopurine, thioguanine, and azathioprine) (Fig. 7.) that are widely used in the treatment of leukemia, rheumatic diseases, inflammatory bowel disease, and solid organ transplant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. DeVita, V. T., Jr., & Chu, E. (2008). A history of cancer chemotherapy. Cancer Research, 68, 8643–8653.

    Article  PubMed  CAS  Google Scholar 

  2. Cheok, M. H., Lugthart, S., & Evans, W. E. (2006). Pharmacogenomics of acute leukemia. Annual Review of Pharmacology and Toxicology, 46, 317–353.

    Article  PubMed  CAS  Google Scholar 

  3. Gearry, R. B., & Barclay, M. L. (2005). Azathioprine and 6-mercaptopurine pharmacogenetics and metabolite monitoring in inflammatory bowel disease. Journal of Gastroenterology and Hepatology, 20(8), 1149–1157.

    Article  PubMed  CAS  Google Scholar 

  4. Sandborn, W., Sutherland, L., Pearson, D., May, G., Modigliani, R., & Prantera, C. (2000). Azathioprine or 6-mercaptopurine for inducing remission of Crohn’s disease. Cochrane Database of Systematic Reviews (Online), (2), CD000545.

    Google Scholar 

  5. Pearson, D. C., May, G. R., Fick, G., & Sutherland, L. R. (2000). Azathioprine for maintaining remission of Crohn’s disease. Cochrane Database of Systematic Reviews (Online), (2), CD000067.

    Google Scholar 

  6. Derijks, L. J., Gilissen, L. P., Hooymans, P. M., & Hommes, D. W. (2006). Review article: Thiopurines in inflammatory bowel disease. Alimentary Pharmacology & Therapeutics, 24, 715–729.

    Article  CAS  Google Scholar 

  7. Czaja, A. J. (2009). Current and future treatments of autoimmune hepatitis. Expert Review of Gastroenterology & Hepatology, 3, 269–291.

    Article  CAS  Google Scholar 

  8. Gauba, V., Saldanha, M., Vize, C., & Saleh, G. M. (2006). Thiopurine methyltransferase screening before azathioprine therapy. The British Journal of Ophthalmology, 90, 923–924.

    Article  PubMed  CAS  Google Scholar 

  9. Allan, P. W., & Bennett, L. L., Jr. (1971). 6-Methylthioguanylic acid, a metabolite of 6-thioguanine. Biochemical Pharmacology, 20, 847–852.

    Article  PubMed  CAS  Google Scholar 

  10. Krynetski, E., & Evans, W. E. (2003). Drug methylation in cancer therapy: Lessons from the TPMT polymorphism. Oncogene, 22, 7403–7413.

    Article  PubMed  CAS  Google Scholar 

  11. Yates, C. R., Krynetski, E. Y., Loennechen, T., Fessing, M. Y., Tai, H. L., & Pui, C. H., et al. (1997). Molecular diagnosis of thiopurine S-methyltransferase deficiency: genetic basis for azathioprine and mercaptopurine intolerance. Annals of Internal Medicine, 126, 608–614.

    PubMed  CAS  Google Scholar 

  12. Berkovitch, M., Matsui, D., Zipursky, A., Blanchette, V. S., Verjee, Z., & Giesbrecht, E., et al. (1996). Hepatotoxicity of 6-mercaptopurine in childhood acute lymphocytic leukemia: pharmacokinetic characteristics. Medical and Pediatric Oncology, 26, 85–89.

    Article  PubMed  CAS  Google Scholar 

  13. Schmiegelow, K., & Pulczynska, M. (1990). Prognostic significance of hepatotoxicity during maintenance chemotherapy for childhood acute lymphoblastic leukaemia. British Journal of Cancer, 61, 767–772.

    Article  PubMed  CAS  Google Scholar 

  14. Gisbert, J. P., Gonzalez-Lama, Y., & Mate, J. (2007). Thiopurine-induced liver injury in patients with inflammatory bowel disease: A systematic review. The American Journal of Gastroenterology, 102, 1518–1527.

    Article  PubMed  CAS  Google Scholar 

  15. de Boer, N. K., van Bodegraven, A. A., Jharap, B., de Graaf, P., & Mulder, C. J. (2007). Drug insight: Pharmacology and toxicity of thiopurine therapy in patients with IBD. Nature Clinical Practice. Gastroenterology & Hepatology, 4, 686–694.

    CAS  Google Scholar 

  16. Relling, M. V., Rubnitz, J. E., Rivera, G. K., Boyett, J. M., Hancock, M. L., & Felix, C. A., et al. (1999). High incidence of secondary brain tumours after radiotherapy and antimetabolites. Lancet, 354, 34–39.

    Article  PubMed  CAS  Google Scholar 

  17. Yenson, P. R., Forrest, D., Schmiegelow, K., & Dalal, B. I. (2008). Azathioprine-associated acute myeloid leukemia in a patient with Crohn’s disease and thiopurine S-methyltransferase deficiency. American Journal of Hematology, 83(1), 80–83.

    Article  PubMed  Google Scholar 

  18. Relling, M. V., Yanishevski, Y., Nemec, J., Evans, W. E., Boyett, J. M., & Behm, F. G., et al. (1998). Etoposide and antimetabolite pharmacology in patients who develop secondary acute myeloid leukemia. Leukemia, 12, 346–352.

    Article  PubMed  CAS  Google Scholar 

  19. Thompsen, J., Schroder, H., Kristinsson, J., Madsen, B., Szumlanski, C., & Weinshilboum, R., et al. (1999). Possible carcinogenic effect of 6-mercaptopurine on bone marrow stem cells: Relation to thiopurine metabolism. Cancer, 86, 1080–1086.

    Article  Google Scholar 

  20. Hijiya, N., Hudson, M. M., Lensing, S., Zacher, M., Onciu, M., & Behm, F. G., et al. (2007). Cumulative incidence of secondary neoplasms as a first event after childhood acute lymphoblastic leukemia16. The Journal of the American Medical Association, 297, 1207–1215.

    Article  PubMed  CAS  Google Scholar 

  21. Karran, P., & Attard, N. (2008). Thiopurines in current medical practice: molecular mechanisms and contributions to therapy-related cancer. Nature Reviews. Cancer, 8, 24–36.

    Article  PubMed  CAS  Google Scholar 

  22. Corominas, H., Domenech, M., Laiz, A., Gich, I., Geli, C., & Diaz, C., et al. (2003). Is thiopurine methyltransferase genetic polymorphism a major factor for withdrawal of azathioprine in rheumatoid arthritis patients? Rheumatology (Oxford), 42, 40–45.

    Article  CAS  Google Scholar 

  23. Dubinsky, M. C., Lamothe, S., Yang, H. Y., Targan, S. R., Sinnett, D., & Theoret, Y., et al. (2000). Pharmacogenomics and metabolite measurement for 6-mercaptopurine therapy in inflammatory bowel disease. Gastroenterology, 118, 705–713.

    Article  PubMed  CAS  Google Scholar 

  24. Leong, R. W., Gearry, R. B., & Sparrow, M. P. (2008). Thiopurine hepatotoxicity in inflammatory­ bowel disease: The role for adding allopurinol. Expert Opinion on Drug Safety, 7, 607–616.

    Article  PubMed  CAS  Google Scholar 

  25. Weinshilboum, R. M., & Sladek, S. L. (1980). Mercaptopurine pharmacogenetics: monogenic inheritance of erythrocyte thiopurine methyltransferase activity. American Journal of Human Genetics, 32, 651–662.

    PubMed  CAS  Google Scholar 

  26. Jones, T. S., Yang, W., Evans, W. E., & Relling, M. V. (2007). Using HapMap tools in pharmacogenomic discovery: The thiopurine methyltransferase polymorphism. Clinical Pharmacology and Therapeutics, 81, 729–734.

    Article  PubMed  CAS  Google Scholar 

  27. Evans, W. E., Horner, M., Chu, Y. Q., Kalwinsky, D., & Roberts, W. M. (1991). Altered mercaptopurine metabolism, toxic effects, and dosage requirement in a thiopurine methyltransferase-deficient child with acute lymphocytic leukemia. The Journal of Pediatrics, 119, 985–989.

    Article  PubMed  CAS  Google Scholar 

  28. Szumlanski, C., Otterness, D., Her, C., Lee, D., Brandriff, B., & Kelsell, D., et al. (1996). Thiopurine methyltransferase pharmacogenetics: human gene cloning and characterization of a common polymorphism. DNA and Cell Biology, 15, 17–30.

    Article  PubMed  CAS  Google Scholar 

  29. Ujiie, S., Sasaki, T., Mizugaki, M., Ishikawa, M., & Hiratsuka, M. (2008). Functional characterization of 23 allelic variants of thiopurine S-methyltransferase gene (TPMT*2 – *24). Pharmacogenetics and Genomics, 18, 887–893.

    Article  PubMed  CAS  Google Scholar 

  30. Tai, H. L., Krynetski, E. Y., Yates, C. R., Loennechen, T., Fessing, M. Y., & Krynetskaia, N. F., et al. (1996). Thiopurine S-methyltransferase deficiency: Two nucleotide transitions define the most prevalent mutant allele associated with loss of catalytic activity in Caucasians. American Journal of Human Genetics, 58, 694–702.

    PubMed  CAS  Google Scholar 

  31. Krynetski, E. Y., & Evans, W. E. (1998). Pharmacogenetics of cancer therapy: Getting personal. American Journal of Human Genetics, 63, 11–16.

    Article  PubMed  CAS  Google Scholar 

  32. Evans, W. E., & McLeod, H. L. (2003). Pharmacogenomics–drug disposition, drug targets, and side effects. The New England Journal of Medicine, 348, 538–549.

    Article  PubMed  CAS  Google Scholar 

  33. Weinshilboum, R. (2003). Inheritance and drug response. The New England Journal of Medicine, 348, 529–537.

    Article  PubMed  Google Scholar 

  34. Lennard, L., Lilleyman, J. S., Van Loon, J., & Weinshilboum, R. M. (1990). Genetic variation in response to 6-mercaptopurine for childhood acute lymphoblastic leukaemia. Lancet, 336, 225–229.

    Article  PubMed  CAS  Google Scholar 

  35. Marinaki, A. M., Ansari, A., Duley, J. A., Arenas, M., Sumi, S., & Lewis, C. M., et al. (2004). Adverse drug reactions to azathioprine therapy are associated with polymorphism in the gene encoding inosine triphosphate pyrophosphatase (ITPase). Pharmacogenetics, 14, 181–187.

    Article  PubMed  CAS  Google Scholar 

  36. Stocco, G., Cheok, M. H., Crews, K. R., Dervieux, T., French, D., & Pei, D., et al. (2009). Genetic polymorphism of inosine triphosphate pyrophosphatase is a determinant of mercaptopurine metabolism and toxicity during treatment for acute lymphoblastic leukemia. Clinical Pharmacology and Therapeutics, 85, 164–172.

    Article  PubMed  CAS  Google Scholar 

  37. Van Dieren, J. M., Hansen, B. E., Kuipers, E. J., Nieuwenhuis, E. E., & Van der Woude, C. J. (2007). Meta-analysis: Inosine triphosphate pyrophosphatase polymorphisms and thiopurine toxicity in the treatment of inflammatory bowel disease. Alimentary Pharmacology & Therapeutics, 26, 643–652.

    Article  CAS  Google Scholar 

  38. Lennard, L., Van Loon, J. A., & Weinshilboum, R. M. (1989). Pharmacogenetics of acute azathioprine toxicity: Relationship to thiopurine methyltransferase genetic polymorphism. Clinical Pharmacology and Therapeutics, 46, 149–154.

    Article  PubMed  CAS  Google Scholar 

  39. McBride, K. L., Gilchrist, G. S., Smithson, W. A., Weinshilboum, R. M., & Szumlanski, C. L. (2000). Severe 6-thioguanine-induced marrow aplasia in a child with acute lymphoblastic leukemia and inhibited thiopurine methyltransferase deficiency. Journal of Pediatric Hematology/Oncology, 22(5), 441–445.

    Article  PubMed  CAS  Google Scholar 

  40. Evans, W. E., & Relling, M. V. (1999). Pharmacogenomics: Translating functional genomics into rational therapeutics. Science, 286, 487–491.

    Article  PubMed  CAS  Google Scholar 

  41. Boonsrirat, U., Angsuthum, S., Vannaprasaht, S., Kongpunvijit, J., Hirankarn, N., & Tassaneeyakul, W., et al. (2008). Azathioprine-induced fatal myelosuppression in systemic lupus erythematosus patient carrying TPMT*3C polymorphism. Lupus, 17, 132–134.

    Article  PubMed  CAS  Google Scholar 

  42. Tassaneeyakul, W., Srimarthpirom, S., Reungjui, S., Chansung, K., & Romphruk, A. (2003). Azathioprine-induced fatal myelosuppression in a renal-transplant recipient who carried heterozygous TPMT*1/*3C. Transplantation, 76, 265–266.

    Article  PubMed  Google Scholar 

  43. Gisbert, J. P., Luna, M., Mate, J., Gonzalez-Guijarro, L., Cara, C., & Pajares, J. M. (2006). Choice of azathioprine or 6-mercaptopurine dose based on thiopurine methyltransferase (TPMT) activity to avoid myelosuppression. A prospective study. Hepatogastroenterology, 53, 399–404.

    PubMed  CAS  Google Scholar 

  44. Schmiegelow, K., Al-Modhwahi, I., Andersen, M. K., Behrendtz, M., Forestier, E., & Hasle, H., et al. (2009). Methotrexate/6-mercaptopurine maintenance therapy influences the risk of a second malignant neoplasm after childhood acute lymphoblastic leukemia: Results from the NOPHO ALL-92 study. Blood, 113, 6077–6084.

    Article  PubMed  CAS  Google Scholar 

  45. Relling, M. V., Pui, C. H., Cheng, C., & Evans, W. E. (2006). Thiopurine methyltransferase in acute lymphoblastic leukemia1. Blood, 107, 843–844.

    Article  PubMed  CAS  Google Scholar 

  46. Ansari, A., Elliott, T., Baburajan, B., Mayhead, P., O’Donohue, J., & Chocair, P., et al. (2008). Long-term outcome of using allopurinol co-therapy as a strategy for overcoming thiopurine hepatotoxicity in treating inflammatory bowel disease. Alimentary Pharmacology & Therapeutics, 28, 734–741.

    Article  CAS  Google Scholar 

  47. Gisbert, J. P., Nino, P., Rodrigo, L., Cara, C., & Guijarro, L. G. (2006). Thiopurine methyltransferase (TPMT) activity and adverse effects of azathioprine in inflammatory bowel disease: Long-term follow-up study of 394 patients. The American Journal of Gastroenterology, 101(12), 2769–2776.

    Article  PubMed  CAS  Google Scholar 

  48. Schmiegelow, K., Forestier, E., Kristinsson, J., Soderhall, S., Vettenranta, K., & Weinshilboum, R., et al. (2009). Thiopurine methyltransferase activity is related to the risk of relapse of childhood acute lymphoblastic leukemia: Results from the NOPHO ALL-92 study. Leukemia, 23, 557–564.

    Article  PubMed  CAS  Google Scholar 

  49. Kumagai, K., Hiyama, K., Ishioka, S., Sato, H., Yamanishi, Y., & McLeod, H. L., et al. (2001). Allelotype frequency of the thiopurine methyltransferase (TPMT) gene in Japanese. Pharmacogenetics, 11, 275–278.

    Article  PubMed  CAS  Google Scholar 

  50. Evans, W. E. (2002). Comprehensive assessment of thiopurine S-methyltransferase (TPMT) alleles in three ethnic populations. Journal of Pediatric Hematology/Oncology, 24, 335–336.

    Article  PubMed  Google Scholar 

  51. Schaeffeler, E., Fischer, C., Brockmeier, D., Wernet, D., Moerike, K., & Eichelbaum, M., et al. (2004). Comprehensive analysis of thiopurine S-methyltransferase phenotype-genotype correlation in a large population of German-Caucasians and identification of novel TPMT variants. Pharmacogenetics, 14, 407–417.

    Article  PubMed  CAS  Google Scholar 

  52. Otterness, D., Szumlanski, C., Lennard, L., Klemetsdal, B., Aarbakke, J., & Park-Hah, J. O., et al. (1997). Human thiopurine methyltransferase pharmacogenetics: gene sequence polymorphisms. Clinical Pharmacology and Therapeutics, 62, 60–73.

    Article  PubMed  CAS  Google Scholar 

  53. Relling, M. V., Hancock, M. L., Boyett, J. M., Pui, C. H., & Evans, W. E. (1999). Prognostic importance of 6-mercaptopurine dose intensity in acute lymphoblastic leukemia Blood, 93, 2817–2823.

    PubMed  CAS  Google Scholar 

  54. Davies, H. A., Lennard, L., & Lilleyman, J. S. (1993). Variable mercaptopurine metabolism in children with leukaemia: A problem of non-compliance? British Medical Journal (Clinical Research Ed.), 306, 1239–1240.

    Article  CAS  Google Scholar 

  55. Lennard, L., Welch, J., & Lilleyman, J. S. (1995). Intracellular metabolites of mercaptopurine in children with lymphoblastic leukaemia: A possible indicator of non-compliance? British Journal of Cancer, 72, 1004–1006.

    Article  PubMed  CAS  Google Scholar 

  56. Lennard, L., Keen, D., & Lilleyman, J. S. (1986). Oral 6-mercaptopurine in childhood leukemia: parent drug pharmacokinetics and active metabolite concentrations. Clinical Pharmacology and Therapeutics, 40, 287–292.

    Article  PubMed  CAS  Google Scholar 

  57. Dervieux, T., Medard, Y., Verpillat, P., Guigonis, V., Duval, M., & Lescoeur, B., et al. (2001). Possible implication of thiopurine S-methyltransferase in occurrence of infectious episodes during maintenance therapy for childhood lymphoblastic leukemia with mercaptopurine. Leukemia, 15, 1706–1712.

    PubMed  CAS  Google Scholar 

  58. Lennard, L., Welch, J., & Lilleyman, J. S. (1996). Mercaptopurine in childhood leukaemia: The effects of dose escalation on thioguanine nucleotide metabolites. British Journal of Clinical Pharmacology, 42, 525–527.

    Article  PubMed  CAS  Google Scholar 

  59. McLeod, H. L., Relling, M. V., Liu, Q., Pui, C. H., & Evans, W. E. (1995). Polymorphic ­thiopurine methyltransferase in erythrocytes is indicative of activity in leukemic blasts from children with acute lymphoblastic leukemia. Blood, 85, 1897–1902.

    PubMed  CAS  Google Scholar 

  60. Szumlanski, C. L., Honchel, R., Scott, M. C., & Weinshilboum, R. M. (1992). Human liver thiopurine methyltransferase pharmacogenetics: Biochemical properties, liver-erythrocyte correlation and presence of isozymes. Pharmacogenetics, 2, 148–159.

    Article  PubMed  CAS  Google Scholar 

  61. Van Loon, J. A., Szumlanski, C. L., & Weinshilboum, R. M. (1992). Human kidney thiopurine methyltransferase. Photoaffinity labeling with S-adenosyl-L-methionine. Biochemical Pharmacology, 44, 775–785.

    Article  PubMed  CAS  Google Scholar 

  62. Van Loon, J. A., & Weinshilboum, R. M. (1982). Thiopurine methyltransferase biochemical genetics: human lymphocyte activity. Biochemical Genetics, 20, 637–658.

    Article  PubMed  CAS  Google Scholar 

  63. Lennard, L., Chew, T. S., & Lilleyman, J. S. (2001). Human thiopurine methyltransferase activity varies with red blood cell age. Gut, 52, 539–546.

    CAS  Google Scholar 

  64. Calvo, P. L., Canaparo, R., Baldi, M., Serpe, L., Giaccone, M., & Lerro, P., et al. (2008). Impact of age in phenotype of thiopurine methyltransferase. Digestive and Liver Disease, 40, A55–A56.

    Article  Google Scholar 

  65. McLeod, H. L., Krynetski, E. Y., Wilimas, J. A., & Evans, W. E. (1995). Higher activity of polymorphic thiopurine S-methyltransferase in erythrocytes from neonates compared to adults. Pharmacogenetics, 5, 281–286.

    Article  PubMed  CAS  Google Scholar 

  66. Cheung, S. T., & Allan, R. N. (2003). Mistaken identity: misclassification of TPMT phenotype following blood transfusion. European Journal of Gastroenterology & Hepatology, 15, 1245–1247.

    Article  CAS  Google Scholar 

  67. Stanulla, M., Schaeffeler, E., Flohr, T., Cario, G., Schrauder, A., & Zimmermann, M., et al. (2005). Thiopurine methyltransferase (TPMT) genotype and early treatment response to mercaptopurine in childhood acute lymphoblastic leukemia. The Journal of the American Medical Association, 293, 1485–1489.

    Article  PubMed  CAS  Google Scholar 

  68. von Ahsen, N., Armstrong, V. W., & Oellerich, M. (2004). Rapid, long-range molecular haplotyping of thiopurine S-methyltransferase (TPMT) *3A, *3B, and *3C. Clinical Chemistry, 50, 1528–1534.

    Article  PubMed  CAS  Google Scholar 

  69. Hamdan-Khalil, R., Gala, J. L., Allorge, D., Lo-Guidice, J. M., Horsmans, Y., & Houdret, N., et al. (2005). Identification and functional analysis of two rare allelic variants of the thiopurine S-methyltransferase gene, TPMT*16 and TPMT*19. Biochemical Pharmacology, 69, 525–529.

    Article  PubMed  CAS  Google Scholar 

  70. Hon, Y. Y., Fessing, M. Y., Pui, C. H., Relling, M. V., Krynetski, E. Y., & Evans, W. E. (1999). Polymorphism of the thiopurine S-methyltransferase gene in African Americans. Human Molecular Genetics, 8, 371–376.

    Article  PubMed  CAS  Google Scholar 

  71. Ameyaw, M. M., Collie-Duguid, E. S., Powrie, R. H., Ofori-Adjei, D., & McLeod, H. L. (1999). Thiopurine methyltransferase alleles in British and Ghanaian populations. Human Molecular Genetics, 8, 367–370.

    Article  PubMed  CAS  Google Scholar 

  72. Collie-Duguid, E. S., Pritchard, S. C., Powrie, R. H., Sludden, J., Li, T., & McLeod, H. L. (1999). The frequency and distribution of thiopurine methyltransferase alleles in Caucasian and Asian populations. Pharmacogenetics, 9, 37–42.

    Article  PubMed  CAS  Google Scholar 

  73. Ando, M., Ando, Y., Hasegawa, Y., Sekido, Y., Shimokata, K., & Horibe, K. (2001). Genetic polymorphisms of thiopurine S-methyltransferase and 6- mercaptopurine toxicity in Japanese children with acute lymphoblastic leukaemia. Pharmacogenetics, 11, 269–273.

    Article  PubMed  CAS  Google Scholar 

  74. Schutz, E., von Ahsen, N., & Oellerich, M. (2000). Genotyping of eight thiopurine methyltransferase mutations: three-color multiplexing, “two-color/shared” anchor, and fluorescence-quenching hybridization probe assays based on thermodynamic nearest-neighbor probe design. Clinical Chemistry, 46, 1728–1737.

    PubMed  CAS  Google Scholar 

  75. McDonald, O. G., Krynetski, E. Y., & Evans, W. E. (2002). Molecular haplotyping of genomic DNA for multiple single nucleotide polymorphisms located kilobases apart using long range polymerase chain reaction and intramolecular ligation. Pharmacogenetics, 12, 93–99.

    Article  PubMed  CAS  Google Scholar 

  76. Kaskas, B. A., Louis, E., Hindorf, U., Schaeffeler, E., Deflandre, J., & Graepler, F., et al. (2003). Safe treatment of thiopurine S-methyltransferase deficient Crohn’s disease patients with azathioprine. Gut, 52, 140–142.

    Article  PubMed  CAS  Google Scholar 

  77. Colombel, J. F., Ferrari, N., Debuysere, H., Marteau, P., Gendre, J. P., & Bonaz, B., et al. (2000). Genotypic analysis of thiopurine S-methyltransferase in patients with Crohn’s disease and severe myelosuppression during azathioprine therapy. Gastroenterology, 118, 1025–1030.

    Article  PubMed  CAS  Google Scholar 

  78. Yang, J., Bogni, A., Cheng, C., Bleibel, W. K., Cai, X., & Fan, Y., et al. (2008). Etoposide sensitivity does not predict MLL rearrangements or risk of therapy-related acute myeloid leukemia. Clinical Pharmacology and Therapeutics, 84, 691–697.

    Article  PubMed  CAS  Google Scholar 

  79. Relling, M. V., Hancock, M. L., Rivera, G. K., Sandlund, J. T., Ribeiro, R. C., & Krynetski, E. Y., et al. (1999). Mercaptopurine therapy intolerance and heterozygosity at the thiopurine S-methyltransferase gene locus. Journal of the National Cancer Institute, 91, 2001–2008.

    Article  PubMed  CAS  Google Scholar 

  80. Nygaard, U., Toft, N., & Schmiegelow, K. (2004). Methylated metabolites of 6-mercaptopurine are associated with hepatotoxicity. Clinical Pharmacology and Therapeutics, 75(4), 274–281.

    PubMed  CAS  Google Scholar 

  81. Lennard, L., Richards, S., Cartwright, C. S., Mitchell, C., Lilleyman, J. S., & Vora, A., et al. (2006). The thiopurine methyltransferase genetic polymorphism is associated with thioguanine-related veno-occlusive disease of the liver in children with acute lymphoblastic leukemia. Clinical Pharmacology and Therapeutics, 80, 375–383.

    Article  PubMed  CAS  Google Scholar 

  82. Satti, M. B., Weinbren, K., & Gordon-Smith, E. C. (1982). 6-thioguanine as a cause of toxic veno-occlusive disease of the liver. Journal of Clinical Pathology, 35, 1086–1091.

    Article  PubMed  CAS  Google Scholar 

  83. Gill, R. A., Onstad, G. R., Cardamone, J. M., Maneval, D. C., & Sumner, H. W. (1982). Hepatic veno-occlusive disease caused by 6-thioguanine. Annals of Internal Medicine, 96, 58–60.

    PubMed  CAS  Google Scholar 

  84. Evans, W. E., Hon, Y. Y., Bomgaars, L., Coutre, S., Holdsworth, M., & Janco, R., et al. (2001). Preponderance of thiopurine S-methyltransferase deficiency and heterozygosity among patients intolerant to mercaptopurine or azathioprine. Journal of Clinical Oncology, 19, 2293–2301.

    PubMed  CAS  Google Scholar 

  85. Duley, J. A., Marinaki, A. M., Arenas, M., & Florin, T. H. (2006). Do ITPA and TPMT genotypes predict the development of side effects to AZA? Gut, 55, 1048; author reply 1048–1049.

    PubMed  CAS  Google Scholar 

  86. Trevino, L. R., Shimasaki, N., Yang, W., Panetta, J. C., Cheng, C., & Pei, D., et al. (2009). Germline genetic variation in an organic anion transporter polypeptide associated with methotrexate pharmacokinetics and clinical effects. Journal of Clinical Oncology.

    Google Scholar 

  87. Schmiegelow, K., & Bruunshuus, I. (1990). 6-Thioguanine nucleotide accumulation in red blood cells during maintenance chemotherapy for childhood acute lymphoblastic leukemia, and its relation to leukopenia. Cancer Chemotherapy and Pharmacology, 26, 288–292.

    Article  PubMed  CAS  Google Scholar 

  88. Lennard, L., & Lilleyman, J. S. (1989). Variable mercaptopurine metabolism and treatment outcome in childhood lymphoblastic leukemia. Journal of Clinical Oncology, 7, 1816–1823.

    PubMed  CAS  Google Scholar 

  89. Lennard, L., & Lilleyman, J. S. (1996). Individualizing therapy with 6-mercaptopurine and 6-thioguanine related to the thiopurine methyltransferase genetic polymorphism. Therapeutic Drug Monitoring, 18, 328–334.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Supported by NCI grant CA 21765 and the NIH/NIGMS Pharmacogenetics Research Network and Database (U01 GM61393, and by the American Lebanese Syrian Associated Charities (ALSAC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary V. Relling .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Jones, T.S., Relling, M.V. (2011). Thiopurines. In: Wu, A., Yeo, KT. (eds) Pharmacogenomic Testing in Current Clinical Practice. Molecular and Translational Medicine. Humana Press. https://doi.org/10.1007/978-1-60761-283-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-283-4_7

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-282-7

  • Online ISBN: 978-1-60761-283-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics