Skip to main content

Kinin Receptors and ACE Inhibitors: An Interrelationship

  • Chapter
  • First Online:
Renin Angiotensin System and Cardiovascular Disease

Part of the book series: Contemporary Cardiology ((CONCARD))

  • 1012 Accesses

Abstract

The beneficial effects of angiotensin I-converting enzyme (ACE) inhibitors are due in part to augmenting the actions of bradykinin (BK) and Lys-BK on their receptors (R). They inhibit kinin inactivation and thereby stimulate the release of mediators such as prostaglandins, nitric oxide (NO), and others. In addition to inhibiting an enzyme, ACE inhibitors affect BK Rs as allosteric effectors in cultured cells, such as human endothelial cells. ACE inhibitors can potentiate BK and ACE-resistant BK analog’s actions on B2 Rs. They elevate arachidonic acid and NO release as indirect allosteric enhancers acting on a heterodimer formed by human ACE and B2 R. This has been shown by co-immunoprecipitation, immunohistochemistry and fluorescence resonance energy transfer (FRET). After carboxypeptidase N or M removes the C-terminal Arg of kinins, the resulting des-Arg9-BK and des-Arg10-Lys1-BK are inactive on B2 Rs, but are agonists of B1 Rs. Activation of this R leads to prolonged release of NO, synthesized by iNOS. ACE inhibitors are also agonists of the B1 R at a Zn-binding sequence of this heptahelical G protein-coupled R. The site of activation is different from that of the orthosteric peptide ligands; it is on the extracellular loop 2 at residues 195–199. Thus, ACE inhibitors act as direct allosteric agonists. B1 Rs are present mainly in endothelial and other cells after an inflammatory process or induced by cytokines, which also bring about iNOS expression. While constitutively expressed eNOS activation via B2 R results in a short burst of NO, the longer lasting NO release initiated by peptide or ACE inhibitor ligands of the B1R may help to alleviate some detrimental effects in the failing heart.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Erdös, E. G., and Yang, H. Y. T. (1967) An enzyme in microsomal fraction of kidney that inactivates bradykinin, Life Sci 6, 569–574.

    Article  PubMed  Google Scholar 

  2. Yang, H. Y., Erdös, E. G., and Levin, Y. (1971) Characterization of a dipeptide hydrolase (kininase II: angiotensin I converting enzyme), J Pharmacol Exp Ther 177, 291–300.

    CAS  PubMed  Google Scholar 

  3. Yang, H. Y. T., and Erdös, E. G. (1967) Second kininase in human blood plasma, Nature 215, 1402–1403.

    Article  CAS  PubMed  Google Scholar 

  4. Yang, H. Y. T., Erdös, E. G., and Levin, Y. (1970) A dipeptidyl carboxypeptidase that converts angiotensin I and inactivates bradykinin, Biochim. Biophys. Acta 214, 374–376.

    CAS  PubMed  Google Scholar 

  5. Skeggs, L. T., Jr., Kahn, J. R., and Shumway, N. P. (1956) The preparation and function of the hypertensin-converting enzyme, J Exp Med 103, 295–299.

    Article  CAS  PubMed  Google Scholar 

  6. Carretero, O. A. (2005) Novel mechanism of action of ACE and its inhibitors, Am J Physiol Heart Circ Physiol 289, H1796–H1797.

    Article  CAS  PubMed  Google Scholar 

  7. Peng, H., Carretero, O. A., Vuljaj, N., Liao, T. D., Motivala, A., Peterson, E. L., and Rhaleb, N. E. (2005) Angiotensin-converting enzyme inhibitors: a new mechanism of action, Circulation 112, 2436–2445.

    Article  CAS  PubMed  Google Scholar 

  8. Gavras, H. P., Faxon, D. P., Berkoben, J., Brunner, H. R., and Ryan, T. J. (1978) Angiotensin converting enzyme inhibition in patients with congestive heart failure, Circulation 58, 770–776.

    CAS  PubMed  Google Scholar 

  9. Pfeffer, J. M., Pfeffer, M. A., Mirsky, I., and Braunwald, E. (1982) Regression of left ventricular hypertrophy and prevention of left ventricular dysfunction by captopril in the spontaneously hypertensive rat, Proc Natl Acad Sci USA 79, 3310–3314.

    Article  CAS  PubMed  Google Scholar 

  10. Solomon, S. D., Rice, M. M., Jablonski, K. A., Jose, P., Domanski, M., Sabatine, M., Gersh, B. J., Rouleau, J., Pfeffer, M. A., and Braunwald, E. (2006) Renal function and effectiveness of angiotensin-converting enzyme inhibitor therapy in patients with chronic stable coronary disease in the Prevention of Events with ACE inhibition (PEACE) trial, Circulation 114, 26–31.

    Article  CAS  PubMed  Google Scholar 

  11. Pfeffer, M. A., and Frohlich, E. D. (2006) Improvements in clinical outcomes with the use of angiotensin converting enzyme inhibitors: cross-fertilization between clinical and basic investigation, Am J Physiol Heart Circ Physiol 291: H2021–2025.

    Google Scholar 

  12. Yusuf, S., Sleight, P., Pogue, J., Bosch, J., Davies, R., and Dagenais, G. (2000) Effects of an angiotensin-converting-enzyme inhibitor, ramipril, on cardiovascular events in high-risk patients. The Heart Outcomes Prevention Evaluation Study Investigators, N Engl J Med 342, 145–153.

    Article  CAS  PubMed  Google Scholar 

  13. Hecker, M., Porsti, I., Bara, A. T., and Busse, R. (1994) Potentiation by ACE inhibitors of the dilator response to bradykinin in the coronary microcirculation: interaction at the receptor level, Br J Pharmacol 111, 238–244.

    CAS  PubMed  Google Scholar 

  14. Auch-Schwelk, W., Bossaller, C., Claus, M., Graf, K., Grafe, M., and Fleck, E. (1993) ACE inhibitors are endothelium dependent vasodilators of coronary arteries during submaximal stimulation with bradykinin, Cardiovasc Res 27, 312–317.

    Article  CAS  PubMed  Google Scholar 

  15. Fleming, I., Kohlstedt, K., and Busse, R. (2005) New fACEs to the renin-angiotensin system, Physiology (Bethesda) 20, 91–95.

    CAS  Google Scholar 

  16. Erdös, E. G. (2006) The ACE and I: how ACE inhibitors came to be, Faseb J 20, 1034–1038.

    Article  PubMed  CAS  Google Scholar 

  17. Erdös, E. G., Deddish, P. A., and Marcic, B. M. (1999) Potentiation of bradykinin actions by ACE inhibitors, Trends Endocrinol Metab 10, 223–229.

    Article  PubMed  Google Scholar 

  18. Skidgel, R. A., Stanisavljevic, S., and Erdös, E. G. (2006) Kinin- and angiotensin-converting enzyme (ACE) inhibitor-mediated nitric oxide production in endothelial cells, Biol Chem 387, 159–165.

    Article  CAS  PubMed  Google Scholar 

  19. Regoli, D., and Barabe, J. (1980) Pharmacology of bradykinin and related kinins, Pharmacol Rev 32, 1–46.

    CAS  PubMed  Google Scholar 

  20. Zhang, X., Tan, F., Zhang, Y., and Skidgel, R. A. (2008) Carboxypeptidase M and kinin B1 receptors interact to facilitate efficient B1 signaling from B2 agonists, J Biol Chem 283, 7994–8004.

    Article  CAS  PubMed  Google Scholar 

  21. Skidgel, R. A. (1988) Basic carboxypeptidases: regulators of peptide hormone activity, Trends Pharmacol Sci 9, 299–304.

    Article  CAS  PubMed  Google Scholar 

  22. Skidgel, R. A., and Erdös, E. G. (2007) Structure and function of human plasma carboxypeptidase N, the anaphylatoxin inactivator, Int Immunopharmacol 7, 1888–1899.

    Article  CAS  PubMed  Google Scholar 

  23. Ignjatovic, T., Stanisavljevic, S., Brovkovych, V., Skidgel, R. A., and Erdös, E. G. (2004) Kinin B1 receptors stimulate nitric oxide production in endothelial cells: signaling pathways activated by angiotensin I-converting enzyme inhibitors and peptide ligands, Mol Pharmacol 66, 1310–1316.

    Article  CAS  PubMed  Google Scholar 

  24. Ignjatovic, T., Stanisavljevic, S., Brovkovych, V., Tan, F., Skidgel, R. A., and Erdös, E. G. (2006) ACE inhibitors directly activate bradykinin B1 receptors to release NO, in Renin-Angiotensin-Aldosterone System (Frohlich, E. D., and Re, R. N., Eds.), pp. 163–176, Springer Science + Business Media, New York.

    Google Scholar 

  25. Ignjatovic, T., Tan, F., Brovkovych, V., Skidgel, R. A., and Erdös, E. G. (2002) Novel mode of action of angiotensin I converting enzyme inhibitors. Direct activation of bradykinin B1 receptor, J Biol Chem 277, 16847–16852.

    Article  CAS  PubMed  Google Scholar 

  26. Leeb-Lundberg, L. M., Marceau, F., Muller-Esterl, W., Pettibone, D. J., and Zuraw, B. L. (2005) International union of pharmacology. XLV. Classification of the kinin receptor family: from molecular mechanisms to pathophysiological consequences, Pharmacol Rev 57, 27–77.

    Article  CAS  PubMed  Google Scholar 

  27. Stanisavljevic, S., Ignjatovic, T., Deddish, P. A., Brovkovych, V., Zhang, K., Erdös, E. G., and Skidgel, R. A. (2006) Angiotensin I-converting enzyme inhibitors block protein kinase C epsilon by activating bradykinin B1 receptors in human endothelial cells, J Pharmacol Exp Ther 316, 1153–1158.

    Article  CAS  PubMed  Google Scholar 

  28. Simpson, P. B., Woollacott, A. J., Hill, R. G., and Seabrook, G. R. (2000) Functional characterization of bradykinin analogues on recombinant human bradykinin B(1) and B(2) receptors, Eur J Pharmacol 392, 1–9.

    Article  CAS  PubMed  Google Scholar 

  29. Zubakova, R., Gille, A., Faussner, A., and Hilgenfeldt, U. (2008) Ca2+ signalling of kinins in cells expressing rat, mouse and human B1/B2-receptor, Int Immunopharmacol 8, 276–281.

    Article  CAS  PubMed  Google Scholar 

  30. Corvol, P., Eyries, M., and Soubrier, F. (2004) Peptidyl-dipeptidase A/angiotensin I-converting enzyme, in Handbook of Proteolytic Enzymes (Barrett, A. J., Rawlings, N. D., and Woessner, J. F., Eds.) 2nd ed., pp. 332–346, Academic Press, San Diego, CA.

    Google Scholar 

  31. Donnini, S., Solito, R., Giachetti, A., Granger, H. J., Ziche, M., and Morbidelli, L. (2006) Fibroblast growth factor-2 mediates Angiotensin-converting enzyme inhibitor-induced angiogenesis in coronary endothelium, J Pharmacol Exp Ther 319, 515–522.

    Article  CAS  PubMed  Google Scholar 

  32. McMurray, J. J., Pfeffer, M. A., Swedberg, K., and Dzau, V. J. (2004) Which inhibitor of the renin-angiotensin system should be used in chronic heart failure and acute myocardial infarction? Circulation 110, 3281–3288.

    Article  PubMed  Google Scholar 

  33. Goldspink, P. H., Montgomery, D. E., Walker, L. A., Urboniene, D., McKinney, R. D., Geenen, D. L., Solaro, R. J., and Buttrick, P. M. (2004) Protein kinase Cepsilon overexpression alters myofilament properties and composition during the progression of heart failure, Circ Res 95, 424–432.

    Article  CAS  PubMed  Google Scholar 

  34. Sangsree, S., Brovkovych, V., Minshall, R. D., and Skidgel, R. A. (2003) Kininase I-type carboxypeptidases enhance nitric oxide production in endothelial cells by generating bradykinin B1 receptor agonists, Am J Physiol Heart Circ Physiol 284, H1959–H1968.

    CAS  PubMed  Google Scholar 

  35. Reverter, D., Maskos, K., Tan, F., Skidgel, R. A., and Bode, W. (2004) Crystal structure of human carboxypeptidase M, a membrane-bound enzyme that regulates peptide hormone activity, J Mol Biol 338, 257–269.

    Article  CAS  PubMed  Google Scholar 

  36. Skidgel, R. A. (2004) Carboxypeptidase M, in Handbook of Proteolytic Enzymes (Barrett, A. J., Rawlings, N. D., and Woessner, J. F., Eds.) 2nd ed., pp. 851–854, Elsevier Academic Press, San Diego.

    Google Scholar 

  37. Skidgel, R. A., and Erdös, E. G. (1998) Cellular carboxypeptidases, Immunol Rev 161, 129–141.

    Article  CAS  PubMed  Google Scholar 

  38. Odya, C. E., and Goodfriend, T. L. (1979) Bradykinin Receptors, in Bradykinin, Kallidin and Kallikrein (Erdös, E. G., Ed.), pp 287–300, Springer-Verlag, Heidelberg, Germany.

    Google Scholar 

  39. Roberts, R. A., and Gullick, W. J. (1990) Bradykinin receptors undergo ligand-induced desensitization, Biochemistry 29, 1975–1979.

    Article  CAS  PubMed  Google Scholar 

  40. Marcic, B., Deddish, P. A., Skidgel, R. A., Erdös, E. G., Minshall, R. D., and Tan, F. (2000) Replacement of the transmembrane anchor in angiotensin I-converting enzyme (ACE) with a glycosylphosphatidylinositol tail affects activation of the B2 bradykinin receptor by ACE inhibitors, J Biol Chem 275, 16110–16118.

    Article  CAS  PubMed  Google Scholar 

  41. Odya, C. E., Levin, Y., Erdös, E. G., and Robinson, C. J. (1978) Soluble dextran complexes of kallikrein. Bradykinin and enzyme inhibitors, Biochem Pharmacol 27, 173–179.

    Article  CAS  PubMed  Google Scholar 

  42. Chen, Z., Deddish, P. A., Minshall, R. D., Becker, R. P., Erdös, E. G., and Tan, F. (2006) Human ACE and bradykinin B2 receptors form a complex at the plasma membrane, FASEB J 20, 2261–2270.

    Article  CAS  PubMed  Google Scholar 

  43. Drapeau, G., Rhaleb, N. E., Dion, S., Jukic, D., and Regoli, D. (1988) [Phe8 psi(CH2-NH)Arg9]bradykinin, a B2 receptor selective agonist which is not broken down by either kininase I or kininase II, Eur J Pharmacol 155, 193–195.

    Article  CAS  PubMed  Google Scholar 

  44. Natesh, R., Schwager, S. L., Sturrock, E. D., and Acharya, K. R. (2003) Crystal structure of the human angiotensin-converting enzyme-lisinopril complex, Nature 421, 551–554.

    Article  CAS  PubMed  Google Scholar 

  45. Erdös, E. G., and Deddish, P. A. (2002) The kinin system: suggestions to broaden some prevailing concepts, Int Immunopharmacol 2, 1741–1746.

    Article  PubMed  Google Scholar 

  46. Minshall, R. D., Erdös, E. G., and Vogel, S. M. (1997) Angiotensin I-converting enzyme inhibitors potentiate bradykinin’s inotropic effects independently of blocking its inactivation, Am J Cardiol 80, 132A-136A.

    Article  CAS  PubMed  Google Scholar 

  47. Marcic, B., Deddish, P. A., Jackman, H. L., and Erdös, E. G. (1999) Enhancement of bradykinin and resensitization of its B2 receptor, Hypertension 33, 835–843.

    PubMed  Google Scholar 

  48. Marcic, B. M., and Erdös, E. G. (2000) Protein kinase C and phosphatase inhibitors block the ability of angiotensin I-converting enzyme inhibitors to resensitize the receptor to bradykinin without altering the primary effects of bradykinin, J Pharmacol Exp Ther 294, 605–612.

    CAS  PubMed  Google Scholar 

  49. Koch, M., Bonaventura, K., Spillmann, F., Dendorfer, A., Schultheiss, H. P., and Tschope, C. (2008) Attenuation of left ventricular dysfunction by an ACE inhibitor after myocardial infarction in a kininogen-deficient rat model, Biol Chem 389, 719–723.

    Article  CAS  PubMed  Google Scholar 

  50. Chen, Z., Tan, F., Erdös, E. G., and Deddish, P. A. (2005) Hydrolysis of angiotensin peptides by human angiotensin I-converting enzyme and the resensitization of B2 kinin receptors, Hypertension 46, 1368–1373.

    Article  CAS  PubMed  Google Scholar 

  51. Ferreira, S. H., Bartelt, D. C., and Greene, L. J. (1970) Isolation of bradykinin-potentiating peptides from Bothrops jararaca venom, Biochemistry 9, 2583–2593.

    Article  CAS  PubMed  Google Scholar 

  52. Gavras, H., Brunner, H. R., Laragh, J. H., Sealey, J. E., Gavras, I., and Vukovich, R. A. (1974) An angiotensin converting-enzyme inhibitor to identify and treat vasoconstrictor and volume factors in hypertensive patients, N Engl J Med 291, 817–821.

    Article  CAS  PubMed  Google Scholar 

  53. Vogel, R., Werle, E., and Zickgraf-Rudel, G. (1970) Current aspects of kinin research. I. Potentiation and blocking of biological kinin activity, Z Klin Chem Klin Biochem 8, 177–185.

    CAS  PubMed  Google Scholar 

  54. Mueller, S., Gothe, R., Siems, W. D., Vietinghoff, G., Paegelow, I., and Reissmann, S. (2005) Potentiation of bradykinin actions by analogues of the bradykinin potentiating nonapeptide BPP9alpha, Peptides 26, 1235–1247.

    Article  CAS  PubMed  Google Scholar 

  55. Minshall, R. D., Nedumgottil, S. J., Igic, R., Erdös, E. G., and Rabito, S. F. (2000) Potentiation of the effects of bradykinin on its receptor in the isolated guinea pig ileum, Peptides 21, 1257–1264.

    Article  CAS  PubMed  Google Scholar 

  56. Blaukat, A., Pizard, A., Breit, A., Wernstedt, C., Alhenc-Gelas, F., Muller-Esterl, W., and Dikic, I. (2001) Determination of bradykinin B2 receptor in vivo phosphorylation sites and their role in receptor function, J Biol Chem 276, 40431–40440.

    Article  CAS  PubMed  Google Scholar 

  57. Erdös, E. G., and Marcic, B. M. (2001) Kinins, receptors, kininases and inhibitors–where did they lead us? Biol Chem 382, 43–47.

    Article  PubMed  Google Scholar 

  58. Minshall, R. D., Tan, F., Nakamura, F., Rabito, S. F., Becker, R. P., Marcic, B., and Erdös, E. G. (1997) Potentiation of the actions of bradykinin by angiotensin I converting enzyme (ACE) inhibitors. The role of expressed human bradykinin B2 receptors and ACE in CHO cells, Circul. Res. 81, 848–856.

    CAS  Google Scholar 

  59. Michineau, S., Alhenc-Gelas, F., and Rajerison, R. M. (2006) Human bradykinin B2 receptor sialylation and N-glycosylation participate with disulfide bonding in surface receptor dimerization, Biochemistry 45, 2699–2707.

    Article  CAS  PubMed  Google Scholar 

  60. Deddish, P. A., Wang, J., Michel, B., Morris, P. W., Davidson, N. O., Skidgel, R. A., and Erdös, E. G. (1994) Naturally occurring active N-domain of human angiotensin I-converting enzyme, Proc Natl Acad Sci USA 91, 7807–7811.

    Article  CAS  PubMed  Google Scholar 

  61. Redublo Quinto, B. M., Camargo de Andrade, M. C., Ronchi, F. A., Santos, E. L., Alves Correa, S. A., Shimuta, S. I., Pesquero, J. B., Mortara, R. A., and Casarini, D. E. (2008) Expression of angiotensin I-converting enzymes and bradykinin B2 receptors in mouse inner medullary-collecting duct cells, Int Immunopharmacol 8, 254–260.

    Article  CAS  PubMed  Google Scholar 

  62. Fernandes, F. B., Plavnik, F. L., Teixeira, A. M., Christofalo, D. M., Ajzen, S. A., Higa, E. M., Ronchi, F. A., Sesso, R. C., and Casarini, D. E. (2008) Association of urinary N-domain Angiotensin I-converting enzyme with plasma inflammatory markers and endothelial function, Mol Med 14, 429–435.

    Article  CAS  PubMed  Google Scholar 

  63. Skidgel, R. A., and Erdös, E. G. (1993) Biochemistry of angiotensin converting enzyme, in The Renin-Angiotensin System. (Robertson, J. I. S., and Nicholls, M. G., Eds.), pp 10.11–10.10, Gower Medical Publishers, London, England.

    Google Scholar 

  64. Balyasnikova, I. V., Skirgello, O. E., Binevski, P. V., Nesterovitch, A. B., Albrecht, R. F., 2nd, Kost, O. A., and Danilov, S. M. (2007) Monoclonal Antibodies 1G12 and 6A12 to the N-domain of human angiotensin-converting enzyme: fine epitope mapping and antibody-based detection of ACE inhibitors in human blood, J Proteome Res 6, 1580–1594.

    Article  CAS  PubMed  Google Scholar 

  65. Binevski, P. V., Sizova, E. A., Pozdnev, V. F., and Kost, O. A. (2003) Evidence for the negative cooperativity of the two active sites within bovine somatic angiotensin-converting enzyme, FEBS Lett 550, 84–88.

    Article  CAS  PubMed  Google Scholar 

  66. Watermeyer, J. M., Sewell, B. T., Schwager, S. L., Natesh, R., Corradi, H. R., Acharya, K. R., and Sturrock, E. D. (2006) Structure of testis ACE glycosylation mutants and evidence for conserved domain movement, Biochemistry 45, 12654–12663.

    Article  CAS  PubMed  Google Scholar 

  67. Zhang, Y., Brovkovych, V., Brovkovych, S., Tan, F., Lee, B. S., Sharma, T., and Skidgel, R. A. (2007) Dynamic receptor-dependent activation of inducible nitric-oxide synthase by ERK-mediated phosphorylation of Ser745, J Biol Chem 282, 32453–32461.

    Article  CAS  PubMed  Google Scholar 

  68. Duka, A., Duka, I., Gao, G., Shenouda, S., Gavras, I., and Gavras, H. (2006) Role of bradykinin B1 and B2 receptors in normal blood pressure regulation, Am J Physiol Endocrinol Metab 291, E268–E274.

    Article  CAS  PubMed  Google Scholar 

  69. Xu, J., Carretero, O. A., Sun, Y., Shesely, E. G., Rhaleb, N. E., Liu, Y. H., Liao, T. D., Yang, J. J., Bader, M., and Yang, X. P. (2005) Role of the B1 kinin receptor in the regulation of cardiac function and remodeling after myocardial infarction, Hypertension 45, 747–753.

    Article  CAS  PubMed  Google Scholar 

  70. Skidgel, R. A., and Erdös, E. G. (2004) Lysine carboxypeptidase, in Handbook of Proteolytic Enzymes (Barret, A. J., Rawlings, N. D., and Woessner, J.F Eds.) 2nd ed., pp. 837–839, Academic Press, San Diego, CA.

    Google Scholar 

  71. Shaltout, H. A., Westwood, B. M., Averill, D. B., Ferrario, C. M., Figueroa, J. P., Diz, D. I., Rose, J. C., and Chappell, M. C. (2007) Angiotensin metabolism in renal proximal tubules, urine, and serum of sheep: evidence for ACE2-dependent processing of angiotensin II, Am J Physiol Renal Physiol 292, F82–F91.

    Article  CAS  PubMed  Google Scholar 

  72. Tan, F., and Erdös, E. G. (2004) Lysosomal Pro-X carboxypeptidase, in Handbook of Proteolytic Enzymes, (Barrett, A. J., Rawlings, N. D., and Woessner, J. F., Eds.) 2nd ed, pp. 1936–1937, Academic Press, San Diego, CA.

    Google Scholar 

  73. Gafford, J. T., Skidgel, R. A., Erdös, E. G., and Hersh, L. B. (1983) Human kidney “enkephalinase”, a neutral metalloendopeptidase that cleaves active peptides, Biochemistry 22, 3265–3271.

    Article  CAS  PubMed  Google Scholar 

  74. Johnson, A. R., Ashton, J., Schulz, W. W., and Erdös, E. G. (1985) Neutral metalloendopeptidase in human lung tissue and cultured cells, Am Rev Respir Dis 132, 564–568.

    CAS  PubMed  Google Scholar 

  75. Johnson, A. R., Coalson, J. J., Ashton, J., Larumbide, M., and Erdös, E. G. (1985) Neutral endopeptidase in serum samples from patients with adult respiratory distress syndrome. Comparison with angiotensin-converting enzyme, Am Rev Respir Dis 132, 1262–1267.

    CAS  PubMed  Google Scholar 

  76. Gee, N. S., Matsas, R., and Kenny, A. J. (1983) A monoclonal antibody to kidney endopeptidase-24.11. Its application in immunoadsorbent purification of the enzyme and immunofluorescent microscopy of kidney and intestine, Biochem J 214, 377–386.

    CAS  PubMed  Google Scholar 

  77. Deddish, P. A., Marcic, B. M., Tan, F., Jackman, H. L., Chen, Z., and Erdös, E. G. (2002) Neprilysin inhibitors potentiate effects of bradykinin on B2 receptor, Hypertension 39, 619–623.

    Article  CAS  PubMed  Google Scholar 

  78. Connelly, J. C., Skidgel, R. A., Schulz, W. W., Johnson, A. R., and Erdös, E. G. (1985) Neutral endopeptidase 24.11 in human neutrophils: Cleavage of chemotactic peptide, Proc Natl Acad Sci USA 82, 8737–8741.

    Article  CAS  PubMed  Google Scholar 

  79. Frohlich, E. (2008) Pathogenesis of Hypertensive Left Ventricular Hypertrophy and Diastolic Dysfunction, in Hypertension Primer: The Essentials of High BLood Pressure, Basic Science, Population Science and Clinical Management (Izzo, J. L., Sica, D. A., and Black, H. R., Eds.) 4th ed., pp. 188–190, Lippincott Williams and Wilkins Philadelphia.

    Google Scholar 

  80. Tokmakova, M. P., Skali, H., Kenchaiah, S., Braunwald, E., Rouleau, J. L., Packer, M., Chertow, G. M., Moye, L. A., Pfeffer, M. A., and Solomon, S. D. (2004) Chronic kidney disease, cardiovascular risk, and response to angiotensin-converting enzyme inhibition after myocardial infarction: the Survival And Ventricular Enlargement (SAVE) study, Circulation 110, 3667–3673.

    Article  CAS  PubMed  Google Scholar 

  81. Takada, Y., Skidgel, R. A., and Erdös, E. G. (1985) Purification of human urinary prokallikrein. Identification of the site of activation by the metalloproteinase thermolysin, Biochem J 232, 851–858.

    CAS  PubMed  Google Scholar 

  82. Campbell, W. B., and Harder, D. R. (1999) Endothelium-derived hyperpolarizing factors and vascular cytochrome P450 metabolites of arachidonic acid in the regulation of tone, Circ. Res. 84, 484–488.

    CAS  PubMed  Google Scholar 

  83. Schmaier, A. H., and McCrae, K. R. (2007) The plasma kallikrein-kinin system: its evolution from contact activation, J Thromb Haemost 5, 2323–2329.

    Article  CAS  PubMed  Google Scholar 

  84. Chao, J., Yin, H., Gao, L., Hagiwara, M., Shen, B., Yang, Z. R., and Chao, L. (2008) Tissue kallikrein elicits cardioprotection by direct kinin B2 receptor activation independent of kinin formation, Hypertension 52, 715–720.

    Article  CAS  PubMed  Google Scholar 

  85. Biyashev, D., Tan, F., Chen, Z., Zhang, K., Deddish, P. A., Erdös, E. G., and Hecquet, C. (2006) Kallikrein activates bradykinin B2 receptors in absence of kininogen, Am J Physiol Heart Circ Physiol 290, H1244–H1250.

    Article  CAS  PubMed  Google Scholar 

  86. Hecquet, C., Tan, F., Marcic, B. M., and Erdös, E. G. (2000) Human bradykinin B2 receptor is activated by kallikrein and other serine proteases, Mol Pharmacol 58, 828–836.

    CAS  PubMed  Google Scholar 

  87. West, M. B., Rokosh, G., Obal, D., Velayutham, M., Xuan, Y. T., Hill, B. G., Keith, R. J., Schrader, J., Guo, Y., Conklin, D. J., Prabhu, S. D., Zweier, J. L., Bolli, R., and Bhatnagar, A. (2008) Cardiac myocyte-specific expression of inducible nitric oxide synthase protects against ischemia/reperfusion injury by preventing mitochondrial permeability transition, Circulation 118, 1970–1978.

    Article  CAS  PubMed  Google Scholar 

  88. Murphey, L. J., Hachey, D. L., Oates, J. A., Morrow, J. D., and Brown, N. J. (2000) Metabolism of bradykinin In vivo in humans: identification of BK1-5 as a stable plasma peptide metabolite, J Pharmacol Exp Ther 294, 263–269.

    CAS  PubMed  Google Scholar 

  89. Blais, C., Jr., Marceau, F., Rouleau, J. L., and Adam, A. (2000) The kallikrein-kininogen-kinin system: lessons from the quantification of endogenous kinins, Peptides 21, 1903–1940.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ervin G. Erdös MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Erdös, E.G., Tan, F., Skidgel, R.A. (2009). Kinin Receptors and ACE Inhibitors: An Interrelationship. In: DeMello, W., Frohlich, E. (eds) Renin Angiotensin System and Cardiovascular Disease. Contemporary Cardiology. Humana Press. https://doi.org/10.1007/978-1-60761-186-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-186-8_11

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-185-1

  • Online ISBN: 978-1-60761-186-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics