Skip to main content

The Role of CTGF in Diabetic Retinopathy

  • Chapter
  • First Online:
  • 1048 Accesses

Part of the book series: Ophthalmology Research ((OPHRES))

Abstract

Diabetic retinopathy (DR) is a leading cause of ocular morbidity [1]. The pathogenesis of DR is only partly understood. Before development of clinical signs, it involves a complex sequence of events, a phase called preclinical DR (PCDR), finally leading to retinal vascular occlusion and ischemia. This causes the clinical manifestations of the disease: vision-threatening vascular leakage and macular edema, and preretinal neovascularization [2, 3]. The latter condition, proliferative DR (PDR), is essentially a wound healing-like response.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Frank RN. Diabetic retinopathy. N Engl J Med. 2004;350(1):48–58.

    PubMed  CAS  Google Scholar 

  2. Aiello LP, Wong JS. Role of vascular endothelial growth factor in diabetic vascular complications. Kidney Int Suppl. 2000;77:S113–9.

    PubMed  CAS  Google Scholar 

  3. Schlingemann RO, van Hinsbergh VW. Role of vascular permeability factor/vascular endothelial growth factor in eye disease. Br J Ophthalmol. 1997;81(6):501–12.

    PubMed  CAS  Google Scholar 

  4. Spirin KS, Saghizadeh M, Lewin SL, Zardi L, Kenney MC, Ljubimov AV. Basement membrane and growth factor gene expression in normal and diabetic human retinas. Curr Eye Res. 1999;18(6):490–9.

    PubMed  CAS  Google Scholar 

  5. Aiello LP, Avery RL, Arrigg PG, et al. Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders. N Engl J Med. 1994;331(22):1480–7.

    PubMed  CAS  Google Scholar 

  6. Witmer AN, Vrensen GFJM, Van Noorden CJF, Schlingemann RO. Vascular endothelial growth factors and angiogenesis in eye disease. Prog Retin Eye Res. 2003;22(1):1–29.

    PubMed  CAS  Google Scholar 

  7. Babic AM, Chen CC, Lau LF. Fisp12/mouse connective tissue growth factor mediates endothelial cell adhesion and migration through integrin alphavbeta3, promotes endothelial cell survival, and induces angiogenesis in vivo. Mol Cell Biol. 1999;19(4):2958–66.

    PubMed  CAS  Google Scholar 

  8. Fan WH, Pech M, Karnovsky MJ. Connective tissue growth factor (CTGF) stimulates ­vascular smooth muscle cell growth and migration in vitro. Eur J Cell Biol. 2000;79(12):915–23.

    PubMed  CAS  Google Scholar 

  9. Moussad EE, Brigstock DR. Connective tissue growth factor: what’s in a name? Mol Genet Metab. 2000;71(1–2):276–92.

    PubMed  CAS  Google Scholar 

  10. Shimo T, Nakanishi T, Nishida T, et al. Connective tissue growth factor induces the proliferation, migration, and tube formation of vascular endothelial cells in vitro, and angiogenesis in vivo. J Biochem. 1999;126(1):137–45.

    PubMed  CAS  Google Scholar 

  11. Suzuma K, Naruse K, Suzuma I, et al. Vascular endothelial growth factor induces expression of connective tissue growth factor via KDR, Flt1, and phosphatidylinositol 3-kinase-akt-dependent pathways in retinal vascular cells. J Biol Chem. 2000;275(52):40725–31.

    PubMed  CAS  Google Scholar 

  12. Duncan MR, Frazier KS, Abramson S, et al. Connective tissue growth factor mediates transforming growth factor beta-induced collagen synthesis: downregulation by cAMP. FASEB J. 1999;13(13):1774–86.

    PubMed  CAS  Google Scholar 

  13. Khan ZA, Chakrabarti S. Growth factors in proliferative diabetic retinopathy. Exp Diabesity Res. 2003;4(4):287–301.

    PubMed  Google Scholar 

  14. Zimmet P, Alberti KGMM, Shaw J. Global and societal implications of the diabetes epidemic. Nature. 2001;414(6865):782–7.

    PubMed  CAS  Google Scholar 

  15. Murphy M, Godson C, Cannon S, et al. Suppression subtractive hybridization identifies high glucose levels as a stimulus for expression of connective tissue growth factor and other genes in human mesangial cells. J Biol Chem. 1999;274(9):5830–4.

    PubMed  CAS  Google Scholar 

  16. Riser BL, Denichilo M, Cortes P, et al. Regulation of connective tissue growth factor activity in cultured rat mesangial cells and its expression in experimental diabetic glomerulosclerosis. J Am Soc Nephrol. 2000;11(1):25–38.

    PubMed  CAS  Google Scholar 

  17. Twigg SM, Chen MM, Joly AH, et al. Advanced glycosylation end products up-regulate connective tissue growth factor (insulin-like growth factor-binding protein-related protein 2) in human fibroblasts: a potential mechanism for expansion of extracellular matrix in diabetes mellitus. Endocrinology. 2001;142(5):1760–9.

    PubMed  CAS  Google Scholar 

  18. Umezono T, Toyoda M, Kato M, et al. Glomerular expression of CTGF, TGF-beta 1 and type IV collagen in diabetic nephropathy. J Nephrol. 2006;19(6):751–7.

    PubMed  CAS  Google Scholar 

  19. Nguyen TQ, Tarnow L, Andersen S, et al. Urinary connective tissue growth factor excretion correlates with clinical markers of renal disease in a large population of type 1 diabetic patients with diabetic nephropathy. Diabetes Care. 2006;29(1):83–8.

    PubMed  CAS  Google Scholar 

  20. Roestenberg P, Van Nieuwenhoven FA, Wieten L, et al. Connective tissue growth factor is increased in plasma of type 1 diabetic patients with nephropathy. Diabetes Care. 2004;27(5):1164–70.

    PubMed  CAS  Google Scholar 

  21. Goldschmeding R, Aten J, Ito Y, Blom I, Rabelink T, Weening JJ. Connective tissue growth factor: just another factor in renal fibrosis? Nephrol Dial Transplant. 2000;15(3):296–9.

    PubMed  CAS  Google Scholar 

  22. Lorenzi M, Gerhardinger C. Early cellular and molecular changes induced by diabetes in the retina. Diabetologia. 2001;44(7):791–804.

    PubMed  CAS  Google Scholar 

  23. Oshitari T, Polewski P, Chadda M, Li A, Sato T, Roy S. Effect of combined antisense oligonucleotides against high-glucose- and diabetes-induced overexpression of extracellular matrix components and increased vascular permeability. Diabetes. 2006;55(1):86–92.

    PubMed  CAS  Google Scholar 

  24. Nishikawa T, Edelstein D, Du XL, et al. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature. 2000;404(6779):787–90.

    PubMed  CAS  Google Scholar 

  25. Roy S, Maiello M, Lorenzi M. Increased expression of basement-membrane collagen in human diabetic-retinopathy. J Clin Invest. 1994;93(1):438–42.

    PubMed  CAS  Google Scholar 

  26. Kuiper EJ, Hughes JM, Van Geest RJ, et al. Effect of VEGF-A on expression of profibrotic growth factor and extracellular matrix genes in the retina. Invest Ophthalmol Vis Sci. 2007;48(9):4267–76.

    PubMed  Google Scholar 

  27. Ljubimov AV, Burgeson RE, Butkowski RJ, et al. Basement membrane abnormalities in human eyes with diabetic retinopathy. J Histochem Cytochem. 1996;44(12):1469–79.

    PubMed  CAS  Google Scholar 

  28. Roy S, Sala R, Cagliero E, Lorenzi M. Overexpression of fibronectin induced by diabetes or high glucose: phenomenon with a memory. Proc Natl Acad Sci USA. 1990;87(1):404–8.

    PubMed  CAS  Google Scholar 

  29. Brownlee M, Spiro RG. Biochemistry of the basement membrane in diabetes mellitus. Adv Exp Med Biol. 1979;124:141–56.

    PubMed  CAS  Google Scholar 

  30. Ban CR, Twigg SM. Fibrosis in diabetes complications: pathogenic mechanisms and circulating and urinary markers. Vasc Health Risk Manag. 2008;4(3):575–96.

    PubMed  CAS  Google Scholar 

  31. The Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med. 1993;329(14):977–86.

    Google Scholar 

  32. UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet. 1998;352(9131):837–53.

    Google Scholar 

  33. Friedenwald J, Day R. The vascular lesions of diabetic retinopathy. Bull Johns Hopkins Hosp. 1950;86(4):253–4.

    PubMed  CAS  Google Scholar 

  34. Curtis TM, Gardiner TA, Stitt AW. Microvascular lesions of diabetic retinopathy: clues towards understanding pathogenesis? Eye (Lond). 2009;23(7):1496–508.

    CAS  Google Scholar 

  35. Mansour SZ, Hatchell DL, Chandler D, Saloupis P, Hatchell MC. Reduction of basement membrane thickening in diabetic cat retina by sulindac. Invest Ophthalmol Vis Sci. 1990;31(3):457–63.

    PubMed  CAS  Google Scholar 

  36. Stitt AW, Anderson HR, Gardiner TA, Archer DB. Diabetic retinopathy: quantitative variation in capillary basement membrane thickening in arterial or venous environments. Br J Ophthalmol. 1994;78(2):133–7.

    PubMed  CAS  Google Scholar 

  37. Gardiner TA, Stitt AW, Anderson HR, Archer DB. Selective loss of vascular smooth muscle cells in the retinal microcirculation of diabetic dogs. Br J Ophthalmol. 1994;78(1):54–60.

    PubMed  CAS  Google Scholar 

  38. Roy S, Sato T, Paryani G, Kao R. Downregulation of fibronectin overexpression reduces basement membrane thickening and vascular lesions in retinas of galactose-fed rats. Diabetes. 2003;52(5):1229–34.

    PubMed  CAS  Google Scholar 

  39. Hayden MR, Sowers JR, Tyagi SC. The central role of vascular extracellular matrix and basement membrane remodeling in metabolic syndrome and type 2 diabetes: the matrix preloaded. Cardiovasc Diabetol. 2005;4(1):9.

    PubMed  Google Scholar 

  40. Tyagi SC, Kumar SG, Banks J, Fortson W. Co-expression of tissue inhibitor and matrix metalloproteinase in myocardium. J Mol Cell Cardiol. 1995;27(10):2177–89.

    PubMed  CAS  Google Scholar 

  41. Riser BL, Cortes P, Yee J, et al. Mechanical strain- and high glucose-induced alterations in mesangial cell collagen metabolism: role of TGF-beta. J Am Soc Nephrol. 1998;9(5):827–36.

    PubMed  CAS  Google Scholar 

  42. Twigg SM, Cooper ME. The time has come to target connective tissue growth factor in diabetic complications. Diabetologia. 2004;47(6):965–8.

    PubMed  CAS  Google Scholar 

  43. McLennan SV, Fisher E, Martell SY, et al. Effects of glucose on matrix metalloproteinase and plasmin activities in mesangial cells: possible role in diabetic nephropathy. Kidney Int Suppl. 2000;77:S81–7.

    PubMed  CAS  Google Scholar 

  44. Geiger M, Binder BR. Plasminogen activation in diabetes mellitus. Kinetics of plasmin formation with tissue plasminogen activator and plasminogen from individual diabetic donors and with in vitro glucosylated plasminogen. Enzyme. 1988;40(2–3):149–57.

    PubMed  CAS  Google Scholar 

  45. Gomez DE, Alonso DF, Yoshiji H, Thorgeirsson UP. Tissue inhibitors of metalloproteinases: structure, regulation and biological functions. Eur J Cell Biol. 1997;74(2):111–22.

    PubMed  CAS  Google Scholar 

  46. Gardiner TA, Anderson HR, Stitt AW. Inhibition of advanced glycation end-products protects against retinal capillary basement membrane expansion during long-term diabetes. J Pathol. 2003;201(2):328–33.

    PubMed  CAS  Google Scholar 

  47. Goldin A, Beckman JA, Schmidt AM, Creager MA. Advanced glycation end products: sparking the development of diabetic vascular injury. Circulation. 2006;114(6):597–605.

    PubMed  CAS  Google Scholar 

  48. Brownlee M, Cerami A, Vlassara H. Advanced glycosylation end products in tissue and the biochemical basis of diabetic complications. N Engl J Med. 1988;318(20):1315–21.

    PubMed  CAS  Google Scholar 

  49. Hughes JM, Kuiper EJ, Klaassen I, et al. Advanced glycation end products cause increased CCN family and extracellular matrix gene expression in the diabetic rodent retina. Diabetologia. 2007;50(5):1089–98.

    PubMed  CAS  Google Scholar 

  50. Feng Y, Wang Y, Pfister F, Hillebrands JL, Deutsch U, Hammes HP. Decreased hypoxia-induced neovascularization in angiopoietin-2 heterozygous knockout mouse through reduced MMP activity. Cell Physiol Biochem. 2009;23(4–6):277–84.

    PubMed  CAS  Google Scholar 

  51. van Hinsbergh VW, Koolwijk P. Endothelial sprouting and angiogenesis: matrix metalloproteinases in the lead. Cardiovasc Res. 2008;78(2):203–12.

    PubMed  Google Scholar 

  52. Das A, Fanslow W, Cerretti D, Warren E, Talarico N, McGuire P. Angiopoietin/Tek interactions regulate mmp-9 expression and retinal neovascularization. Lab Invest. 2003;83(11):1637–45.

    PubMed  CAS  Google Scholar 

  53. Schlingemann RO, Witmer AN. Treatment of retinal diseases with VEGF antagonists. Prog Brain Res. 2009;175:253–67.

    PubMed  CAS  Google Scholar 

  54. Gabbiani G. The myofibroblast in wound healing and fibrocontractive diseases. J Pathol. 2003;200(4):500–3.

    PubMed  CAS  Google Scholar 

  55. van der Slot-Verhoeven AJ, van Dura EA, Attema J, et al. The type of collagen cross-link determines the reversibility of experimental skin fibrosis. Biochim Biophys Acta. 2005;1740(1):60–7.

    PubMed  Google Scholar 

  56. Baum CL, Arpey CJ. Normal cutaneous wound healing: clinical correlation with cellular and molecular events. Dermatol Surg. 2005;31(6):674–86.

    PubMed  CAS  Google Scholar 

  57. Blom IE, van Dijk AJ, Wieten L, et al. In vitro evidence for differential involvement of CTGF, TGFbeta, and PDGF-BB in mesangial response to injury. Nephrol Dial Transplant. 2001;16(6):1139–48.

    PubMed  CAS  Google Scholar 

  58. Franklin TJ. Therapeutic approaches to organ fibrosis. Int J Biochem Cell Biol. 1997;29(1):79–89.

    PubMed  CAS  Google Scholar 

  59. Chen Y, Shi-Wen X, van BJ, et al. Matrix contraction by dermal fibroblasts requires transforming growth factor-beta/activin-linked kinase 5, heparan sulfate-containing proteoglycans, and MEK/ERK: insights into pathological scarring in chronic fibrotic disease. Am J Pathol. 2005;167(6):1699–711.

    PubMed  CAS  Google Scholar 

  60. Kaijzel EL, Koolwijk P, van Erck MG, van Hinsbergh VW, de Maat MP. Molecular weight fibrinogen variants determine angiogenesis rate in a fibrin matrix in vitro and in vivo. J Thromb Haemost. 2006;4(9):1975–81.

    PubMed  CAS  Google Scholar 

  61. Buck M, Houglum K, Chojkier M. Tumor necrosis factor-alpha inhibits collagen alpha1(I) gene expression and wound healing in a murine model of cachexia. Am J Pathol. 1996;149(1):195–204.

    PubMed  CAS  Google Scholar 

  62. Gailit J, Clark RA. Wound repair in the context of extracellular matrix. Curr Opin Cell Biol. 1994;6(5):717–25.

    PubMed  CAS  Google Scholar 

  63. Granstein RD, Murphy GF, Margolis RJ, Byrne MH, Amento EP. Gamma-interferon inhibits collagen synthesis in vivo in the mouse. J Clin Invest. 1987;79(4):1254–8.

    PubMed  CAS  Google Scholar 

  64. Madlener M, Parks WC, Werner S. Matrix metalloproteinases (MMPs) and their physiological inhibitors (TIMPs) are differentially expressed during excisional skin wound repair. Exp Cell Res. 1998;242(1):201–10.

    PubMed  CAS  Google Scholar 

  65. Soo C, Shaw WW, Zhang X, Longaker MT, Howard EW, Ting K. Differential expression of matrix metalloproteinases and their tissue-derived inhibitors in cutaneous wound repair. Plast Reconstr Surg. 2000;105(2):638–47.

    PubMed  CAS  Google Scholar 

  66. Leask A, Abraham DJ. TGF-beta signaling and the fibrotic response. FASEB J. 2004;18(7):816–27.

    PubMed  CAS  Google Scholar 

  67. Pastor JC, de la Rua ER, Martin F. Proliferative vitreoretinopathy: risk factors and pathobiology. Prog Retin Eye Res. 2002;21(1):127–44.

    PubMed  Google Scholar 

  68. Schlingemann RO. Role of growth factors and the wound healing response in age-related macular degeneration. Graefes Arch Clin Exp Ophthalmol. 2004;242(1):91–101.

    PubMed  CAS  Google Scholar 

  69. Brigstock DR, Goldschmeding R, Katsube KI, et al. Proposal for a unified CCN nomenclature. Mol Pathol. 2003;56(2):127–8.

    PubMed  CAS  Google Scholar 

  70. Lau LF, Lam SC. The CCN family of angiogenic regulators: the integrin connection. Exp Cell Res. 1999;248(1):44–57.

    PubMed  CAS  Google Scholar 

  71. Perbal B. CCN proteins: multifunctional signalling regulators. Lancet. 2004;363(9402):62–4.

    PubMed  CAS  Google Scholar 

  72. Brigstock DR. The connective tissue growth factor/cysteine-rich 61/nephroblastoma overexpressed (CCN) family. Endocr Rev. 1999;20(2):189–206.

    PubMed  CAS  Google Scholar 

  73. Gao R, Brigstock DR. Connective tissue growth factor (CCN2) induces adhesion of rat activated hepatic stellate cells by binding of its C-terminal domain to integrin alpha(v)beta(3) and heparan sulfate proteoglycan. J Biol Chem. 2004;279(10):8848–55.

    PubMed  CAS  Google Scholar 

  74. Hoshijima M, Hattori T, Inoue M, et al. CT domain of CCN2/CTGF directly interacts with fibronectin and enhances cell adhesion of chondrocytes through integrin alpha5beta1. FEBS Lett. 2006;580(5):1376–82.

    PubMed  CAS  Google Scholar 

  75. Nguyen TQ, Goldschmeding R. Bone morphogenetic protein-7 and connective tissue growth factor: novel targets for treatment of renal fibrosis? Pharm Res. 2008;25(10):2416–26.

    PubMed  CAS  Google Scholar 

  76. Pi L, Ding X, Jorgensen M, et al. Connective tissue growth factor with a novel fibronectin binding site promotes cell adhesion and migration during rat oval cell activation. Hepatology. 2008;47(3):996–1004.

    PubMed  CAS  Google Scholar 

  77. Abreu JG, Ketpura NI, Reversade B, De Robertis EM. Connective-tissue growth factor (CTGF) modulates cell signalling by BMP and TGF-beta. Nat Cell Biol. 2002;4(8):599–604.

    PubMed  CAS  Google Scholar 

  78. Lam S, van der Geest RN, Verhagen NA, et al. Connective tissue growth factor and IGF-I are produced by human renal fibroblasts and cooperate in the induction of collagen production by high glucose. Diabetes. 2003;52(12):2975–83.

    PubMed  CAS  Google Scholar 

  79. Hashimoto G, Inoki I, Fujii Y, Aoki T, Ikeda E, Okada Y. Matrix metalloproteinases cleave connective tissue growth factor and reactivate angiogenic activity of vascular endothelial growth factor 165. J Biol Chem. 2002;277(39):36288–95.

    PubMed  CAS  Google Scholar 

  80. Bradham DM, Igarashi A, Potter RL, Grotendorst GR. Connective tissue growth factor: a cysteine-rich mitogen secreted by human vascular endothelial cells is related to the SRC-induced immediate early gene product CEF-10. J Cell Biol. 1991;114(6):1285–94.

    PubMed  CAS  Google Scholar 

  81. Liu LD, Shi HJ, Jiang L, et al. The repairing effect of a recombinant human connective-­tissue growth factor in a burn-wounded rhesus-monkey (Macaca mulatta) model. Biotechnol Appl Biochem. 2007;47(2):105–12.

    PubMed  CAS  Google Scholar 

  82. Igarashi A, Okochi H, Bradham DM, Grotendorst GR. Regulation of connective tissue growth factor gene expression in human skin fibroblasts and during wound repair. Mol Biol Cell. 1993;4(6):637–45.

    PubMed  CAS  Google Scholar 

  83. Leask A, Abraham DJ. The role of connective tissue growth factor, a multifunctional matricellular protein, in fibroblast biology. Biochem Cell Biol. 2003;81(6):355–63.

    PubMed  CAS  Google Scholar 

  84. Grotendorst GR, Rahmanie H, Duncan MR. Combinatorial signaling pathways determine fibroblast proliferation and myofibroblast differentiation. FASEB J. 2004;18(3):469–79.

    PubMed  CAS  Google Scholar 

  85. Grotendorst GR, Duncan MR. Individual domains of connective tissue growth factor regulate fibroblast proliferation and myofibroblast differentiation. FASEB J. 2005;19(7):729–38.

    PubMed  CAS  Google Scholar 

  86. Uchio K, Graham M, Dean NM, Rosenbaum J, Desmouliere A. Down-regulation of connective tissue growth factor and type I collagen mRNA expression by connective tissue growth factor antisense oligonucleotide during experimental liver fibrosis. Wound Repair Regen. 2004;12(1):60–6.

    PubMed  Google Scholar 

  87. Leask A, Sa S, Holmes A, Shiwen X, Black CM, Abraham DJ. The control of ccn2 (ctgf) gene expression in normal and scleroderma fibroblasts. Mol Pathol. 2001;54(3):180–3.

    PubMed  CAS  Google Scholar 

  88. Mori T, Kawara S, Shinozaki M, et al. Role and interaction of connective tissue growth factor with transforming growth factor-beta in persistent fibrosis: a mouse fibrosis model. J Cell Physiol. 1999;181(1):153–9.

    PubMed  CAS  Google Scholar 

  89. Leask A, Abraham DJ. All in the CCN family: essential matricellular signaling modulators emerge from the bunker. J Cell Sci. 2006;119(23):4803–10.

    PubMed  CAS  Google Scholar 

  90. Surveyor GA, Wilson AK, Brigstock DR. Localization of connective tissue growth factor during the period of embryo implantation in the mouse. Biol Reprod. 1998;59(5):1207–13.

    PubMed  CAS  Google Scholar 

  91. Slee RB, Hillier SG, Largue P, Harlow CR, Miele G, Clinton M. Differentiation-dependent expression of connective tissue growth factor and lysyl oxidase messenger ribonucleic acids in rat granulosa cells. Endocrinology. 2001;142(3):1082–9.

    PubMed  CAS  Google Scholar 

  92. Secker GA, Shortt AJ, Sampson E, Schwarz QP, Schultz GS, Daniels JT. TGFbeta stimulated re-epithelialisation is regulated by CTGF and Ras/MEK/ERK signalling. Exp Cell Res. 2008;314(1):131–42.

    PubMed  CAS  Google Scholar 

  93. Esson DW, Neelakantan A, Iyer SA, et al. Expression of connective tissue growth factor after glaucoma filtration surgery in a rabbit model. Invest Ophthalmol Vis Sci. 2004;45(2):485–91.

    PubMed  Google Scholar 

  94. Ho SL, Dogar GF, Wang J, et al. Elevated aqueous humour tissue inhibitor of matrix metalloproteinase-1 and connective tissue growth factor in pseudoexfoliation syndrome. Br J Ophthalmol. 2005;89(2):169–73.

    PubMed  CAS  Google Scholar 

  95. Khaw PT, Occleston NL, Schultz G, Grierson I, Sherwood MB, Larkin G. Activation and suppression of fibroblast function. Eye. 1994;8(2):188–95.

    PubMed  Google Scholar 

  96. Nagai N, Klimava A, Lee WH, Izumi-Nagai K, Handa JT. CTGF is increased in basal deposits and regulates matrix production through the ERK (p42/p44mapk) MAPK and the p38 MAPK signaling pathways. Invest Ophthalmol Vis Sci. 2009;50(4):1903–10.

    PubMed  Google Scholar 

  97. Neumann C, Yu A, Welge-Lussen U, Lutjen-Drecoll E, Birke M. The effect of TGF-beta2 on elastin, type VI collagen, and components of the proteolytic degradation system in human optic nerve astrocytes. Invest Ophthalmol Vis Sci. 2008;49(4):1464–72.

    PubMed  Google Scholar 

  98. Razzaque MS, Foster CS, Ahmed AR. Role of connective tissue growth factor in the pathogenesis of conjunctival scarring in ocular cicatricial pemphigoid. Invest Ophthalmol Vis Sci. 2003;44(5):1998–2003.

    PubMed  Google Scholar 

  99. van SG, Aspiotis M, Blalock TD, Grotendorst G, Schultz G. Connective tissue growth factor in pterygium: simultaneous presence with vascular endothelial growth factor – possiblecontributing factor to conjunctival scarring. Graefes Arch Clin Exp Ophthalmol. 2003;241(2):135–9.

    Google Scholar 

  100. Yamanaka O, Saika S, Ohnishi Y, Kim-Mitsuyama S, Kamaraju AK, Ikeda K. Inhibition of p38MAP kinase suppresses fibrogenic reaction in conjunctiva in mice. Mol Vis. 2007;13:1730–9.

    PubMed  CAS  Google Scholar 

  101. Kuiper EJ, de Smet MD, van Meurs JC, et al. Association of connective tissue growth factor with fibrosis in vitreoretinal disorders in the human eye. Arch Ophthalmol. 2006;124(10):1457–62.

    PubMed  CAS  Google Scholar 

  102. He S, Chen Y, Khankan R, et al. Connective tissue growth factor as a mediator of intraocular fibrosis. Invest Ophthalmol Vis Sci. 2008;49(9):4078–88.

    PubMed  Google Scholar 

  103. Kita T, Hata Y, Miura M, Kawahara S, Nakao S, Ishibashi T. Functional characteristics of connective tissue growth factor on vitreoretinal cells. Diabetes. 2007;56(5):1421–8.

    PubMed  CAS  Google Scholar 

  104. Abu El-Asrar AM, Van den Steen PE, Al-Amro SA, Missotten L, Opdenakker G, Geboes K. Expression of angiogenic and fibrogenic factors in proliferative vitreoretinal disorders. Int Ophthalmol. 2007;27(1):11–22.

    PubMed  Google Scholar 

  105. Cui JZ, Chiu A, Maberley D, Ma P, Samad A, Matsubara JA. Stage specificity of novel growth factor expression during development of proliferative vitreoretinopathy. Eye. 2007;21(2):200–8.

    PubMed  CAS  Google Scholar 

  106. Hinton DR, He S, Jin ML, Barron E, Ryan SJ. Novel growth factors involved in the pathogenesis of proliferative vitreoretinopathy. Eye. 2002;16(4):422–8.

    PubMed  CAS  Google Scholar 

  107. Hinton DR, Spee C, He S, et al. Accumulation of NH2-terminal fragment of connective tissue growth factor in the vitreous of patients with proliferative diabetic retinopathy. Diabetes Care. 2004;27(3):758–64.

    PubMed  CAS  Google Scholar 

  108. Inoki I, Shiomi T, Hashimoto G, et al. Connective tissue growth factor binds vascular endothelial growth factor (VEGF) and inhibits VEGF-induced angiogenesis. FASEB J. 2002;16(2):219–21.

    PubMed  CAS  Google Scholar 

  109. Jang HS, Kim HJ, Kim JM, et al. A novel ex vivo angiogenesis assay based on electroporation-mediated delivery of naked plasmid DNA to skeletal muscle. Mol Ther. 2004;9(3):464–74.

    PubMed  CAS  Google Scholar 

  110. Kuiper EJ, Roestenberg P, Ehlken C, et al. Angiogenesis is not impaired in connective tissue growth factor (CTGF) knock-out mice. J Histochem Cytochem. 2007;55(11):1139–47.

    PubMed  CAS  Google Scholar 

  111. Kuiper EJ, Van Nieuwenhoven FA, de Smet MD, et al. The angio-fibrotic switch of VEGF and CTGF in proliferative diabetic retinopathy. PLoS One. 2008;3(7):e2675.

    PubMed  Google Scholar 

  112. Agostini H, Boden K, Unsold A, et al. A single local injection of recombinant VEGF receptor 2 but not of Tie2 inhibits retinal neovascularization in the mouse. Curr Eye Res. 2005;30(4):249–57.

    PubMed  CAS  Google Scholar 

  113. Lambert V, Munaut C, Noel A, et al. Influence of plasminogen activator inhibitor type 1 on choroidal neovascularization. FASEB J. 2001;15(6):1021–7.

    PubMed  CAS  Google Scholar 

  114. Lambert V, Munaut C, Carmeliet P, et al. Dose-dependent modulation of choroidal neovascularization by plasminogen activator inhibitor type I: implications for clinical trials. Invest Ophthalmol Vis Sci. 2003;44(6):2791–7.

    PubMed  Google Scholar 

  115. Roestenberg P, Van Nieuwenhoven FA, Joles JA, et al. Temporal expression profile and distribution pattern indicate a role of connective tissue growth factor (CTGF/CCN-2) in diabetic nephropathy in mice. Am J Physiol Renal Physiol. 2006;290(6):F1344–54.

    PubMed  CAS  Google Scholar 

  116. Cooker LA, Peterson D, Rambow J, et al. TNF-alpha, but not IFN-gamma, regulates CCN2 (CTGF), collagen type I, and proliferation in mesangial cells: possible roles in the progression of renal fibrosis. Am J Physiol Renal Physiol. 2007;293(1):F157–65.

    PubMed  CAS  Google Scholar 

  117. Twigg SM, Cao Z, McLennan SV, et al. Renal connective tissue growth factor induction in experimental diabetes is prevented by aminoguanidine. Endocrinology. 2002;143(12):4907–15.

    PubMed  CAS  Google Scholar 

  118. Wahab NA, Harper K, Mason RM. Expression of extracellular matrix molecules in human mesangial cells in response to prolonged hyperglycaemia. Biochem J. 1996;316(3):985–92.

    PubMed  CAS  Google Scholar 

  119. Adler SG, Kang SW, Feld S, et al. Glomerular mRNAs in human type 1 diabetes: biochemical evidence for microalbuminuria as a manifestation of diabetic nephropathy. Kidney Int. 2001;60(6):2330–6.

    PubMed  CAS  Google Scholar 

  120. Thomson SE, McLennan SV, Kirwan PD, et al. Renal connective tissue growth factor correlates with glomerular basement membrane thickness and prospective albuminuria in a non-human primate model of diabetes: possible predictive marker for incipient diabetic nephropathy. J Diabetes Complications. 2008;22(4):284–94.

    PubMed  Google Scholar 

  121. Kuiper EJ, Witmer AN, Klaassen I, Oliver N, Goldschmeding R, Schlingemann RO. Differential expression of connective tissue growth factor in microglia and pericytes in the human diabetic retina. Br J Ophthalmol. 2004;88(8):1082–7.

    PubMed  CAS  Google Scholar 

  122. Schlingemann RO, Dingjan GM, Emeis JJ, Blok J, Warnaar SO, Ruiter DJ. Monoclonal antibody PAL-E specific for endothelium. Lab Invest. 1985;52(1):71–6.

    PubMed  CAS  Google Scholar 

  123. Schlingemann RO, Hofman P, Vrensen GF, Blaauwgeers HG. Increased expression of endothelial antigen PAL-E in human diabetic retinopathy correlates with microvascular leakage. Diabetologia. 1999;42(5):596–602.

    PubMed  CAS  Google Scholar 

  124. Kuiper EJ, van Zijderveld R, Roestenberg P, et al. Connective tissue growth factor is necessary for retinal capillary basal lamina thickening in diabetic mice. J Histochem Cytochem. 2008;56(8):785–92.

    PubMed  CAS  Google Scholar 

  125. Liu H, Yang R, Tinner B, Choudhry A, Schutze N, Chaqour B. Cysteine-rich protein 61 and connective tissue growth factor induce deadhesion and anoikis of retinal pericytes. Endocrinology. 2008;149(4):1666–77.

    PubMed  CAS  Google Scholar 

  126. Zhou G, Li C, Cai L. Advanced glycation end-products induce connective tissue growth factor-mediated renal fibrosis predominantly through transforming growth factor beta-independent pathway. Am J Pathol. 2004;165(6):2033–43.

    PubMed  CAS  Google Scholar 

  127. Boulton M, Foreman D, Williams G, McLeod D. VEGF localisation in diabetic retinopathy. Br J Ophthalmol. 1998;82(5):561–8.

    PubMed  CAS  Google Scholar 

  128. Mathews MK, Merges C, McLeod DS, Lutty GA. Vascular endothelial growth factor and vascular permeability changes in human diabetic retinopathy. Invest Ophthalmol Vis Sci. 1997;38(13):2729–41.

    PubMed  CAS  Google Scholar 

  129. Flyvbjerg A, Dagnaes-Hansen F, De Vriese AS, Schrijvers BF, Tilton RG, Rasch R. Amelioration of long-term renal changes in obese type 2 diabetic mice by a neutralizing vascular endothelial growth factor antibody. Diabetes. 2002;51(10):3090–4.

    PubMed  CAS  Google Scholar 

  130. Wyss-Coray T. Alzheimer’s disease-like cerebrovascular pathology in transforming growth factor-beta 1 transgenic mice and functional metabolic correlates. Ann N Y Acad Sci. 2000;903:317–23.

    PubMed  CAS  Google Scholar 

  131. Fujimoto M, Maezawa Y, Yokote K, et al. Mice lacking Smad3 are protected against streptozotocin-induced diabetic glomerulopathy. Biochem Biophys Res Commun. 2003;305(4):1002–7.

    PubMed  CAS  Google Scholar 

  132. Wolf G. From the periphery of the glomerular capillary wall toward the center of disease – podocyte injury comes of age in diabetic nephropathy. Diabetes. 2005;54(6):1626–34.

    PubMed  CAS  Google Scholar 

  133. Gerhardinger C, Dagher Z, Sebastiani P, Park YS, Lorenzi M. The transforming growth factor-beta pathway is a common target of drugs that prevent experimental diabetic retinopathy. Diabetes. 2009;58(7):1659–67.

    PubMed  CAS  Google Scholar 

  134. van Geest RJ, Klaassen I, vogels IME, van noorden CJF, Schlingemann RO. Differential TGF-b signaling in retinal vascular cells: a role in diabetic retinopathy. Invest Ophthalmol vis sci? 2010;51(4): 1857–65.

    PubMed  CAS  Google Scholar 

  135. Tikellis C, Cooper ME, Twigg SM, Burns WC, Tolcos M. Connective tissue growth factor is up-regulated in the diabetic retina: amelioration by angiotensin-converting enzyme inhibition. Endocrinology. 2004;145(2):860–6.

    PubMed  CAS  Google Scholar 

  136. Ivkovic S, Yoon BS, Popoff SN, et al. Connective tissue growth factor coordinates chondrogenesis and angiogenesis during skeletal development. Development. 2003;130(12):2779–91.

    PubMed  CAS  Google Scholar 

  137. Fischer F, Gartner J. Morphometric analysis of basal laminae in rats with long-term streptozotocin diabetes L. II. Retinal capillaries. Exp Eye Res. 1983;37(1):55–64.

    PubMed  CAS  Google Scholar 

  138. Hirase K, Ikeda T, Sotozono C, Nishida K, Sawa H, Kinoshita S. Transforming growth factor beta2 in the vitreous in proliferative diabetic retinopathy. Arch Ophthalmol. 1998;116(6):738–41.

    PubMed  CAS  Google Scholar 

  139. Kita T, Hata Y, Kano K, et al. Transforming growth factor-beta2 and connective tissue growth factor in proliferative vitreoretinal diseases: possible involvement of hyalocytes and therapeutic potential of Rho kinase inhibitor. Diabetes. 2007;56(1):231–8.

    PubMed  CAS  Google Scholar 

  140. Arevalo JF, Maia M, Flynn Jr HW, et al. Tractional retinal detachment following intravitreal bevacizumab (Avastin) in patients with severe proliferative diabetic retinopathy. Br J Ophthalmol. 2008;92(2):213–6.

    PubMed  CAS  Google Scholar 

  141. Moradian S, Ahmadieh H, Malihi M, Soheilian M, Dehghan MH, Azarmina M. Intravitreal bevacizumab in active progressive proliferative diabetic retinopathy. Graefes Arch Clin Exp Ophthalmol. 2008;246(12):1699–705.

    PubMed  CAS  Google Scholar 

  142. Leask A. Trial by CCN2: a standardized test for fibroproliferative disease? J Cell Commun Signal. 2009;3(1):87–8.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

van Geest, R.J., Kuiper, E.J., Klaassen, I., van Noorden, C.J.F., Schlingemann, R.O. (2012). The Role of CTGF in Diabetic Retinopathy. In: Tombran-Tink, J., Barnstable, C., Gardner, T. (eds) Visual Dysfunction in Diabetes. Ophthalmology Research. Springer, New York, NY. https://doi.org/10.1007/978-1-60761-150-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-150-9_16

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-60761-149-3

  • Online ISBN: 978-1-60761-150-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics