Skip to main content

Molecular Pathogenesis

  • Chapter
  • First Online:
Primary Central Nervous System Tumors

Part of the book series: Current Clinical Oncology ((CCO))

  • 1294 Accesses

Abstract

Several decades of concentrated efforts have improved the understanding of the molecular biology and pathogenesis of primary brain tumors. Historically, primary brain tumors have been diagnosed and graded based on histopathologic criteria. However, as more data have accumulated regarding the molecular alterations underlying specific tumors, it has become clear that a number of key molecular alterations are associated with the initiation, progression, and clinical outcome of specific tumor histologies and grades.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Louis DN, et al. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. 2007;114 2:97–109.

    Article  PubMed  Google Scholar 

  2. Bogler O, Huang HJ, Cavenee WK. Loss of wild-type p53 bestows a growth advantage on primary cortical astrocytes and facilitates their in vitro transformation. Cancer Res. 1995;55 13:2746–51.

    CAS  PubMed  Google Scholar 

  3. Reilly KM, et al. Nf1;Trp53 mutant mice develop glioblastoma with evidence of strain-specific effects. Nat Genet. 2000;26 1:109–13.

    Article  CAS  PubMed  Google Scholar 

  4. Zhu Y, et al. Early inactivation of p53 tumor suppressor gene cooperating with NF1 loss induces malignant astrocytoma. Cancer Cell 2005;8 2:119–30.

    Article  CAS  PubMed  Google Scholar 

  5. Okamoto Y, et al. Population-based study on incidence, survival rates, and genetic alterations of low-grade diffuse astrocytomas and oligodendrogliomas. Acta Neuropathol. 2004;108 1:49–56.

    Article  PubMed  Google Scholar 

  6. Watanabe K, et al. Incidence and timing of p53 mutations during astrocytoma progression in patients with multiple biopsies. Clin Cancer Res. 1997;3 4:523–30.

    CAS  PubMed  Google Scholar 

  7. Cancer Genome Atlas Research Network. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 2008;455 7216:1061–8.

    Google Scholar 

  8. Yeh HJ, et al. Developmental expression of the platelet-derived growth factor alpha-receptor gene in mammalian central nervous system. Proc Natl Acad Sci USA. 1993;90 5:1952–6.

    Article  CAS  PubMed  Google Scholar 

  9. Heldin CH, Wasteson A, Westermark B. Growth of normal human glial cells in a defined medium containing platelet-derived growth factor. Proc Natl Acad Sci USA. 1980;77 11:6611–5.

    Article  CAS  PubMed  Google Scholar 

  10. Potapova O, et al. Platelet-derived growth factor-B/v-sis confers a tumorigenic and metastatic phenotype to human T98G glioblastoma cells. Cancer Res. 1996;56 2:280–6.

    CAS  PubMed  Google Scholar 

  11. Hermanson M, et al. Platelet-derived growth factor and its receptors in human glioma tissue: expression of messenger RNA and protein suggests the presence of autocrine and paracrine loops. Cancer Res. 1992;52 11:3213–9.

    CAS  PubMed  Google Scholar 

  12. Dai C, et al. The characteristics of astrocytomas and oligodendrogliomas are caused by two distinct and interchangeable signaling formats. Neoplasia 2005;7 4:397–406.

    Article  CAS  PubMed  Google Scholar 

  13. Parsons DW, et al. An integrated genomic analysis of human glioblastoma multiforme. Science 2008;321 5897:1807–12.

    Article  CAS  PubMed  Google Scholar 

  14. Yan H, et al. IDH1 and IDH2 mutations in gliomas. N Engl J Med. 2009;360 8:765–73.

    Article  CAS  PubMed  Google Scholar 

  15. Watanabe T, et al. IDH1 mutations are early events in the development of astrocytomas and oligodendrogliomas. Am J Pathol. 2009;174 4:1149–53.

    Article  CAS  PubMed  Google Scholar 

  16. Ichimura K, et al. IDH1 mutations are present in the majority of common adult gliomas but rare in primary glioblastomas. Neuro Oncol. 2009;11 4:341–7.

    Article  CAS  PubMed  Google Scholar 

  17. Balss J, et al. Analysis of the IDH1 codon 132 mutation in brain tumors. Acta Neuropathol. 2008;116 6:597–602.

    Article  CAS  PubMed  Google Scholar 

  18. Hartmann C, et al. Type and frequency of IDH1 and IDH2 mutations are related to astrocytic and oligodendroglial differentiation and age: a study of 1,010 diffuse gliomas. Acta Neuropathol. 2009;118 4:469–74.

    Article  PubMed  Google Scholar 

  19. Yan H, et al. Mutant metabolic enzymes are at the origin of gliomas. Cancer Res. 2009;69 24:9157–9.

    Article  CAS  PubMed  Google Scholar 

  20. Hirose Y, et al. Grade II astrocytomas are subgrouped by chromosome aberrations. Cancer Genet Cytogenet. 2003;142 1:1–7.

    Article  CAS  PubMed  Google Scholar 

  21. Watanabe T, et al. Phenotype versus genotype correlation in oligodendrogliomas and low-grade diffuse astrocytomas. Acta Neuropathol. 2002;103 3:267–75.

    Article  CAS  PubMed  Google Scholar 

  22. Shete S, et al. Genome-wide association study identifies five susceptibility loci for glioma. Nat Genet. 2009;41 8:899–904.

    Article  CAS  PubMed  Google Scholar 

  23. Wrensch M, et al. Variants in the CDKN2B and RTEL1 regions are associated with high-grade glioma susceptibility. Nat Genet. 2009;41 8:905–8.

    Article  CAS  PubMed  Google Scholar 

  24. Bauman G, et al. Pretreatment factors predict overall survival for patients with low-grade glioma: a recursive partitioning analysis. Int J Radiat Oncol Biol Phys. 1999;45 4:923–9.

    Article  CAS  PubMed  Google Scholar 

  25. Schomas DA, et al. Intracranial low-grade gliomas in adults: 30-year experience with long-term follow-up at Mayo Clinic. Neuro Oncol. 2009;11 4:437–45.

    Article  PubMed  Google Scholar 

  26. Shaw EG, et al. Recurrence following neurosurgeon-determined gross-total resection of adult supratentorial low-grade glioma: results of a prospective clinical trial. J Neurosurg. 2008;109 5:835–41.

    Article  PubMed  Google Scholar 

  27. Watanabe T, et al. Deregulation of the TP53/p14ARF tumor suppressor pathway in low-grade diffuse astrocytomas and its influence on clinical course. Clin Cancer Res. 2003;9 13:4884–90.

    CAS  PubMed  Google Scholar 

  28. Peraud A, et al. Prognostic impact of TP53 mutations and P53 protein overexpression in supratentorial WHO grade II astrocytomas and oligoastrocytomas. Clin Cancer Res. 2002;8 5:1117–24.

    CAS  PubMed  Google Scholar 

  29. Giannini C, et al. Cellular proliferation in pilocytic and diffuse astrocytomas. J Neuropathol Exp Neurol. 1999;58 1:46–53.

    Article  CAS  PubMed  Google Scholar 

  30. Colman H, et al. Assessment and prognostic significance of mitotic index using the mitosis marker phospho-histone H3 in low and intermediate-grade infiltrating astrocytomas. Am J Surg Pathol. 2006;30 5:657–64.

    Article  PubMed  Google Scholar 

  31. Nobusawa S, et al. IDH1 mutations as molecular signature and predictive factor of secondary glioblastomas. Clin Cancer Res. 2009;15 19:6002–7.

    Article  CAS  PubMed  Google Scholar 

  32. Weller M, et al. Molecular predictors of progression-free and overall survival in patients with newly diagnosed glioblastoma: a prospective translational study of the German Glioma Network. J Clin Oncol. 2009;27 34:5743–50.

    Article  CAS  PubMed  Google Scholar 

  33. Louis DN. Molecular pathology of malignant gliomas. Annu Rev Pathol. 2006;1:97–117.

    Article  CAS  PubMed  Google Scholar 

  34. Maher EA, et al. Malignant glioma: genetics and biology of a grave matter. Genes Dev. 2001;15 11:1311–33.

    Article  CAS  PubMed  Google Scholar 

  35. Cairncross JG, et al. Specific genetic predictors of chemotherapeutic response and survival in patients with anaplastic oligodendrogliomas. J Natl Cancer Inst. 1998;90 19:1473–9.

    Article  CAS  PubMed  Google Scholar 

  36. Reifenberger G, Louis DN. Oligodendroglioma: toward molecular definitions in diagnostic neuro-oncology. J Neuropathol Exp Neurol. 2003;62 2:111–26.

    CAS  PubMed  Google Scholar 

  37. Jenkins RB, et al. A t(1;19)(q10;p10) mediates the combined deletions of 1p and 19q and predicts a better prognosis of patients with oligodendroglioma. Cancer Res. 2006;66 20:9852–61.

    Article  CAS  PubMed  Google Scholar 

  38. Yip S, Iafrate AJ, Louis DN. Molecular diagnostic testing in malignant gliomas: a practical update on predictive markers. J Neuropathol Exp Neurol. 2008;67 1:1–15.

    Article  CAS  PubMed  Google Scholar 

  39. van den Bent MJ. Advances in the biology and treatment of oligodendrogliomas. Curr Opin Neurol. 2004;17 6:675–80.

    Article  PubMed  Google Scholar 

  40. Ohgaki H, Kleihues P. Genetic pathways to primary and secondary glioblastoma. Am J Pathol. 2007;170 5:1445–53.

    Article  CAS  PubMed  Google Scholar 

  41. Ohgaki H, Kleihues P. Genetic alterations and signaling pathways in the evolution of gliomas. Cancer Sci. 2009;100 12:2235–41.

    Article  CAS  PubMed  Google Scholar 

  42. Purow B, Schiff D. Advances in the genetics of glioblastoma: are we reaching critical mass?. Nat Rev Neurol. 2009;5 8:419–26.

    Article  CAS  PubMed  Google Scholar 

  43. Wong AJ, et al. Increased expression of the epidermal growth factor receptor gene in malignant gliomas is invariably associated with gene amplification. Proc Natl Acad Sci USA. 1987;84 19:6899–903.

    Article  CAS  PubMed  Google Scholar 

  44. Ekstrand AJ, et al. Amplified and rearranged epidermal growth factor receptor genes in human glioblastomas reveal deletions of sequences encoding portions of the N- and/or C-terminal tails. Proc Natl Acad Sci USA. 1992;89 10:4309–13.

    Article  CAS  PubMed  Google Scholar 

  45. Tohma Y, et al. PTEN (MMAC1) mutations are frequent in primary glioblastomas (de novo) but not in secondary glioblastomas. J Neuropathol Exp Neurol. 1998;57 7:684–9.

    Article  CAS  PubMed  Google Scholar 

  46. Lin H, et al. Allelic deletion analyses of MMAC/PTEN and DMBT1 loci in gliomas: relationship to prognostic significance. Clin Cancer Res. 1998;4 10:2447–54.

    CAS  PubMed  Google Scholar 

  47. Steck PA, et al. Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers. Nat Genet. 1997;15 4:356–62.

    Article  CAS  PubMed  Google Scholar 

  48. Carson DA, Lois A. Cancer progression and p53. Lancet 1995;346 8981:1009–11.

    Article  CAS  PubMed  Google Scholar 

  49. Reifenberger G, et al. Amplification and overexpression of the MDM2 gene in a subset of human malignant gliomas without p53 mutations. Cancer Res. 1993;53 12:2736–9.

    CAS  PubMed  Google Scholar 

  50. Jen J, et al. Deletion of p16 and p15 genes in brain tumors. Cancer Res. 1994;54 24:6353–8.

    CAS  PubMed  Google Scholar 

  51. Nishikawa R, et al. Loss of P16INK4 expression is frequent in high grade gliomas. Cancer Res. 1995;55 9:1941–5.

    CAS  PubMed  Google Scholar 

  52. Fulci G, et al. p53 gene mutation and ink4a-arf deletion appear to be two mutually exclusive events in human glioblastoma. Oncogene 2000;19 33:3816–22.

    Article  CAS  PubMed  Google Scholar 

  53. Henson JW, et al. The retinoblastoma gene is involved in malignant progression of astrocytomas. Ann Neurol. 1994;36 5:714–21.

    Article  CAS  PubMed  Google Scholar 

  54. Costello JF, et al. Cyclin-dependent kinase 6 (CDK6) amplification in human gliomas identified using two-dimensional separation of genomic DNA. Cancer Res. 1997;57 7:1250–4.

    CAS  PubMed  Google Scholar 

  55. Clarke J, Butowski N, Chang S. Recent advances in therapy for glioblastoma. Arch Neurol. 2010;67 3:279–83.

    Google Scholar 

  56. Rich JN, Bigner DD. Development of novel targeted therapies in the treatment of malignant glioma. Nat Rev Drug Discov. 2004;3 5:430–46.

    Article  CAS  PubMed  Google Scholar 

  57. Huse JT, Holland EC. Targeting brain cancer: advances in the molecular pathology of malignant glioma and medulloblastoma. Nat Rev Cancer. 2010;10 5:319–31.

    Google Scholar 

  58. Chi A, Norden AD, Wen PY. Inhibition of angiogenesis and invasion in malignant gliomas. Expert Rev Anticancer Ther. 2007;7 11:1537–60.

    Article  CAS  PubMed  Google Scholar 

  59. Norden AD, Drappatz J, Wen PY. Antiangiogenic therapies for high-grade glioma. Nat Rev Neurol. 2009;5 11:610–20.

    Article  CAS  PubMed  Google Scholar 

  60. Khasraw M, Lassman AB. Advances in the treatment of malignant gliomas. Curr Oncol Rep. 2010;12 1:26–33.

    Google Scholar 

  61. Chi AS, et al. Angiogenesis as a therapeutic target in malignant gliomas. Oncologist 2009;14 6:621–36.

    Article  CAS  PubMed  Google Scholar 

  62. Desjardins A, Reardon DA, Vredenburgh JJ. Current available therapies and future directions in the treatment of malignant gliomas. Biologics 2009;3:15–25.

    CAS  PubMed  Google Scholar 

  63. Verhaak RG, et al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 2010;17 1:98–110.

    Article  CAS  PubMed  Google Scholar 

  64. Brennan C, et al. Glioblastoma subclasses can be defined by activity among signal transduction pathways and associated genomic alterations. PLoS One 2009;4 11:e7752.

    Article  PubMed  Google Scholar 

  65. Nigro JM, et al. Integrated array-comparative genomic hybridization and expression array profiles identify clinically relevant molecular subtypes of glioblastoma. Cancer Res. 2005;65 5:1678–86.

    Article  CAS  PubMed  Google Scholar 

  66. Phillips HS, et al. Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell 2006;9 3:157–73.

    Article  CAS  PubMed  Google Scholar 

  67. Nutt CL, et al. Gene expression-based classification of malignant gliomas correlates better with survival than histological classification. Cancer Res. 2003;63 7:1602–7.

    CAS  PubMed  Google Scholar 

  68. Rich JN, et al. Gene expression profiling and genetic markers in glioblastoma survival. Cancer Res. 2005;65 10:4051–8.

    Article  CAS  PubMed  Google Scholar 

  69. Freije WA, et al. Gene expression profiling of gliomas strongly predicts survival. Cancer Res. 2004;64 18:6503–10.

    Article  CAS  PubMed  Google Scholar 

  70. Li A, et al. Unsupervised analysis of transcriptomic profiles reveals six glioma subtypes. Cancer Res. 2009;69 5:2091–9.

    Article  CAS  PubMed  Google Scholar 

  71. Stupp R, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352 10:987–96.

    Article  CAS  PubMed  Google Scholar 

  72. Hegi ME, et al. MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med. 2005;352 10:997–1003.

    Article  CAS  PubMed  Google Scholar 

  73. Colman H, Aldape K. Molecular predictors in glioblastoma: toward personalized therapy. Arch Neurol. 2008;65 7:877–83.

    Article  PubMed  Google Scholar 

  74. Colman H, et al. A multigene predictor of outcome in glioblastoma. Neuro Oncol. 2010;12 1:49–57.

    CAS  PubMed  Google Scholar 

  75. Noushmehr H, et al. Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. Cancer Cell 2010;17 5:510–22.

    Article  CAS  PubMed  Google Scholar 

  76. Haas-Kogan DA, et al. Epidermal growth factor receptor, protein kinase B/Akt, and glioma response to erlotinib. J Natl Cancer Inst. 2005;97 12:880–7.

    Article  CAS  PubMed  Google Scholar 

  77. Mellinghoff IK, et al. Molecular determinants of the response of glioblastomas to EGFR kinase inhibitors. N Engl J Med. 2005;353 19:2012–24.

    Article  CAS  PubMed  Google Scholar 

  78. Holland EC, et al. Combined activation of Ras and Akt in neural progenitors induces glioblastoma formation in mice. Nat Genet. 2000;25 1:55–7.

    Article  CAS  PubMed  Google Scholar 

  79. Uhrbom L, et al. Ink4a-Arf loss cooperates with KRas activation in astrocytes and neural progenitors to generate glioblastomas of various morphologies depending on activated Akt. Cancer Res. 2002;62 19:5551–8.

    CAS  PubMed  Google Scholar 

  80. Bachoo RM, et al. Epidermal growth factor receptor and Ink4a/Arf: convergent mechanisms governing terminal differentiation and transformation along the neural stem cell to astrocyte axis. Cancer Cell 2002;1 3:269–77.

    Article  CAS  PubMed  Google Scholar 

  81. Zheng H, et al. Pten and p53 converge on c-Myc to control differentiation, self-renewal, and transformation of normal and neoplastic stem cells in glioblastoma. Cold Spring Harb Symp Quant Biol. 2008;73:427–37.

    Article  CAS  PubMed  Google Scholar 

  82. Llaguno SA, et al. Neural and cancer stem cells in tumor suppressor mouse models of malignant astrocytoma. Cold Spring Harb Symp Quant Biol. 2008;73:421–6.

    Article  CAS  PubMed  Google Scholar 

  83. Dai C, et al. PDGF autocrine stimulation dedifferentiates cultured astrocytes and induces oligodendrogliomas and oligoastrocytomas from neural progenitors and astrocytes in vivo. Genes Dev. 2001;15 15:1913–25.

    Article  CAS  PubMed  Google Scholar 

  84. Weiss WA, et al. Genetic determinants of malignancy in a mouse model for oligodendroglioma. Cancer Res. 2003;63 7:1589–95.

    CAS  PubMed  Google Scholar 

  85. Clarke MF, et al. Cancer stem cells – perspectives on current status and future directions: AACR workshop on cancer stem cells. Cancer Res. 2006;66 19:9339–44.

    Article  CAS  PubMed  Google Scholar 

  86. Reya T, et al. Stem cells, cancer, and cancer stem cells. Nature 2001;414 6859:105–11.

    Article  CAS  PubMed  Google Scholar 

  87. Wang JC, Dick JE. Cancer stem cells: lessons from leukemia. Trends Cell Biol. 2005;15 9:494–501.

    Article  CAS  PubMed  Google Scholar 

  88. Singh SK, et al. Cancer stem cells in nervous system tumors. Oncogene 2004;23 43:7267–73.

    Article  CAS  PubMed  Google Scholar 

  89. Singh SK, et al. Identification of a cancer stem cell in human brain tumors. Cancer Res. 2003;63 18:5821–8.

    CAS  PubMed  Google Scholar 

  90. Singh SK, et al. Identification of human brain tumour initiating cells. Nature 2004;432 7015:396–401.

    Article  CAS  PubMed  Google Scholar 

  91. Galli R, et al. Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res. 2004;64 19:7011–21.

    Article  CAS  PubMed  Google Scholar 

  92. Hemmati HD, et al. Cancerous stem cells can arise from pediatric brain tumors. Proc Natl Acad Sci USA. 2003;100 25:15178–83.

    Article  CAS  PubMed  Google Scholar 

  93. Taylor MD, et al. Radial glia cells are candidate stem cells of ependymoma. Cancer Cell 2005;8 4:323–35.

    Article  CAS  PubMed  Google Scholar 

  94. Yuan X, et al. Isolation of cancer stem cells from adult glioblastoma multiforme. Oncogene 2004;23 58:9392–400.

    Article  CAS  PubMed  Google Scholar 

  95. Ignatova TN, et al. Human cortical glial tumors contain neural stem-like cells expressing astroglial and neuronal markers in vitro. Glia 2002;39 3:193–206.

    Article  PubMed  Google Scholar 

  96. Lee J, et al. Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines. Cancer Cell 2006;9 5:391–403.

    Article  CAS  PubMed  Google Scholar 

  97. Ligon KL, et al. Olig2-regulated lineage-restricted pathway controls replication competence in neural stem cells and malignant glioma. Neuron 2007;53 4:503–17.

    Article  CAS  PubMed  Google Scholar 

  98. Chen R, et al. A hierarchy of self-renewing tumor-initiating cell types in glioblastoma. Cancer Cell 2010;17 4:362–75.

    Article  CAS  PubMed  Google Scholar 

  99. Wang J, et al. CD133 negative glioma cells form tumors in nude rats and give rise to CD133 positive cells. Int J Cancer. 2008;122 4:761–8.

    Article  CAS  PubMed  Google Scholar 

  100. Ogden AT, et al. Identification of A2B5+CD133-tumor-initiating cells in adult human gliomas. Neurosurgery 2008;62 2:505–14. discussion 514–5.

    Article  PubMed  Google Scholar 

  101. Bao S, et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 2006;444 7120:756–60.

    Article  CAS  PubMed  Google Scholar 

  102. Liu G, et al. Analysis of gene expression and chemoresistance of CD133+ cancer stem cells in glioblastoma. Mol Cancer. 2006;5:67.

    Article  PubMed  Google Scholar 

  103. Calabrese C, et al. A perivascular niche for brain tumor stem cells. Cancer Cell 2007;11 1:69–82.

    Article  CAS  PubMed  Google Scholar 

  104. Bao S, et al. Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor. Cancer Res. 2006;66 16:7843–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken Aldape .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Colman, H., Aldape, K. (2011). Molecular Pathogenesis. In: Norden, A., Reardon, D., Wen, P. (eds) Primary Central Nervous System Tumors. Current Clinical Oncology. Humana Press. https://doi.org/10.1007/978-1-60761-166-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-166-0_2

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-165-3

  • Online ISBN: 978-1-60761-166-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics