Skip to main content

The Diverse Roles of K + Channels in Brain Ischemia

  • Chapter
  • First Online:
New Strategies in Stroke Intervention

Part of the book series: Contemporary Neuroscience ((CNEURO))

  • 755 Accesses

Abstract

K+-selective ion channels are important determinants of neuronal excitability. The activity of three particular K+ channels, Kir6.2, Slo1, and Kv2.1, is implicated in neuroprotection of ischemic brain neurons. Here we review recent studies on the molecular properties, expression, and function of these neuronal K+ channels, their regulation in ischemic neurons, and their potential as drug targets for prophylactic and/or post-event therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dirnagl U, Simon RP, and Hallenbeck JM. Ischemic tolerance and endogenous neuroprotection. Trends Neurosci 26: 248–254, 2003.

    Article  PubMed  CAS  Google Scholar 

  2. Fury M, Marx SO, and Marks AR. Molecular BKology: the study of splicing and dicing. Sci STKE 2002: PE12, 2002.

    Article  Google Scholar 

  3. Yan J, Olsen JV, Park KS, Li W, Bildl W, Schulte U, Aldrich RW, Fakler B, and Trimmer JS. Profiling the phospho-status of the BKca channel alpha subunit in rat brain reveals unexpected patterns and complexity. Mol Cell Proteomics 7: 2188–2198, 2008.

    Article  PubMed  CAS  Google Scholar 

  4. Nichols CG. KATP channels as molecular sensors of cellular metabolism. Nature 440: 470–476, 2006.

    Article  PubMed  CAS  Google Scholar 

  5. Long SB, Tao X, Campbell EB, and MacKinnon R. Atomic structure of a voltage-dependent K+ channel in a lipid membrane-like environment. Nature 450: 376–382, 2007.

    Article  PubMed  CAS  Google Scholar 

  6. Meera P, Wallner M, Song M, and Toro L. Large conductance voltage- and calcium-dependent K+ channel, a distinct member of voltage-dependent ion channels with seven N-terminal transmembrane segments (S0–S6), an extracellular N terminus, and an intracellular (S9–S10) C terminus. Proc Natl Acad Sci USA 94: 14066–14071, 1997.

    Article  PubMed  CAS  Google Scholar 

  7. Salkoff L, Butler A, Ferreira G, and Wei A. High-conductance potassium channels of the SLO family. Nat Rev Neurosci 7: 921–931, 2006.

    Article  PubMed  CAS  Google Scholar 

  8. Inagaki N, Gonoi T, Clement JP, Namba N, Inazawa J, Gonzalez G, Aguilar–Bryan L, Seino S, and Bryan J. Reconstitution of IKATP: an inward rectifier subunit plus the sulfonylurea receptor. Science 270: 1166–1170, 1995.

    Article  PubMed  CAS  Google Scholar 

  9. Butler A, Tsunoda S, McCobb DP, Wei A, and Salkoff L. mSlo, a complex mouse gene encoding “maxi” calcium-activated potassium channels. Science 261: 221–224, 1993.

    Article  PubMed  CAS  Google Scholar 

  10. Frech GC, VanDongen AM, Schuster G, Brown AM, and Joho RH. A novel potassium channel with delayed rectifier properties isolated from rat brain by expression cloning. Nature 340: 642–645, 1989.

    Article  PubMed  CAS  Google Scholar 

  11. Karschin C, Ecke C, Ashcroft FM, and Karschin A. Overlapping distribution of K(ATP) channel-forming Kir6.2 subunit and the sulfonylurea receptor SUR1 in rodent brain. FEBS Lett 401: 59–64, 1997.

    Article  PubMed  CAS  Google Scholar 

  12. Zhou M, Tanaka O, Suzuki M, Sekiguchi M, Takata K, Kawahara K, and Abe H. Localization of pore-forming subunit of the ATP-sensitive K(+)-channel, Kir6.2, in rat brain neurons and glial cells. Brain Res Mol Brain Res 101: 23–32, 2002.

    Article  PubMed  CAS  Google Scholar 

  13. Thomzig A, Laube G, Pruss H, and Veh RW. Pore-forming subunits of K-ATP channels, Kir6.1 and Kir6.2, display prominent differences in regional and cellular distribution in the rat brain. J Comp Neurol 484: 313–330, 2005.

    Article  PubMed  CAS  Google Scholar 

  14. Sun HS, Feng ZP, Barber PA, Buchan AM, and French RJ. Kir6.2-containing ATP-sensitive potassium channels protect cortical neurons from ischemic/anoxic injury in vitro and in vivo. Neurosci 144: 1509–1515, 2007.

    Article  CAS  Google Scholar 

  15. Knaus HG, Schwarzer C, Koch RO, Eberhart A, Kaczorowski GJ, Glossmann H, Wunder F, Pongs O, Garcia ML, and Sperk G. Distribution of high-conductance Ca(2+)-activated K+ channels in rat brain: targeting to axons and nerve terminals. J Neurosci 16: 955–963, 1996.

    PubMed  CAS  Google Scholar 

  16. Misonou H, Menegola M, Buchwalder L, Park EW, Meredith A, Rhodes KJ, Aldrich RW, and Trimmer JS. Immunolocalization of the Ca2+-activated K+ channel Slo1 in axons and nerve terminals of mammalian brain and cultured neurons. J Comp Neurol 496: 289–302, 2006.

    Article  PubMed  CAS  Google Scholar 

  17. Trimmer JS. Immunological identification and characterization of a delayed rectifier K+ channel polypeptide in rat brain. Proc Natl Acad Sci USA 88: 10764–10768, 1991.

    Article  PubMed  CAS  Google Scholar 

  18. Scannevin RH, Murakoshi H, Rhodes KJ, and Trimmer JS. Identification of a cytoplasmic domain important in the polarized expression and clustering of the Kv2.1 K+ channel. J Cell Biol 135: 1619–1632, 1996.

    Article  PubMed  CAS  Google Scholar 

  19. Ljubkovic M, Marinovic J, Fuchs A, Bosnjak ZJ, and Bienengraeber M. Targeted expression of Kir6.2 in mitochondria confers protection against hypoxic stress. J Physiol 577: 17–29, 2006.

    Article  PubMed  CAS  Google Scholar 

  20. Douglas RM, Lai JC, Bian S, Cummins L, Moczydlowski E, and Haddad GG. The calcium-sensitive large-conductance potassium channel (BK/MAXI K) is present in the inner mitochondrial membrane of rat brain. Neurosci 139: 1249–1261, 2006.

    Article  CAS  Google Scholar 

  21. Drain P, Li L, and Wang J. KATP channel inhibition by ATP requires distinct functional domains of the cytoplasmic C terminus of the pore-forming subunit. Proc Natl Acad Sci USA USA 95: 13953–13958, 1998.

    Article  CAS  Google Scholar 

  22. Nichols CG and Lopatin AN. Inward rectifier potassium channels. Annu Rev Physiol 59: 171–191, 1997.

    Article  PubMed  CAS  Google Scholar 

  23. Chapman ML and VanDongen AM. K channel subconductance levels result from heteromeric pore conformations. J Gen Physiol 126: 87–103, 2005.

    Article  PubMed  CAS  Google Scholar 

  24. Klemic KG, Shieh CC, Kirsch GE, and Jones SW. Inactivation of Kv2.1 potassium channels. Biophys J 74: 1779–1789, 1998.

    Article  PubMed  CAS  Google Scholar 

  25. Mohapatra DP and Trimmer JS. The Kv2.1 C terminus can autonomously transfer Kv2.1-like phosphorylation-dependent localization, voltage-dependent gating, and muscarinic modulation to diverse Kv channels. J Neurosci 26: 685–695, 2006.

    Article  PubMed  CAS  Google Scholar 

  26. Du J, Haak LL, Phillips-Tansey E, Russell JT, and McBain CJ. Frequency-dependent regulation of rat hippocampal somato-dendritic excitability by the K+ channel subunit Kv2.1. J Physiol 522(Pt 1): 19–31, 2000.

    Article  PubMed  CAS  Google Scholar 

  27. Murakoshi H and Trimmer JS. Identification of the Kv2.1 K+ channel as a major component of the delayed rectifier K+ current in rat hippocampal neurons. J Neurosci 19: 1728–1735, 1999.

    PubMed  CAS  Google Scholar 

  28. Enkvetchakul D and Nichols CG. Gating mechanism of KATP channels: function fits form. J Gen Physiol 122: 471–480, 2003.

    Article  PubMed  CAS  Google Scholar 

  29. Lin YF, Jan YN, and Jan LY. Regulation of ATP-sensitive potassium channel function by protein kinase A-mediated phosphorylation in transfected HEK293 cells. Embo J 19: 942–955, 2000.

    Article  PubMed  CAS  Google Scholar 

  30. Schubert R and Nelson MT. Protein kinases: tuners of the BKCa channel in smooth muscle. Trends Pharmacol Sci 22: 505–512, 2001.

    Article  PubMed  CAS  Google Scholar 

  31. Lu R, Alioua A, Kumar Y, Eghbali M, Stefani E, and Toro L. MaxiK channel partners: physiological impact. J Physiol 570: 65–72, 2006.

    Article  PubMed  CAS  Google Scholar 

  32. King JT, Lovell PV, Rishniw M, Kotlikoff MI, Zeeman ML, and McCobb DP. Beta2 and beta4 subunits of BK channels confer differential sensitivity to acute modulation by steroid hormones. J Neurophysiol 95: 2878–2888, 2006.

    Article  PubMed  CAS  Google Scholar 

  33. Valverde MA, Rojas P, Amigo J, Cosmelli D, Orio P, Bahamonde MI, Mann GE, Vergara C, and Latorre R. Acute activation of Maxi-K channels (hSlo) by estradiol binding to the beta subunit. Science 285: 1929–1931, 1999.

    Article  PubMed  CAS  Google Scholar 

  34. Lewis A, Peers C, Ashford ML, and Kemp PJ. Hypoxia inhibits human recombinant large conductance, Ca(2+)-activated K(+) (maxi-K) channels by a mechanism which is membrane delimited and Ca(2+) sensitive. J Physiol 540: 771–780, 2002.

    Article  PubMed  CAS  Google Scholar 

  35. Santarelli LC, Wassef R, Heinemann SH, and Hoshi T. Three methionine residues located within the regulator of conductance for K+ (RCK) domains confer oxidative sensitivity to large-conductance Ca2+-activated K+ channels. J Physiol 571: 329–348, 2006.

    Article  PubMed  CAS  Google Scholar 

  36. Tang XD, Xu R, Reynolds MF, Garcia ML, Heinemann SH, and Hoshi T. Haem can bind to and inhibit mammalian calcium-dependent Slo1 BK channels. Nature 425: 531–535, 2003.

    Article  PubMed  CAS  Google Scholar 

  37. Hou S, Xu R, Heinemann SH, and Hoshi T. The RCK1 high-affinity Ca2+ sensor confers carbon monoxide sensitivity to Slo1 BK channels. Proc Natl Acad Sci USA 105: 4039–4043, 2008.

    Article  PubMed  CAS  Google Scholar 

  38. Misonou H, Mohapatra DP, Park EW, Leung V, Zhen D, Misonou K, Anderson AE, and Trimmer JS. Regulation of ion channel localization and phosphorylation by neuronal activity. Nat Neurosci 7: 711–718, 2004.

    Article  PubMed  CAS  Google Scholar 

  39. Park K-S, Mohapatra DP, Misonou H, and Trimmer JS. Graded regulation of the Kv2.1 potassium channel by variable phosphorylation. Science 313: 976–979, 2006.

    Article  PubMed  CAS  Google Scholar 

  40. Misonou H, Menegola M, Mohapatra DP, Guy LK, Park KS, and Trimmer JS. Bidirectional activity-dependent regulation of neuronal ion channel phosphorylation. J Neurosci 26: 13505–13514, 2006.

    Article  PubMed  CAS  Google Scholar 

  41. Miki T, Liss B, Minami K, Shiuchi T, Saraya A, Kashima Y, Horiuchi M, Ashcroft F, Minokoshi Y, Roeper J, and Seino S. ATP-sensitive K+ channels in the hypothalamus are essential for the maintenance of glucose homeostasis. Nat Neurosci 4: 507–512, 2001.

    PubMed  CAS  Google Scholar 

  42. Gu N, Vervaeke K, and Storm JF. BK potassium channels facilitate high-frequency firing and cause early spike frequency adaptation in rat CA1 hippocampal pyramidal cells. J Physiol 580: 859–882, 2007.

    Article  PubMed  CAS  Google Scholar 

  43. Bean BP. The action potential in mammalian central neurons. Nat Rev Neurosci 8: 451–465, 2007.

    Article  PubMed  CAS  Google Scholar 

  44. Sausbier M, Hu H, Arntz C, Feil S, Kamm S, Adelsberger H, Sausbier U, Sailer CA, Feil R, Hofmann F, Korth M, Shipston MJ, Knaus HG, Wolfer DP, Pedroarena CM, Storm JF, and Ruth P. Cerebellar ataxia and Purkinje cell dysfunction caused by Ca2+-activated K+ channel deficiency. Proc Natl Acad Sci USA 101: 9474–9478, 2004.

    Article  PubMed  CAS  Google Scholar 

  45. Hu H, Shao LR, Chavoshy S, Gu N, Trieb M, Behrens R, Laake P, Pongs O, Knaus HG, Ottersen OP, and Storm JF. Presynaptic Ca2+-activated K+ channels in glutamatergic hippocampal terminals and their role in spike repolarization and regulation of transmitter release. J Neurosci 21: 9585–9597, 2001.

    PubMed  CAS  Google Scholar 

  46. VanDongen AM, Frech GC, Drewe JA, Joho RH, and Brown AM. Alteration and restoration of K+ channel function by deletions at the N- and C-termini. Neuron 5: 433–443, 1990.

    Article  PubMed  CAS  Google Scholar 

  47. Yamada K, Ji JJ, Yuan H, Miki T, Sato S, Horimoto N, Shimizu T, Seino S, and Inagaki N. Protective role of ATP-sensitive potassium channels in hypoxia-induced generalized seizure. Science 292: 1543–1546, 2001.

    Article  PubMed  CAS  Google Scholar 

  48. Fujimura N, Tanaka E, Yamamoto S, Shigemori M, and Higashi H. Contribution of ATP-sensitive potassium channels to hypoxic hyperpolarization in rat hippocampal CA1 neurons in vitro. J Neurophysiol 77: 378–385, 1997.

    PubMed  CAS  Google Scholar 

  49. Sun HS, Feng ZP, Miki T, Seino S, and French RJ. Enhanced neuronal damage after ischemic insults in mice lacking Kir6.2-containing ATP-sensitive K+ channels. J Neurophysiol 95: 2590–2601, 2006.

    Article  PubMed  CAS  Google Scholar 

  50. Heron-Milhavet L, Xue-Jun Y, Vannucci SJ, Wood TL, Willing LB, Stannard B, Hernandez–Sanchez C, Mobbs C, Virsolvy A, and LeRoith D. Protection against hypoxic-ischemic injury in transgenic mice overexpressing Kir6.2 channel pore in forebrain. Mol Cell Neurosci 25: 585–593, 2004.

    Article  PubMed  CAS  Google Scholar 

  51. Jabaudon D, Scanziani M, Gahwiler BH, and Gerber U. Acute decrease in net glutamate uptake during energy deprivation. Proc Natl Acad Sci USA 97: 5610–5615, 2000.

    Article  PubMed  CAS  Google Scholar 

  52. Rossi DJ, Brady JD, and Mohr C. Astrocyte metabolism and signaling during brain ischemia. Nat Neurosci 10: 1377–1386, 2007.

    Article  PubMed  CAS  Google Scholar 

  53. Runden-Pran E, Haug FM, Storm JF, and Ottersen OP. BK channel activity determines the extent of cell degeneration after oxygen and glucose deprivation: a study in organotypical hippocampal slice cultures. Neurosci 112: 277–288, 2002.

    Article  CAS  Google Scholar 

  54. Gong LW, Gao TM, Huang H, Zhuang ZY, and Tong Z. Transient forebrain ischemia induces persistent hyperactivity of large conductance Ca2+-activated potassium channels via oxidation modulation in rat hippocampal CA1 pyramidal neurons. Eur J Neurosci 15: 779–783, 2002.

    Article  PubMed  Google Scholar 

  55. Kulik A, Brockhaus J, Pedarzani P, and Ballanyi K. Chemical anoxia activates ATP-sensitive and blocks Ca(2+)-dependent K(+) channels in rat dorsal vagal neurons in situ. Neurosci 110: 541–554, 2002.

    Article  CAS  Google Scholar 

  56. Meredith AL, Thorneloe KS, Werner ME, Nelson MT, and Aldrich RW. Overactive bladder and incontinence in the absence of the BK large conductance Ca2+-activated K+ channel. J Biol Chem 279: 36746–36752, 2004.

    Article  PubMed  CAS  Google Scholar 

  57. Misonou H, Mohapatra DP, Menegola M, and Trimmer JS. Calcium- and metabolic state-dependent modulation of the voltage-dependent Kv2.1 channel regulates neuronal excitability in response to ischemia. J Neurosci 25: 11184–11193, 2005.

    Article  PubMed  CAS  Google Scholar 

  58. Aguilar-Bryan L, Nichols CG, Wechsler SW, Clement JPt, Boyd AE, 3rd, Gonzalez G, Herrera-Sosa H, Nguy K, Bryan J, and Nelson DA. Cloning of the beta cell high-affinity sulfonylurea receptor: a regulator of insulin secretion. Science 268: 423–426, 1995.

    Article  PubMed  CAS  Google Scholar 

  59. Bryan J, Vila-Carriles WH, Zhao G, Babenko AP, and Aguilar-Bryan L. Toward linking structure with function in ATP-sensitive K+ channels. Diabetes 53(Suppl 3): S104–S112, 2004.

    Article  PubMed  CAS  Google Scholar 

  60. Kaczorowski GJ and Garcia ML. Pharmacology of voltage-gated and calcium-activated potassium channels. Curr Opin Chem Biol 3: 448–458, 1999.

    Article  PubMed  CAS  Google Scholar 

  61. Sanchez M and McManus OB. Paxilline inhibition of the alpha-subunit of the high-conductance calcium-activated potassium channel. Neuropharm 35: 963–968, 1996.

    Article  CAS  Google Scholar 

  62. Hu S and Kim HS. On the mechanism of the differential effects of NS004 and NS1608 in smooth muscle cells from guinea pig bladder. Eur J Pharmacol 318: 461–468, 1996.

    Article  PubMed  CAS  Google Scholar 

  63. Strobaek D, Christophersen P, Holm NR, Moldt P, Ahring PK, Johansen TE, and Olesen SP. Modulation of the Ca(2+)-dependent K+ channel, hslo, by the substituted diphenylurea NS 1608, paxilline and internal Ca2+. Neuropharm 35: 903–914, 1996.

    Article  CAS  Google Scholar 

  64. Gribkoff VK, Starrett JE Jr., Dworetzky SI, Hewawasam P, Boissard CG, Cook DA, Frantz SW, Heman K, Hibbard JR, Huston K, Johnson G, Krishnan BS, Kinney GG, Lombardo LA, Meanwell NA, Molinoff PB, Myers RA, Moon SL, Ortiz A, Pajor L, Pieschl RL, Post-Munson DJ, Signor LJ, Srinivas N, Taber MT, Thalody G, Trojnacki JT, Wiener H, Yeleswaram K, and Yeola SW. Targeting acute ischemic stroke with a calcium-sensitive opener of maxi-K potassium channels. Nat Med 7: 471–477, 2001.

    Article  PubMed  CAS  Google Scholar 

  65. Huang PT, Shiau YS, and Lou KL. The interaction of spider gating modifier peptides with voltage-gated potassium channels. Toxicon 49: 285–292, 2007.

    Article  PubMed  CAS  Google Scholar 

  66. Kunte H, Schmidt S, Eliasziw M, Del Zoppo GJ, Simard JM, Masuhr F, Weih M, and Dirnagl U. Sulfonylureas improve outcome in patients with type 2 diabetes and acute ischemic stroke. Stroke 38: 2526–2530, 2007.

    Article  PubMed  CAS  Google Scholar 

  67. Jensen BS. BMS-204352: a potassium channel opener developed for the treatment of stroke. CNS Drug Rev 8: 353–360, 2002.

    Article  PubMed  CAS  Google Scholar 

  68. Yu SP, Yeh CH, Sensi SL, Gwag BJ, Canzoniero LM, Farhangrazi ZS, Ying HS, Tian M, Dugan LL, and Choi DW. Mediation of neuronal apoptosis by enhancement of outward potassium current. Science 278: 114–117, 1997.

    Article  PubMed  CAS  Google Scholar 

  69. Pal S, Hartnett KA, Nerbonne JM, Levitan ES, and Aizenman E. Mediation of neuronal apoptosis by Kv2.1-encoded potassium channels. J Neurosci 23: 4798–4802, 2003.

    PubMed  CAS  Google Scholar 

  70. Wei L, Yu SP, Gottron F, Snider BJ, Zipfel GJ, and Choi DW. Potassium channel blockers attenuate hypoxia- and ischemia-induced neuronal death in vitro and in vivo. Stroke 34: 1281–1286, 2003.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Work from our laboratories cited above was supported by NIH (NS34383 and NS42225) and AHA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroaki Misonou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Misonou, H., Trimmer, J.S. (2009). The Diverse Roles of K + Channels in Brain Ischemia . In: Annunziato, L. (eds) New Strategies in Stroke Intervention. Contemporary Neuroscience. Humana Press. https://doi.org/10.1007/978-1-60761-280-3_12

Download citation

Publish with us

Policies and ethics