DNA Damage Response and the Balance Between Cell Survival and Cell Death
- 806 Downloads
Abstract
DNA damage induces the activation of a cascade of kinases that trigger the DNA damage response (DDR). Downstream are targets that either help cells to survive or undergo cell death. DNA damage-induced cell death is executed by apoptosis, necrosis, mitotic catastrophe, and autophagy. Of these different forms of cell inactivation, apoptosis is often the main route of cell death following DNA damage. Cells undergo apoptosis upon genotoxic stress via the death receptor and/or the intrinsic mitochondrial damage pathway, with p53 and AP-1 involved decisively. Not every type of DNA damage induces apoptosis. Many DNA lesions are tolerated by the cell, some are mutagenic without being toxic and some are more toxic than mutagenic. Severe DNA damages are O6-alkylguanines, bulky lesions, and DNA double-strand breaks, that activate DDR and downstream survival and death signals. The survival and death pathways triggered by upstream DDR functions will be discussed in this chapter.
Keywords
Checkpoints Cell cycle DNA damage response DNA repair p53 Apoptosis Death receptors Fas ATM ATR Anticancer drugsNotes
Acknowledgements:
This work of the authors is supported by Deutsche Forschungsgemeinschaft, Mildred-Scheel Stiftung für Krebsforschung und Stiftung Rheinland-Pfalz.
References
- 1.Knebel A, Rahmsdorf HJ, Ullrich A, Herrlich P (1996) Dephosphorylation of receptor tyrosine kinases as target of regulation by radiation, oxidants or alkylating agents. EMBO J 15(19):5314–5325PubMedGoogle Scholar
- 2.Gross S, Knebel A, Tenev T et al (1999) Inactivation of protein-tyrosine phosphatases as mechanism of UV-induced signal transduction. J Biol Chem 274(37):26378–26386PubMedCrossRefGoogle Scholar
- 3.Aragane Y, Kulms D, Metze D et al (1998) Ultraviolet light induces apoptosis via direct activation of CD95 (Fas/APO-1) independently of its ligand CD95L. J Cell Biol 140(1):171–182PubMedCrossRefGoogle Scholar
- 4.Kulms D, Poppelmann B, Yarosh D, Luger TA, Krutmann J, Schwarz T (1999) Nuclear and cell membrane effects contribute independently to the induction of apoptosis in human cells exposed to UVB radiation. Proc Natl Acad Sci U S A 96(14):7974–7979PubMedCrossRefGoogle Scholar
- 5.Micheau O, Solary E, Hammann A, Dimanche-Boitrel MT (1999) Fas ligand-independent, FADD-mediated activation of the Fas death pathway by anticancer drugs. J Biol Chem 274(12):7987–7992PubMedCrossRefGoogle Scholar
- 6.Lips J, Kaina B (2001) DNA double-strand breaks trigger apoptosis in p53-deficient fibroblasts. Carcinogenesis 22(4):579–585PubMedCrossRefGoogle Scholar
- 7.Kaina B, Christmann M, Naumann S, Roos WP (2007) MGMT: Key node in the battle against genotoxicity, carcinogenicity and apoptosis induced by alkylating agents. DNA Repair (Amst) 6(8):1079–1099CrossRefGoogle Scholar
- 8.Batista LF, Kaina B, Meneghini R, Menck CF. How DNA lesions are turned into powerful killing structures: Insights from UV-induced apoptosis. Mutat Res 2008.Google Scholar
- 9.Roos WP, Kaina B (2006) DNA damage-induced cell death by apoptosis. Trends Mol Med 12(9):440–450PubMedCrossRefGoogle Scholar
- 10.Christmann M, Tomicic MT, Aasland D, Kaina B (2007) A role for UV-light-induced c-Fos: Stimulation of nucleotide excision repair and protection against sustained JNK activation and apoptosis. Carcinogenesis 28(1):183–190PubMedCrossRefGoogle Scholar
- 11.Bakkenist CJ, Kastan MB (2003) DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature 421(6922):499–506PubMedCrossRefGoogle Scholar
- 12.Kozlov SV, Graham ME, Peng C, Chen P, Robinson PJ, Lavin MF (2006) Involvement of novel autophosphorylation sites in ATM activation. EMBO J 25(15):3504–3514PubMedCrossRefGoogle Scholar
- 13.Pellegrini M, Celeste A, Difilippantonio S et al (2006) Autophosphorylation at serine 1987 is dispensable for murine Atm activation in vivo. Nature 443(7108):222–225PubMedCrossRefGoogle Scholar
- 14.Powers JT, Hong S, Mayhew CN, Rogers PM, Knudsen ES, Johnson DG (2004) E2F1 uses the ATM signaling pathway to induce p53 and Chk2 phosphorylation and apoptosis. Mol Cancer Res 2(4):203–214PubMedGoogle Scholar
- 15.Lee JH, Paull TT (2005) ATM activation by DNA double-strand breaks through the Mre11-Rad50-Nbs1 complex. Science 308(5721):551–554PubMedCrossRefGoogle Scholar
- 16.Mirzoeva OK, Petrini JH (2001) DNA damage-dependent nuclear dynamics of the Mre11 complex. Mol Cell Biol 21(1):281–288PubMedCrossRefGoogle Scholar
- 17.Uziel T, Lerenthal Y, Moyal L, Andegeko Y, Mittelman L, Shiloh Y (2003) Requirement of the MRN complex for ATM activation by DNA damage. EMBO J 22(20):5612–5621PubMedCrossRefGoogle Scholar
- 18.Lee JH, Paull TT (2004) Direct activation of the ATM protein kinase by the Mre11/Rad50/Nbs1 complex. Science 304(5667):93–96PubMedCrossRefGoogle Scholar
- 19.Carney JP, Maser RS, Olivares H et al (1998) The hMre11/hRad50 protein complex and Nijmegen breakage syndrome: linkage of double-strand break repair to the cellular DNA damage response. Cell 93(3):477–486PubMedCrossRefGoogle Scholar
- 20.Berkovich E, Monnat RJ Jr, Kastan MB (2007) Roles of ATM and NBS1 in chromatin structure modulation and DNA double-strand break repair. Nat Cell Biol 9(6):683–690PubMedCrossRefGoogle Scholar
- 21.Cerosaletti K, Wright J, Concannon P (2006) Active role for nibrin in the kinetics of atm activation. Mol Cell Biol 26(5):1691–1699PubMedCrossRefGoogle Scholar
- 22.Kitagawa R, Bakkenist CJ, McKinnon PJ, Kastan MB (2004) Phosphorylation of SMC1 is a critical downstream event in the ATM-NBS1-BRCA1 pathway. Genes Dev 18(12):1423–1438PubMedCrossRefGoogle Scholar
- 23.Ward IM, Chen J (2001) Histone H2AX is phosphorylated in an ATR-dependent manner in response to replicational stress. J Biol Chem 276(51):47759–47762PubMedGoogle Scholar
- 24.Wang B, Matsuoka S, Carpenter PB, Elledge SJ (2002) 53BP1, a mediator of the DNA damage checkpoint. Science 298(5597):1435–1438PubMedCrossRefGoogle Scholar
- 25.Byun TS, Pacek M, Yee MC, Walter JC, Cimprich KA (2005) Functional uncoupling of MCM helicase and DNA polymerase activities activates the ATR-dependent checkpoint. Genes Dev 19(9):1040–1052PubMedCrossRefGoogle Scholar
- 26.Parrilla-Castellar ER, Arlander SJ, Karnitz L (2004) Dial 9–1-1 for DNA damage: the Rad9-Hus1-Rad1 (9–1-1) clamp complex. DNA Repair (Amst) 3(8–9):1009–1014CrossRefGoogle Scholar
- 27.Zou L, Elledge SJ (2003) Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes. Science 300(5625):1542–1548PubMedCrossRefGoogle Scholar
- 28.Zou L, Liu D, Elledge SJ (2003) Replication protein A-mediated recruitment and activation of Rad17 complexes. Proc Natl Acad Sci U S A 100(24): 13827–13832PubMedCrossRefGoogle Scholar
- 29.Ball HL, Myers JS, Cortez D (2005) ATRIP binding to replication protein A-single-stranded DNA promotes ATR-ATRIP localization but is dispensable for Chk1 phosphorylation. Mol Biol Cell 16(5): 2372–2381PubMedCrossRefGoogle Scholar
- 30.Kim SM, Kumagai A, Lee J, Dunphy WG (2005) Phosphorylation of Chk1 by ATM- and Rad3-related (ATR) in Xenopus egg extracts requires binding of ATRIP to ATR but not the stable DNA-binding or coiled-coil domains of ATRIP. J Biol Chem 280(46):38355–38364PubMedCrossRefGoogle Scholar
- 31.Ball HL, Cortez D (2005) ATRIP oligomerization is required for ATR-dependent checkpoint signaling. J Biol Chem 280(36):31390–31396PubMedCrossRefGoogle Scholar
- 32.Makiniemi M, Hillukkala T, Tuusa J et al (2001) BRCT domain-containing protein TopBP1 functions in DNA replication and damage response. J Biol Chem 276(32):30399–30406PubMedCrossRefGoogle Scholar
- 33.Delacroix S, Wagner JM, Kobayashi M, Yamamoto K, Karnitz LM (2007) The Rad9-Hus1-Rad1 (9-1-1) clamp activates checkpoint signaling via TopBP1. Genes Dev 21(12):1472–1477PubMedCrossRefGoogle Scholar
- 34.Lee J, Kumagai A, Dunphy WG (2007) The Rad9-Hus1-Rad1 checkpoint clamp regulates interaction of TopBP1 with ATR. J Biol Chem 282(38):28036–28044PubMedCrossRefGoogle Scholar
- 35.Kumagai A, Lee J, Yoo HY, Dunphy WG (2006) TopBP1 activates the ATR-ATRIP complex. Cell 124(5):943–955PubMedCrossRefGoogle Scholar
- 36.Cuadrado M, Martinez-Pastor B, Murga M et al (2006) ATM regulates ATR chromatin loading in response to DNA double-strand breaks. J Exp Med 203(2):297–303PubMedCrossRefGoogle Scholar
- 37.Yoo HY, Kumagai A, Shevchenko A, Shevchenko A, Dunphy WG (2007) Ataxia-telangiectasia mutated (ATM)-dependent activation of ATR occurs through phosphorylation of TopBP1 by ATM. J Biol Chem 282(24):17501–17506PubMedCrossRefGoogle Scholar
- 38.Stiff T, Walker SA, Cerosaletti K et al (2006) ATR-dependent phosphorylation and activation of ATM in response to UV treatment or replication fork stalling. EMBO J 25(24):5775–5782PubMedCrossRefGoogle Scholar
- 39.Zhou BB, Chaturvedi P, Spring K et al (2000) Caffeine abolishes the mammalian G(2)/M DNA damage checkpoint by inhibiting ataxia-telangiectasia-mutated kinase activity. J Biol Chem 275(14):10342–10348PubMedCrossRefGoogle Scholar
- 40.Matsuoka S, Rotman G, Ogawa A, Shiloh Y, Tamai K, Elledge SJ (2000) Ataxia telangiectasia-mutated phosphorylates Chk2 in vivo and in vitro. Proc Natl Acad Sci U S A 97(19):10389–10394PubMedCrossRefGoogle Scholar
- 41.Liu Q, Guntuku S, Cui XS et al (2000) Chk1 is an essential kinase that is regulated by Atr and required for the G(2)/M DNA damage checkpoint. Genes Dev 14(12):1448–1459PubMedGoogle Scholar
- 42.Guo Z, Kumagai A, Wang SX, Dunphy WG (2000) Requirement for Atr in phosphorylation of Chk1 and cell cycle regulation in response to DNA replication blocks and UV-damaged DNA in Xenopus egg extracts. Genes Dev 14(21):2745–2756PubMedCrossRefGoogle Scholar
- 43.Shieh SY, Ahn J, Tamai K, Taya Y, Prives C (2000) The human homologs of checkpoint kinases Chk1 and Cds1 (Chk2) phosphorylate p53 at multiple DNA damage-inducible sites. Genes Dev 14(3):289–300PubMedGoogle Scholar
- 44.Chehab NH, Malikzay A, Stavridi ES, Halazonetis TD (1999) Phosphorylation of Ser-20 mediates stabilization of human p53 in response to DNA damage. Proc Natl Acad Sci U S A 96(24):13777–13782PubMedCrossRefGoogle Scholar
- 45.Chehab NH, Malikzay A, Appel M, Halazonetis TD (2000) Chk2/hCds1 functions as a DNA damage checkpoint in G(1) by stabilizing p53. Genes Dev 14(3):278–288PubMedGoogle Scholar
- 46.Hirao A, Kong YY, Matsuoka S et al (2000) DNA damage-induced activation of p53 by the checkpoint kinase Chk2. Science 287(5459):1824–1827PubMedCrossRefGoogle Scholar
- 47.Unger T, Juven-Gershon T, Moallem E et al (1999) Critical role for Ser20 of human p53 in the negative regulation of p53 by Mdm2. EMBO J 18(7):1805–1814PubMedCrossRefGoogle Scholar
- 48.Banin S, Moyal L, Shieh S et al (1998) Enhanced phosphorylation of p53 by ATM in response to DNA damage. Science 281(5383):1674–1677PubMedCrossRefGoogle Scholar
- 49.Canman CE, Lim DS, Cimprich KA et al (1998) Activation of the ATM kinase by ionizing radiation and phosphorylation of p53. Science 281(5383):1677–1679PubMedCrossRefGoogle Scholar
- 50.Khosravi R, Maya R, Gottlieb T, Oren M, Shiloh Y, Shkedy D (1999) Rapid ATM-dependent phosphorylation of MDM2 precedes p53 accumulation in response to DNA damage. Proc Natl Acad Sci U S A 96(26):14973–14977PubMedCrossRefGoogle Scholar
- 51.Mailand N, Falck J, Lukas C et al (2000) Rapid destruction of human Cdc25A in response to DNA damage. Science 288(5470):1425–1429CrossRefGoogle Scholar
- 52.Peng CY, Graves PR, Thoma RS, Wu Z, Shaw AS, Piwnica-Worms H (1997) Mitotic and G2 checkpoint control: regulation of 14-3-3 protein binding by phosphorylation of Cdc25C on serine-216. Science 277(5331):1501–1505PubMedCrossRefGoogle Scholar
- 53.Sanchez Y, Wong C, Thoma RS et al (1997) Conservation of the Chk1 checkpoint pathway in mammals: linkage of DNA damage to Cdk regulation through Cdc25. Science 277(5331):1497–1501PubMedCrossRefGoogle Scholar
- 54.Dalal SN, Schweitzer CM, Gan J, DeCaprio JA (1999) Cytoplasmic localization of human cdc25C during interphase requires an intact 14-3-3 binding site. Mol Cell Biol 19(6):4465–4479PubMedGoogle Scholar
- 55.Branzei D, Foiani M (2006) The Rad53 signal transduction pathway: Replication fork stabilization, DNA repair, and adaptation. Exp Cell Res 312(14):2654–2659PubMedCrossRefGoogle Scholar
- 56.Alcasabas AA, Osborn AJ, Bachant J et al (2001) Mrc1 transduces signals of DNA replication stress to activate Rad53. Nat Cell Biol 3(11):958–965PubMedCrossRefGoogle Scholar
- 57.Tanaka K, Russell P (2001) Mrc1 channels the DNA replication arrest signal to checkpoint kinase Cds1. Nat Cell Biol 3(11):966–972PubMedCrossRefGoogle Scholar
- 58.Kumagai A, Dunphy WG (2000) Claspin, a novel protein required for the activation of Chk1 during a DNA replication checkpoint response in Xenopus egg extracts. Mol Cell 6(4):839–849PubMedCrossRefGoogle Scholar
- 59.Osborn AJ, Elledge SJ (2003) Mrc1 is a replication fork component whose phosphorylation in response to DNA replication stress activates Rad53. Genes Dev 17(14):1755–1767PubMedCrossRefGoogle Scholar
- 60.Lou H, Komata M, Katou Y et al (2008) Mrc1 and DNA polymerase epsilon function together in linking DNA replication and the S phase checkpoint. Mol Cell 32(1):106–117PubMedCrossRefGoogle Scholar
- 61.Szyjka SJ, Viggiani CJ, Aparicio OM (2005) Mrc1 is required for normal progression of replication forks throughout chromatin in S. cerevisiae. Mol Cell 19(5):691–697PubMedCrossRefGoogle Scholar
- 62.Kamer I, Sarig R, Zaltsman Y et al (2005) Proapoptotic BID is an ATM effector in the DNA-damage response. Cell 122(4):593–603PubMedCrossRefGoogle Scholar
- 63.Zinkel SS, Hurov KE, Ong C, Abtahi FM, Gross A, Korsmeyer SJ (2005) A role for proapoptotic BID in the DNA-damage response. Cell 122(4):579–591PubMedCrossRefGoogle Scholar
- 64.Roos WP, Batista LF, Naumann SC et al (2007) Apoptosis in malignant glioma cells triggered by the temozolomide-induced DNA lesion O(6)-methylguanine. Oncogene 26(2):186–197PubMedCrossRefGoogle Scholar
- 65.Christmann M, Fritz G, Kaina B (2007) Induction of DNA repair genes in mammalian cells in response to genotoxic stress. In: Lankenau D (ed) Genome Dynamics and Stability, vol 1. Springe, Berlin, pp 383-–398Google Scholar
- 66.Batista LF, Roos WP, Christmann M, Menck CF, Kaina B (2007) Differential sensitivity of malignant glioma cells to methylating and chloroethylating anticancer drugs: p53 determines the switch by regulating xpc, ddb2, and DNA double-strand breaks. Cancer Res 67(24):11886–11895PubMedCrossRefGoogle Scholar
- 67.Hamdi M, Kool J, Cornelissen-Steijger P et al (2005) DNA damage in transcribed genes induces apoptosis via the JNK pathway and the JNK-phosphatase MKP-1. Oncogene 24(48):7135–7144PubMedCrossRefGoogle Scholar
- 68.Franklin CC, Kraft AS (1997) Conditional expression of the mitogen-activated protein kinase (MAPK) phosphatase MKP-1 preferentially inhibits p38 MAPK and stress-activated protein kinase in U937 cells. J Biol Chem 272(27):16917–16923PubMedCrossRefGoogle Scholar
- 69.Hirsch DD, Stork PJ (1997) Mitogen-activated protein kinase phosphatases inactivate stress-activated protein kinase pathways in vivo. J Biol Chem 272(7):4568–4575PubMedCrossRefGoogle Scholar
- 70.Mancini M, Machamer CE, Roy S et al (2000) Caspase-2 is localized at the Golgi complex and cleaves golgin-160 during apoptosis. J Cell Biol 149(3):603–612PubMedCrossRefGoogle Scholar
- 71.Zhivotovsky B, Samali A, Gahm A, Orrenius S (1999) Caspases: their intracellular localization and translocation during apoptosis. Cell Death Differ 6(7):644–651PubMedCrossRefGoogle Scholar
- 72.Lassus P, Opitz-Araya X, Lazebnik Y (2002) Requirement for caspase-2 in stress-induced apoptosis before mitochondrial permeabilization. Science 297(5585):1352–1354PubMedCrossRefGoogle Scholar
- 73.Bergeron L, Perez GI, Macdonald G et al (1998) Defects in regulation of apoptosis in caspase-2-deficient mice. Genes Dev 12(9):1304–1314PubMedCrossRefGoogle Scholar
- 74.Guo Y, Srinivasula SM, Druilhe A, Fernandes-Alnemri T, Alnemri ES (2002) Caspase-2 induces apoptosis by releasing proapoptotic proteins from mitochondria. J Biol Chem 277(16):13430–13437PubMedCrossRefGoogle Scholar
- 75.Robertson JD, Enoksson M, Suomela M, Zhivotovsky B, Orrenius S (2002) Caspase-2 acts upstream of mitochondria to promote cytochrome c release during etoposide-induced apoptosis. J Biol Chem 277(33):29803–29809PubMedCrossRefGoogle Scholar
- 76.Robertson JD, Gogvadze V, Kropotov A, Vakifahmetoglu H, Zhivotovsky B, Orrenius S (2004) Processed caspase-2 can induce mitochondria-mediated apoptosis independently of its enzymatic activity. EMBO Rep 5(6):643–648PubMedCrossRefGoogle Scholar
- 77.Enoksson M, Robertson JD, Gogvadze V et al (2004) Caspase-2 permeabilizes the outer mitochondrial membrane and disrupts the binding of cytochrome c to anionic phospholipids. J Biol Chem 279(48):49575–49578PubMedCrossRefGoogle Scholar
- 78.Nabel GJ, Verma IM (1993) Proposed NF-kappa B/I kappa B family nomenclature. Genes Dev 7(11): 2063PubMedCrossRefGoogle Scholar
- 79.Ghosh S, May MJ, Kopp EB (1998) NF-kappa B and Rel proteins: evolutionarily conserved mediators of immune responses. Annu Rev Immunol 16:225–260PubMedCrossRefGoogle Scholar
- 80.Molitor JA, Walker WH, Doerre S, Ballard DW, Green WC (1990) a family of inducible and differentially expressed enhancer-binding proteins in human T cells. Proc Natl Acad Sci U S A 87(24):10028–10032PubMedCrossRefGoogle Scholar
- 81.Darnay BG, Haridas V, Ni J, Moore PA, Aggarwal BB (1998) Characterization of the intracellular domain of receptor activator of NF-kappaB (RANK). Interaction with tumor necrosis factor receptor-associated factors and activation of NF-kappab and c-Jun N-terminal kinase. J Biol Chem 273(32)):20551–20555PubMedCrossRefGoogle Scholar
- 82.Schutze S, Machleidt T, Kronke M (1994) The role of diacylglycerol and ceramide in tumor necrosis factor and interleukin-1 signal transduction. J Leukoc Biol 56(5):533–541PubMedGoogle Scholar
- 83.Zhang G, Ghosh S (2000) Molecular mechanisms of NF-kappaB activation induced by bacterial lipopolysaccharide through Toll-like receptors. J Endotoxin Res 6(6):453–457PubMedCrossRefGoogle Scholar
- 84.Karin M, Ben-Neriah Y (2000) Phosphorylation meets ubiquitination: the control of NF-[kappa]B activity. Annu Rev Immunol 18:621–663PubMedCrossRefGoogle Scholar
- 85.Lee HH, Dadgostar H, Cheng Q, Shu J, Cheng G (1999) NF-kappaB-mediated up-regulation of Bcl-x and Bfl-1/A1 is required for CD40 survival signaling in B lymphocytes. Proc Natl Acad Sci U S A 96(16):9136–9141PubMedCrossRefGoogle Scholar
- 86.Chu ZL, McKinsey TA, Liu L, Gentry JJ, Malim MH, Ballard DW (1997) Suppression of tumor necrosis factor-induced cell death by inhibitor of apoptosis c-IAP2 is under NF-kappaB control. Proc Natl Acad Sci U S A 94(19):10057–10062PubMedCrossRefGoogle Scholar
- 87.Wang CY, Mayo MW, Korneluk RG, Goeddel DV, Baldwin AS Jr (1998) NF-kappaB antiapoptosis: induction of TRAF1 and TRAF2 and c-IAP1 and c-IAP2 to suppress caspase-8 activation. Science 281(5383):1680–1683PubMedCrossRefGoogle Scholar
- 88.Zhang H, Cowan-Jacob SW, Simonen M, Greenhalf W, Heim J, Meyhack B (2000) Structural basis of BFL-1 for its interaction with BAX and its anti-apoptotic action in mammalian and yeast cells. J Biol Chem 275(15):11092–11099PubMedCrossRefGoogle Scholar
- 89.Werner AB, de Vries E, Tait SW, Bontjer I, Borst J (2002) Bcl-2 family member Bfl-1/A1 sequesters truncated bid to inhibit is collaboration with pro-apoptotic Bak or Bax. J Biol Chem 277(25):22781–22788PubMedCrossRefGoogle Scholar
- 90.Yang E, Zha J, Jockel J, Boise LH, Thompson CB, Korsmeyer SJ (1995) Bad, a heterodimeric partner for Bcl-XL and Bcl-2, displaces Bax and promotes cell death. Cell 80(2):285–291PubMedCrossRefGoogle Scholar
- 91.Zhou A, Scoggin S, Gaynor RB, Williams NS (2003) Identification of NF-kappa B-regulated genes induced by TNFalpha utilizing expression profiling and RNA interference. Oncogene 22(13):2054–2064PubMedCrossRefGoogle Scholar
- 92.Yao R, Cooper GM (1995) Requirement for phosphatidylinositol-3 kinase in the prevention of apoptosis by nerve growth factor. Science 267(5206):2003–2006PubMedCrossRefGoogle Scholar
- 93.Wendel HG, De Stanchina E, Fridman JS et al (2004) Survival signalling by Akt and eIF4E in oncogenesis and cancer therapy. Nature 428(6980): 332–337PubMedCrossRefGoogle Scholar
- 94.Bao S, Ouyang G, Bai X et al (2004) Periostin potently promotes metastatic growth of colon cancer by augmenting cell survival via the Akt/PKB pathway. Cancer Cell 5(4):329–339PubMedCrossRefGoogle Scholar
- 95.Shi Q, Bao S, Maxwell JA et al (2004) Secreted protein acidic, rich in cysteine (SPARC), mediates cellular survival of gliomas through AKT activation. J Biol Chem 279(50):52200–52209PubMedCrossRefGoogle Scholar
- 96.Gupta D, Syed NA, Roesler WJ, Khandelwal RL (2004) Effect of overexpression and nuclear translocation of constitutively active PKB-alpha on cellular survival and proliferation in HepG2 cells. J Cell Biochem 93(3):513–525PubMedCrossRefGoogle Scholar
- 97.del Peso L, Gonzalez-Garcia M, Page C, Herrera R, Nunez G (1997) Interleukin-3-induced phosphorylation of BAD through the protein kinase Akt. Science 278(5338):687–689PubMedCrossRefGoogle Scholar
- 98.Datta SR, Dudek H, Tao X et al (1997) Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 91(2):231–241PubMedCrossRefGoogle Scholar
- 99.Zha J, Harada H, Yang E, Jockel J, Korsmeyer SJ (1996) Serine phosphorylation of death agonist BAD in response to survival factor results in binding to 14–3-3 not BCL-X(L). Cell 87(4):619–628PubMedCrossRefGoogle Scholar
- 100.Budihardjo I, Oliver H, Lutter M, Luo X, Wang X (1999) Biochemical pathways of caspase activation during apoptosis. Annu Rev Cell Dev Biol 15:269–290PubMedCrossRefGoogle Scholar
- 101.Cardone MH, Roy N, Stennicke HR et al (1998) Regulation of cell death protease caspase-9 by phosphorylation. Science 282(5392):1318–1321PubMedCrossRefGoogle Scholar
- 102.Fujita E, Jinbo A, Matuzaki H, Konishi H, Kikkawa U, Momoi T (1999) Akt phosphorylation site found in human caspase-9 is absent in mouse caspase-9. Biochem Biophys Res Commun 264(2): 550–555PubMedCrossRefGoogle Scholar
- 103.Kim AH, Khursigara G, Sun X, Franke TF, Chao MV (2001) Akt phosphorylates and negatively regulates apoptosis signal-regulating kinase 1. Mol Cell Biol 21(3):893–901PubMedCrossRefGoogle Scholar
- 104.Sumbayev VV, Yasinska IM (2005) Regulation of MAP kinase-dependent apoptotic pathway: implication of reactive oxygen and nitrogen species. Arch Biochem Biophys 436(2):406–412PubMedCrossRefGoogle Scholar
- 105.Pahl HL (1999) Activators and target genes of Rel/NF-kappaB transcription factors. Oncogene 18(49):6853–6866PubMedCrossRefGoogle Scholar
- 106.Kane LP, Shapiro VS, Stokoe D, Weiss A (1999) Induction of NF-kappaB by the Akt/PKB kinase. Curr Biol 9(11):601–604PubMedCrossRefGoogle Scholar
- 107.Gottlieb TM, Leal JF, Seger R, Taya Y, Oren M (2002) Cross-talk between Akt, p53 and Mdm2: possible implications for the regulation of apoptosis. Oncogene 21(8):1299–1303PubMedCrossRefGoogle Scholar
- 108.Mayo LD, Donner DB (2001) A phosphatidylinositol 3-kinase/Akt pathway promotes translocation of Mdm2 from the cytoplasm to the nucleus. Proc Natl Acad Sci U S A 98(20): 11598–11603PubMedCrossRefGoogle Scholar
- 109.Franke TF, Hornik CP, Segev L, Shostak GA, Sugimoto C (2003) PI3K/Akt and apoptosis: size matters. Oncogene 22(56):8983–8998PubMedCrossRefGoogle Scholar
- 110.Christmann M, Tomicic MT, Roos WP, Kaina B (2003) Mechanisms of human DNA repair: an update. Toxicology 193(1–2):3–34PubMedCrossRefGoogle Scholar
- 111.Shi et al. (2009) DNA-PKCS-PIDDosome: A nuclear caspase-2-activating complex with role in G2/m check point maintenance, Cell 136(2):508–502PubMedCrossRefGoogle Scholar