DNA Damage Response and the Balance Between Cell Survival and Cell Death

Part of the Cancer Drug Discovery and Development book series (CDD&D)


DNA damage induces the activation of a cascade of kinases that trigger the DNA damage response (DDR). Downstream are targets that either help cells to survive or undergo cell death. DNA damage-induced cell death is executed by apoptosis, necrosis, mitotic catastrophe, and autophagy. Of these different forms of cell inactivation, apoptosis is often the main route of cell death following DNA damage. Cells undergo apoptosis upon genotoxic stress via the death receptor and/or the intrinsic mitochondrial damage pathway, with p53 and AP-1 involved decisively. Not every type of DNA damage induces apoptosis. Many DNA lesions are tolerated by the cell, some are mutagenic without being toxic and some are more toxic than mutagenic. Severe DNA damages are O6-alkylguanines, bulky lesions, and DNA double-strand breaks, that activate DDR and downstream survival and death signals. The survival and death pathways triggered by upstream DDR functions will be discussed in this chapter.


Checkpoints Cell cycle DNA damage response DNA repair p53 Apoptosis Death receptors Fas ATM ATR Anticancer drugs 



This work of the authors is supported by Deutsche Forschungsgemeinschaft, Mildred-Scheel Stiftung für Krebsforschung und Stiftung Rheinland-Pfalz.


  1. 1.
    Knebel A, Rahmsdorf HJ, Ullrich A, Herrlich P (1996) Dephosphorylation of receptor tyrosine kinases as target of regulation by radiation, oxidants or alkylating agents. EMBO J 15(19):5314–5325PubMedGoogle Scholar
  2. 2.
    Gross S, Knebel A, Tenev T et al (1999) Inactivation of protein-tyrosine phosphatases as mechanism of UV-induced signal transduction. J Biol Chem 274(37):26378–26386PubMedCrossRefGoogle Scholar
  3. 3.
    Aragane Y, Kulms D, Metze D et al (1998) Ultraviolet light induces apoptosis via direct activation of CD95 (Fas/APO-1) independently of its ligand CD95L. J Cell Biol 140(1):171–182PubMedCrossRefGoogle Scholar
  4. 4.
    Kulms D, Poppelmann B, Yarosh D, Luger TA, Krutmann J, Schwarz T (1999) Nuclear and cell membrane effects contribute independently to the induction of apoptosis in human cells exposed to UVB radiation. Proc Natl Acad Sci U S A 96(14):7974–7979PubMedCrossRefGoogle Scholar
  5. 5.
    Micheau O, Solary E, Hammann A, Dimanche-Boitrel MT (1999) Fas ligand-independent, FADD-mediated activation of the Fas death pathway by anticancer drugs. J Biol Chem 274(12):7987–7992PubMedCrossRefGoogle Scholar
  6. 6.
    Lips J, Kaina B (2001) DNA double-strand breaks trigger apoptosis in p53-deficient fibroblasts. Carcinogenesis 22(4):579–585PubMedCrossRefGoogle Scholar
  7. 7.
    Kaina B, Christmann M, Naumann S, Roos WP (2007) MGMT: Key node in the battle against genotoxicity, carcinogenicity and apoptosis induced by alkylating agents. DNA Repair (Amst) 6(8):1079–1099CrossRefGoogle Scholar
  8. 8.
    Batista LF, Kaina B, Meneghini R, Menck CF. How DNA lesions are turned into powerful killing structures: Insights from UV-induced apoptosis. Mutat Res 2008.Google Scholar
  9. 9.
    Roos WP, Kaina B (2006) DNA damage-induced cell death by apoptosis. Trends Mol Med 12(9):440–450PubMedCrossRefGoogle Scholar
  10. 10.
    Christmann M, Tomicic MT, Aasland D, Kaina B (2007) A role for UV-light-induced c-Fos: Stimulation of nucleotide excision repair and protection against sustained JNK activation and apoptosis. Carcinogenesis 28(1):183–190PubMedCrossRefGoogle Scholar
  11. 11.
    Bakkenist CJ, Kastan MB (2003) DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature 421(6922):499–506PubMedCrossRefGoogle Scholar
  12. 12.
    Kozlov SV, Graham ME, Peng C, Chen P, Robinson PJ, Lavin MF (2006) Involvement of novel autophosphorylation sites in ATM activation. EMBO J 25(15):3504–3514PubMedCrossRefGoogle Scholar
  13. 13.
    Pellegrini M, Celeste A, Difilippantonio S et al (2006) Autophosphorylation at serine 1987 is dispensable for murine Atm activation in vivo. Nature 443(7108):222–225PubMedCrossRefGoogle Scholar
  14. 14.
    Powers JT, Hong S, Mayhew CN, Rogers PM, Knudsen ES, Johnson DG (2004) E2F1 uses the ATM signaling pathway to induce p53 and Chk2 phosphorylation and apoptosis. Mol Cancer Res 2(4):203–214PubMedGoogle Scholar
  15. 15.
    Lee JH, Paull TT (2005) ATM activation by DNA double-strand breaks through the Mre11-Rad50-Nbs1 complex. Science 308(5721):551–554PubMedCrossRefGoogle Scholar
  16. 16.
    Mirzoeva OK, Petrini JH (2001) DNA damage-dependent nuclear dynamics of the Mre11 complex. Mol Cell Biol 21(1):281–288PubMedCrossRefGoogle Scholar
  17. 17.
    Uziel T, Lerenthal Y, Moyal L, Andegeko Y, Mittelman L, Shiloh Y (2003) Requirement of the MRN complex for ATM activation by DNA damage. EMBO J 22(20):5612–5621PubMedCrossRefGoogle Scholar
  18. 18.
    Lee JH, Paull TT (2004) Direct activation of the ATM protein kinase by the Mre11/Rad50/Nbs1 complex. Science 304(5667):93–96PubMedCrossRefGoogle Scholar
  19. 19.
    Carney JP, Maser RS, Olivares H et al (1998) The hMre11/hRad50 protein complex and Nijmegen breakage syndrome: linkage of double-strand break repair to the cellular DNA damage response. Cell 93(3):477–486PubMedCrossRefGoogle Scholar
  20. 20.
    Berkovich E, Monnat RJ Jr, Kastan MB (2007) Roles of ATM and NBS1 in chromatin structure modulation and DNA double-strand break repair. Nat Cell Biol 9(6):683–690PubMedCrossRefGoogle Scholar
  21. 21.
    Cerosaletti K, Wright J, Concannon P (2006) Active role for nibrin in the kinetics of atm activation. Mol Cell Biol 26(5):1691–1699PubMedCrossRefGoogle Scholar
  22. 22.
    Kitagawa R, Bakkenist CJ, McKinnon PJ, Kastan MB (2004) Phosphorylation of SMC1 is a critical downstream event in the ATM-NBS1-BRCA1 pathway. Genes Dev 18(12):1423–1438PubMedCrossRefGoogle Scholar
  23. 23.
    Ward IM, Chen J (2001) Histone H2AX is phosphorylated in an ATR-dependent manner in response to replicational stress. J Biol Chem 276(51):47759–47762PubMedGoogle Scholar
  24. 24.
    Wang B, Matsuoka S, Carpenter PB, Elledge SJ (2002) 53BP1, a mediator of the DNA damage checkpoint. Science 298(5597):1435–1438PubMedCrossRefGoogle Scholar
  25. 25.
    Byun TS, Pacek M, Yee MC, Walter JC, Cimprich KA (2005) Functional uncoupling of MCM helicase and DNA polymerase activities activates the ATR-dependent checkpoint. Genes Dev 19(9):1040–1052PubMedCrossRefGoogle Scholar
  26. 26.
    Parrilla-Castellar ER, Arlander SJ, Karnitz L (2004) Dial 9–1-1 for DNA damage: the Rad9-Hus1-Rad1 (9–1-1) clamp complex. DNA Repair (Amst) 3(8–9):1009–1014CrossRefGoogle Scholar
  27. 27.
    Zou L, Elledge SJ (2003) Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes. Science 300(5625):1542–1548PubMedCrossRefGoogle Scholar
  28. 28.
    Zou L, Liu D, Elledge SJ (2003) Replication protein A-mediated recruitment and activation of Rad17 complexes. Proc Natl Acad Sci U S A 100(24): 13827–13832PubMedCrossRefGoogle Scholar
  29. 29.
    Ball HL, Myers JS, Cortez D (2005) ATRIP binding to replication protein A-single-stranded DNA promotes ATR-ATRIP localization but is dispensable for Chk1 phosphorylation. Mol Biol Cell 16(5): 2372–2381PubMedCrossRefGoogle Scholar
  30. 30.
    Kim SM, Kumagai A, Lee J, Dunphy WG (2005) Phosphorylation of Chk1 by ATM- and Rad3-related (ATR) in Xenopus egg extracts requires binding of ATRIP to ATR but not the stable DNA-binding or coiled-coil domains of ATRIP. J Biol Chem 280(46):38355–38364PubMedCrossRefGoogle Scholar
  31. 31.
    Ball HL, Cortez D (2005) ATRIP oligomerization is required for ATR-dependent checkpoint signaling. J Biol Chem 280(36):31390–31396PubMedCrossRefGoogle Scholar
  32. 32.
    Makiniemi M, Hillukkala T, Tuusa J et al (2001) BRCT domain-containing protein TopBP1 functions in DNA replication and damage response. J Biol Chem 276(32):30399–30406PubMedCrossRefGoogle Scholar
  33. 33.
    Delacroix S, Wagner JM, Kobayashi M, Yamamoto K, Karnitz LM (2007) The Rad9-Hus1-Rad1 (9-1-1) clamp activates checkpoint signaling via TopBP1. Genes Dev 21(12):1472–1477PubMedCrossRefGoogle Scholar
  34. 34.
    Lee J, Kumagai A, Dunphy WG (2007) The Rad9-Hus1-Rad1 checkpoint clamp regulates interaction of TopBP1 with ATR. J Biol Chem 282(38):28036–28044PubMedCrossRefGoogle Scholar
  35. 35.
    Kumagai A, Lee J, Yoo HY, Dunphy WG (2006) TopBP1 activates the ATR-ATRIP complex. Cell 124(5):943–955PubMedCrossRefGoogle Scholar
  36. 36.
    Cuadrado M, Martinez-Pastor B, Murga M et al (2006) ATM regulates ATR chromatin loading in response to DNA double-strand breaks. J Exp Med 203(2):297–303PubMedCrossRefGoogle Scholar
  37. 37.
    Yoo HY, Kumagai A, Shevchenko A, Shevchenko A, Dunphy WG (2007) Ataxia-telangiectasia mutated (ATM)-dependent activation of ATR occurs through phosphorylation of TopBP1 by ATM. J Biol Chem 282(24):17501–17506PubMedCrossRefGoogle Scholar
  38. 38.
    Stiff T, Walker SA, Cerosaletti K et al (2006) ATR-dependent phosphorylation and activation of ATM in response to UV treatment or replication fork stalling. EMBO J 25(24):5775–5782PubMedCrossRefGoogle Scholar
  39. 39.
    Zhou BB, Chaturvedi P, Spring K et al (2000) Caffeine abolishes the mammalian G(2)/M DNA damage checkpoint by inhibiting ataxia-telangiectasia-mutated kinase activity. J Biol Chem 275(14):10342–10348PubMedCrossRefGoogle Scholar
  40. 40.
    Matsuoka S, Rotman G, Ogawa A, Shiloh Y, Tamai K, Elledge SJ (2000) Ataxia telangiectasia-mutated phosphorylates Chk2 in vivo and in vitro. Proc Natl Acad Sci U S A 97(19):10389–10394PubMedCrossRefGoogle Scholar
  41. 41.
    Liu Q, Guntuku S, Cui XS et al (2000) Chk1 is an essential kinase that is regulated by Atr and required for the G(2)/M DNA damage checkpoint. Genes Dev 14(12):1448–1459PubMedGoogle Scholar
  42. 42.
    Guo Z, Kumagai A, Wang SX, Dunphy WG (2000) Requirement for Atr in phosphorylation of Chk1 and cell cycle regulation in response to DNA replication blocks and UV-damaged DNA in Xenopus egg extracts. Genes Dev 14(21):2745–2756PubMedCrossRefGoogle Scholar
  43. 43.
    Shieh SY, Ahn J, Tamai K, Taya Y, Prives C (2000) The human homologs of checkpoint kinases Chk1 and Cds1 (Chk2) phosphorylate p53 at multiple DNA damage-inducible sites. Genes Dev 14(3):289–300PubMedGoogle Scholar
  44. 44.
    Chehab NH, Malikzay A, Stavridi ES, Halazonetis TD (1999) Phosphorylation of Ser-20 mediates stabilization of human p53 in response to DNA damage. Proc Natl Acad Sci U S A 96(24):13777–13782PubMedCrossRefGoogle Scholar
  45. 45.
    Chehab NH, Malikzay A, Appel M, Halazonetis TD (2000) Chk2/hCds1 functions as a DNA damage checkpoint in G(1) by stabilizing p53. Genes Dev 14(3):278–288PubMedGoogle Scholar
  46. 46.
    Hirao A, Kong YY, Matsuoka S et al (2000) DNA damage-induced activation of p53 by the checkpoint kinase Chk2. Science 287(5459):1824–1827PubMedCrossRefGoogle Scholar
  47. 47.
    Unger T, Juven-Gershon T, Moallem E et al (1999) Critical role for Ser20 of human p53 in the negative regulation of p53 by Mdm2. EMBO J 18(7):1805–1814PubMedCrossRefGoogle Scholar
  48. 48.
    Banin S, Moyal L, Shieh S et al (1998) Enhanced phosphorylation of p53 by ATM in response to DNA damage. Science 281(5383):1674–1677PubMedCrossRefGoogle Scholar
  49. 49.
    Canman CE, Lim DS, Cimprich KA et al (1998) Activation of the ATM kinase by ionizing radiation and phosphorylation of p53. Science 281(5383):1677–1679PubMedCrossRefGoogle Scholar
  50. 50.
    Khosravi R, Maya R, Gottlieb T, Oren M, Shiloh Y, Shkedy D (1999) Rapid ATM-dependent phosphorylation of MDM2 precedes p53 accumulation in response to DNA damage. Proc Natl Acad Sci U S A 96(26):14973–14977PubMedCrossRefGoogle Scholar
  51. 51.
    Mailand N, Falck J, Lukas C et al (2000) Rapid destruction of human Cdc25A in response to DNA damage. Science 288(5470):1425–1429CrossRefGoogle Scholar
  52. 52.
    Peng CY, Graves PR, Thoma RS, Wu Z, Shaw AS, Piwnica-Worms H (1997) Mitotic and G2 checkpoint control: regulation of 14-3-3 protein binding by phosphorylation of Cdc25C on serine-216. Science 277(5331):1501–1505PubMedCrossRefGoogle Scholar
  53. 53.
    Sanchez Y, Wong C, Thoma RS et al (1997) Conservation of the Chk1 checkpoint pathway in mammals: linkage of DNA damage to Cdk regulation through Cdc25. Science 277(5331):1497–1501PubMedCrossRefGoogle Scholar
  54. 54.
    Dalal SN, Schweitzer CM, Gan J, DeCaprio JA (1999) Cytoplasmic localization of human cdc25C during interphase requires an intact 14-3-3 binding site. Mol Cell Biol 19(6):4465–4479PubMedGoogle Scholar
  55. 55.
    Branzei D, Foiani M (2006) The Rad53 signal transduction pathway: Replication fork stabilization, DNA repair, and adaptation. Exp Cell Res 312(14):2654–2659PubMedCrossRefGoogle Scholar
  56. 56.
    Alcasabas AA, Osborn AJ, Bachant J et al (2001) Mrc1 transduces signals of DNA replication stress to activate Rad53. Nat Cell Biol 3(11):958–965PubMedCrossRefGoogle Scholar
  57. 57.
    Tanaka K, Russell P (2001) Mrc1 channels the DNA replication arrest signal to checkpoint kinase Cds1. Nat Cell Biol 3(11):966–972PubMedCrossRefGoogle Scholar
  58. 58.
    Kumagai A, Dunphy WG (2000) Claspin, a novel protein required for the activation of Chk1 during a DNA replication checkpoint response in Xenopus egg extracts. Mol Cell 6(4):839–849PubMedCrossRefGoogle Scholar
  59. 59.
    Osborn AJ, Elledge SJ (2003) Mrc1 is a replication fork component whose phosphorylation in response to DNA replication stress activates Rad53. Genes Dev 17(14):1755–1767PubMedCrossRefGoogle Scholar
  60. 60.
    Lou H, Komata M, Katou Y et al (2008) Mrc1 and DNA polymerase epsilon function together in linking DNA replication and the S phase checkpoint. Mol Cell 32(1):106–117PubMedCrossRefGoogle Scholar
  61. 61.
    Szyjka SJ, Viggiani CJ, Aparicio OM (2005) Mrc1 is required for normal progression of replication forks throughout chromatin in S. cerevisiae. Mol Cell 19(5):691–697PubMedCrossRefGoogle Scholar
  62. 62.
    Kamer I, Sarig R, Zaltsman Y et al (2005) Proapoptotic BID is an ATM effector in the DNA-damage response. Cell 122(4):593–603PubMedCrossRefGoogle Scholar
  63. 63.
    Zinkel SS, Hurov KE, Ong C, Abtahi FM, Gross A, Korsmeyer SJ (2005) A role for proapoptotic BID in the DNA-damage response. Cell 122(4):579–591PubMedCrossRefGoogle Scholar
  64. 64.
    Roos WP, Batista LF, Naumann SC et al (2007) Apoptosis in malignant glioma cells triggered by the temozolomide-induced DNA lesion O(6)-methylguanine. Oncogene 26(2):186–197PubMedCrossRefGoogle Scholar
  65. 65.
    Christmann M, Fritz G, Kaina B (2007) Induction of DNA repair genes in mammalian cells in response to genotoxic stress. In: Lankenau D (ed) Genome Dynamics and Stability, vol 1. Springe, Berlin, pp 383-–398Google Scholar
  66. 66.
    Batista LF, Roos WP, Christmann M, Menck CF, Kaina B (2007) Differential sensitivity of malignant glioma cells to methylating and chloroethylating anticancer drugs: p53 determines the switch by regulating xpc, ddb2, and DNA double-strand breaks. Cancer Res 67(24):11886–11895PubMedCrossRefGoogle Scholar
  67. 67.
    Hamdi M, Kool J, Cornelissen-Steijger P et al (2005) DNA damage in transcribed genes induces apoptosis via the JNK pathway and the JNK-phosphatase MKP-1. Oncogene 24(48):7135–7144PubMedCrossRefGoogle Scholar
  68. 68.
    Franklin CC, Kraft AS (1997) Conditional expression of the mitogen-activated protein kinase (MAPK) phosphatase MKP-1 preferentially inhibits p38 MAPK and stress-activated protein kinase in U937 cells. J Biol Chem 272(27):16917–16923PubMedCrossRefGoogle Scholar
  69. 69.
    Hirsch DD, Stork PJ (1997) Mitogen-activated protein kinase phosphatases inactivate stress-activated protein kinase pathways in vivo. J Biol Chem 272(7):4568–4575PubMedCrossRefGoogle Scholar
  70. 70.
    Mancini M, Machamer CE, Roy S et al (2000) Caspase-2 is localized at the Golgi complex and cleaves golgin-160 during apoptosis. J Cell Biol 149(3):603–612PubMedCrossRefGoogle Scholar
  71. 71.
    Zhivotovsky B, Samali A, Gahm A, Orrenius S (1999) Caspases: their intracellular localization and translocation during apoptosis. Cell Death Differ 6(7):644–651PubMedCrossRefGoogle Scholar
  72. 72.
    Lassus P, Opitz-Araya X, Lazebnik Y (2002) Requirement for caspase-2 in stress-induced apoptosis before mitochondrial permeabilization. Science 297(5585):1352–1354PubMedCrossRefGoogle Scholar
  73. 73.
    Bergeron L, Perez GI, Macdonald G et al (1998) Defects in regulation of apoptosis in caspase-2-deficient mice. Genes Dev 12(9):1304–1314PubMedCrossRefGoogle Scholar
  74. 74.
    Guo Y, Srinivasula SM, Druilhe A, Fernandes-Alnemri T, Alnemri ES (2002) Caspase-2 induces apoptosis by releasing proapoptotic proteins from mitochondria. J Biol Chem 277(16):13430–13437PubMedCrossRefGoogle Scholar
  75. 75.
    Robertson JD, Enoksson M, Suomela M, Zhivotovsky B, Orrenius S (2002) Caspase-2 acts upstream of mitochondria to promote cytochrome c release during etoposide-induced apoptosis. J Biol Chem 277(33):29803–29809PubMedCrossRefGoogle Scholar
  76. 76.
    Robertson JD, Gogvadze V, Kropotov A, Vakifahmetoglu H, Zhivotovsky B, Orrenius S (2004) Processed caspase-2 can induce mitochondria-mediated apoptosis independently of its enzymatic activity. EMBO Rep 5(6):643–648PubMedCrossRefGoogle Scholar
  77. 77.
    Enoksson M, Robertson JD, Gogvadze V et al (2004) Caspase-2 permeabilizes the outer mitochondrial membrane and disrupts the binding of cytochrome c to anionic phospholipids. J Biol Chem 279(48):49575–49578PubMedCrossRefGoogle Scholar
  78. 78.
    Nabel GJ, Verma IM (1993) Proposed NF-kappa B/I kappa B family nomenclature. Genes Dev 7(11): 2063PubMedCrossRefGoogle Scholar
  79. 79.
    Ghosh S, May MJ, Kopp EB (1998) NF-kappa B and Rel proteins: evolutionarily conserved mediators of immune responses. Annu Rev Immunol 16:225–260PubMedCrossRefGoogle Scholar
  80. 80.
    Molitor JA, Walker WH, Doerre S, Ballard DW, Green WC (1990) a family of inducible and differentially expressed enhancer-binding proteins in human T cells. Proc Natl Acad Sci U S A 87(24):10028–10032PubMedCrossRefGoogle Scholar
  81. 81.
    Darnay BG, Haridas V, Ni J, Moore PA, Aggarwal BB (1998) Characterization of the intracellular domain of receptor activator of NF-kappaB (RANK). Interaction with tumor necrosis factor receptor-associated factors and activation of NF-kappab and c-Jun N-terminal kinase. J Biol Chem 273(32)):20551–20555PubMedCrossRefGoogle Scholar
  82. 82.
    Schutze S, Machleidt T, Kronke M (1994) The role of diacylglycerol and ceramide in tumor necrosis factor and interleukin-1 signal transduction. J Leukoc Biol 56(5):533–541PubMedGoogle Scholar
  83. 83.
    Zhang G, Ghosh S (2000) Molecular mechanisms of NF-kappaB activation induced by bacterial lipopolysaccharide through Toll-like receptors. J Endotoxin Res 6(6):453–457PubMedCrossRefGoogle Scholar
  84. 84.
    Karin M, Ben-Neriah Y (2000) Phosphorylation meets ubiquitination: the control of NF-[kappa]B activity. Annu Rev Immunol 18:621–663PubMedCrossRefGoogle Scholar
  85. 85.
    Lee HH, Dadgostar H, Cheng Q, Shu J, Cheng G (1999) NF-kappaB-mediated up-regulation of Bcl-x and Bfl-1/A1 is required for CD40 survival signaling in B lymphocytes. Proc Natl Acad Sci U S A 96(16):9136–9141PubMedCrossRefGoogle Scholar
  86. 86.
    Chu ZL, McKinsey TA, Liu L, Gentry JJ, Malim MH, Ballard DW (1997) Suppression of tumor necrosis factor-induced cell death by inhibitor of apoptosis c-IAP2 is under NF-kappaB control. Proc Natl Acad Sci U S A 94(19):10057–10062PubMedCrossRefGoogle Scholar
  87. 87.
    Wang CY, Mayo MW, Korneluk RG, Goeddel DV, Baldwin AS Jr (1998) NF-kappaB antiapoptosis: induction of TRAF1 and TRAF2 and c-IAP1 and c-IAP2 to suppress caspase-8 activation. Science 281(5383):1680–1683PubMedCrossRefGoogle Scholar
  88. 88.
    Zhang H, Cowan-Jacob SW, Simonen M, Greenhalf W, Heim J, Meyhack B (2000) Structural basis of BFL-1 for its interaction with BAX and its anti-apoptotic action in mammalian and yeast cells. J Biol Chem 275(15):11092–11099PubMedCrossRefGoogle Scholar
  89. 89.
    Werner AB, de Vries E, Tait SW, Bontjer I, Borst J (2002) Bcl-2 family member Bfl-1/A1 sequesters truncated bid to inhibit is collaboration with pro-apoptotic Bak or Bax. J Biol Chem 277(25):22781–22788PubMedCrossRefGoogle Scholar
  90. 90.
    Yang E, Zha J, Jockel J, Boise LH, Thompson CB, Korsmeyer SJ (1995) Bad, a heterodimeric partner for Bcl-XL and Bcl-2, displaces Bax and promotes cell death. Cell 80(2):285–291PubMedCrossRefGoogle Scholar
  91. 91.
    Zhou A, Scoggin S, Gaynor RB, Williams NS (2003) Identification of NF-kappa B-regulated genes induced by TNFalpha utilizing expression profiling and RNA interference. Oncogene 22(13):2054–2064PubMedCrossRefGoogle Scholar
  92. 92.
    Yao R, Cooper GM (1995) Requirement for phosphatidylinositol-3 kinase in the prevention of apoptosis by nerve growth factor. Science 267(5206):2003–2006PubMedCrossRefGoogle Scholar
  93. 93.
    Wendel HG, De Stanchina E, Fridman JS et al (2004) Survival signalling by Akt and eIF4E in oncogenesis and cancer therapy. Nature 428(6980): 332–337PubMedCrossRefGoogle Scholar
  94. 94.
    Bao S, Ouyang G, Bai X et al (2004) Periostin potently promotes metastatic growth of colon cancer by augmenting cell survival via the Akt/PKB pathway. Cancer Cell 5(4):329–339PubMedCrossRefGoogle Scholar
  95. 95.
    Shi Q, Bao S, Maxwell JA et al (2004) Secreted protein acidic, rich in cysteine (SPARC), mediates cellular survival of gliomas through AKT activation. J Biol Chem 279(50):52200–52209PubMedCrossRefGoogle Scholar
  96. 96.
    Gupta D, Syed NA, Roesler WJ, Khandelwal RL (2004) Effect of overexpression and nuclear translocation of constitutively active PKB-alpha on cellular survival and proliferation in HepG2 cells. J Cell Biochem 93(3):513–525PubMedCrossRefGoogle Scholar
  97. 97.
    del Peso L, Gonzalez-Garcia M, Page C, Herrera R, Nunez G (1997) Interleukin-3-induced phosphorylation of BAD through the protein kinase Akt. Science 278(5338):687–689PubMedCrossRefGoogle Scholar
  98. 98.
    Datta SR, Dudek H, Tao X et al (1997) Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 91(2):231–241PubMedCrossRefGoogle Scholar
  99. 99.
    Zha J, Harada H, Yang E, Jockel J, Korsmeyer SJ (1996) Serine phosphorylation of death agonist BAD in response to survival factor results in binding to 14–3-3 not BCL-X(L). Cell 87(4):619–628PubMedCrossRefGoogle Scholar
  100. 100.
    Budihardjo I, Oliver H, Lutter M, Luo X, Wang X (1999) Biochemical pathways of caspase activation during apoptosis. Annu Rev Cell Dev Biol 15:269–290PubMedCrossRefGoogle Scholar
  101. 101.
    Cardone MH, Roy N, Stennicke HR et al (1998) Regulation of cell death protease caspase-9 by phosphorylation. Science 282(5392):1318–1321PubMedCrossRefGoogle Scholar
  102. 102.
    Fujita E, Jinbo A, Matuzaki H, Konishi H, Kikkawa U, Momoi T (1999) Akt phosphorylation site found in human caspase-9 is absent in mouse caspase-9. Biochem Biophys Res Commun 264(2): 550–555PubMedCrossRefGoogle Scholar
  103. 103.
    Kim AH, Khursigara G, Sun X, Franke TF, Chao MV (2001) Akt phosphorylates and negatively regulates apoptosis signal-regulating kinase 1. Mol Cell Biol 21(3):893–901PubMedCrossRefGoogle Scholar
  104. 104.
    Sumbayev VV, Yasinska IM (2005) Regulation of MAP kinase-dependent apoptotic pathway: implication of reactive oxygen and nitrogen species. Arch Biochem Biophys 436(2):406–412PubMedCrossRefGoogle Scholar
  105. 105.
    Pahl HL (1999) Activators and target genes of Rel/NF-kappaB transcription factors. Oncogene 18(49):6853–6866PubMedCrossRefGoogle Scholar
  106. 106.
    Kane LP, Shapiro VS, Stokoe D, Weiss A (1999) Induction of NF-kappaB by the Akt/PKB kinase. Curr Biol 9(11):601–604PubMedCrossRefGoogle Scholar
  107. 107.
    Gottlieb TM, Leal JF, Seger R, Taya Y, Oren M (2002) Cross-talk between Akt, p53 and Mdm2: possible implications for the regulation of apoptosis. Oncogene 21(8):1299–1303PubMedCrossRefGoogle Scholar
  108. 108.
    Mayo LD, Donner DB (2001) A phosphatidylinositol 3-kinase/Akt pathway promotes translocation of Mdm2 from the cytoplasm to the nucleus. Proc Natl Acad Sci U S A 98(20): 11598–11603PubMedCrossRefGoogle Scholar
  109. 109.
    Franke TF, Hornik CP, Segev L, Shostak GA, Sugimoto C (2003) PI3K/Akt and apoptosis: size matters. Oncogene 22(56):8983–8998PubMedCrossRefGoogle Scholar
  110. 110.
    Christmann M, Tomicic MT, Roos WP, Kaina B (2003) Mechanisms of human DNA repair: an update. Toxicology 193(1–2):3–34PubMedCrossRefGoogle Scholar
  111. 111.
    Shi et al. (2009) DNA-PKCS-PIDDosome: A nuclear caspase-2-activating complex with role in G2/m check point maintenance, Cell 136(2):508–502PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of ToxicologyUniversity of MainzMainzGermany

Personalised recommendations