Skip to main content

Cardiac Remodeling and Cell Death in Heart Failure

  • Chapter
  • First Online:
Heart Failure

Part of the book series: Contemporary Cardiology ((CONCARD))

  • 1457 Accesses

Abstract

Remodeling may be defined as changes in the morphology, structure, and function of the heart related to alterations in loading conditions and/or cardiac injury. This process is critical to the progression of HF, and understanding its mechanism may allow us to better understand the pathophysiology of HF. In this chapter, we will discuss the potential mechanisms conducive to remodeling in the failing heart, available animal models, therapies currently used, and emerging therapies to stop and/or reverse the remodeling process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cohn JN (2004) New therapeutic strategies for heart failure: left ventricular remodeling as a target. J Card Fail 10:S200–S201

    Article  PubMed  Google Scholar 

  2. Cohn JN, Ferrari R, Sharpe N (2000) Cardiac remodeling – concepts and clinical implications: a consensus paper from an international forum on cardiac remodeling. Behalf of an International Forum on Cardiac Remodeling. J Am Coll Cardiol 35:569–582

    Article  PubMed  CAS  Google Scholar 

  3. Gunja-Smith Z, Morales AR, Romanelli R, Woessner JF Jr (1996) Remodeling of human myocardial collagen in idiopathic dilated cardiomyopathy. Role of metalloproteinases and pyridinoline cross-links. Am J Pathol 148:1639–1648

    PubMed  CAS  Google Scholar 

  4. Spinale FG, Tomita M, Zellner JL, Cook JC, Crawford FA, Zile MR (1991) Collagen remodeling and changes in LV function during development and recovery from supraventricular tachycardia. Am J Physiol 261:H308–H318

    PubMed  CAS  Google Scholar 

  5. Spinale FG, Coker ML, Thomas CV, Walker JD, Mukherjee R, Hebbar L (1998) Time-dependent changes in matrix metalloproteinase activity and expression during the progression of congestive heart failure: relation to ventricular and myocyte function. Circ Res 82:482–495

    Article  PubMed  CAS  Google Scholar 

  6. Weber KT, Pick R, Janicki JS, Gadodia G, Lakier JB (1988) Inadequate collagen tethers in dilated cardiopathy. Am Heart J 116:1641–1646

    Article  PubMed  CAS  Google Scholar 

  7. Hill JA, Olson EN (2008) Cardiac plasticity. N Engl J Med 358:1370–1380

    Article  PubMed  CAS  Google Scholar 

  8. Carabello BA (2002) Concentric versus eccentric remodeling. J Card Fail 8:S258–S263

    Article  PubMed  Google Scholar 

  9. Brower GL, Janicki JS (2001) Contribution of ventricular remodeling to pathogenesis of heart failure in rats. Am J Physiol Heart Circ Physiol 280:H674–H683

    PubMed  CAS  Google Scholar 

  10. Sambandam N, Lopaschuk GD, Brownsey RW, Allard MF (2002) Energy metabolism in the hypertrophied heart. Heart Fail Rev 7:161–173

    Article  PubMed  CAS  Google Scholar 

  11. Opie LH, Commerford PJ, Gersh BJ, Pfeffer MA (2006) Controversies in ventricular remodelling. Lancet 367:356–367

    Article  PubMed  Google Scholar 

  12. Molkentin JD, Dorn GW II (2001) Cytoplasmic signaling pathways that regulate cardiac hypertrophy. Annu Rev Physiol 63:391–426

    Article  PubMed  CAS  Google Scholar 

  13. Kilic A, Velic A, De Windt LJ, Fabritz L, Voss M, Mitko D, Zwiener M, Baba HA (2005) van EM, Schlatter E, Kuhn M. Enhanced activity of the myocardial Na+/H+ exchanger NHE-1 contributes to cardiac remodeling in atrial natriuretic peptide receptor-deficient mice. Circulation 112:2307–2317

    Article  PubMed  CAS  Google Scholar 

  14. del Monte F, Hajjar RJ (2003) Targeting calcium cycling proteins in heart failure through gene transfer. J Physiol 546:49–61

    Article  PubMed  CAS  Google Scholar 

  15. Fedak PW, Verma S, Weisel RD, Li RK (2005) Cardiac remodeling and failure. From molecules to man (Part II). Cardiovasc Pathol 14:49–60

    Article  PubMed  CAS  Google Scholar 

  16. Kim Y, Phan D, van Rooij E et al (2008) The MEF2D transcription factor mediates stress-dependent cardiac remodeling in mice. J Clin Invest 118:124–132

    Article  PubMed  CAS  Google Scholar 

  17. Fielitz J, Kim MS, Shelton JM, Qi X, Hill JA, Richardson JA, Bassel-Duby R, Olson EN (2008) Requirement of protein kinase D1 for pathological cardiac remodeling. Proc Natl Acad Sci USA 105:3059–3063

    Article  PubMed  CAS  Google Scholar 

  18. Harrison BC, Kim MS, van Rooij E et al (2006) Regulation of cardiac stress signaling by protein kinase d1. Mol Cell Biol 26:3875–3888

    Article  PubMed  CAS  Google Scholar 

  19. Harada M, Takeishi Y, Arimoto T, Niizeki T, Kitahara T, Goto K, Walsh RA, Kubota I (2007) Diacylglycerol kinase zeta atte­nuates pressure overload-induced cardiac hypertrophy. Circ J 71:276–282

    Article  PubMed  CAS  Google Scholar 

  20. Takeishi Y, Goto K, Kubota I (2007) Role of diacylglycerol kinase in cellular regulatory processes: a new regulator for cardiomyocyte hypertrophy. Pharmacol Ther 115:352–359

    Article  PubMed  CAS  Google Scholar 

  21. Leong HS, Brownsey RW, Kulpa JE, Allard MF (2003) Glycolysis and pyruvate oxidation in cardiac hypertrophy – why so unbalanced? Comp Biochem Physiol A Mol Integr Physiol 135:499–513

    Article  PubMed  CAS  Google Scholar 

  22. Garnier A, Fortin D, Delomenie C, Momken I, Veksler V, Ventura-Clapier R (2003) Depressed mitochondrial transcription factors and oxidative capacity in rat failing cardiac and skeletal muscles. J Physiol 551:491–501

    Article  PubMed  CAS  Google Scholar 

  23. Ananthakrishnan R, Moe GW, Goldenthal MJ, Marin-Garcia J (2005) Akt signaling pathway in pacing-induced heart failure. Mol Cell Biochem 268:103–110

    Article  PubMed  CAS  Google Scholar 

  24. van Bilsen M, van Nieuwenhoven FA, van der Vusse GJ (2009) Metabolic remodelling of the failing heart: beneficial or detrimental? Cardiovasc Res 81:420–428

    Article  PubMed  CAS  Google Scholar 

  25. Murray AJ, Anderson RE, Watson GC, Radda GK, Clarke K (2004) Uncoupling proteins in human heart. Lancet 364:1786–1788

    Article  PubMed  CAS  Google Scholar 

  26. Noma T, Nishiyama A, Mizushige K et al (2001) Possible role of uncoupling protein in regulation of myocardial energy metabolism in aortic regurgitation model rats. FASEB J 15:1206–1208

    PubMed  CAS  Google Scholar 

  27. Bodyak N, Rigor DL, Chen YS, Han Y, Bisping E, Pu WT, Kang PM (2007) Uncoupling protein 2 modulates cell viability in adult rat cardiomyocytes. Am J Physiol Heart Circ Physiol 293:H829–H835

    Article  PubMed  CAS  Google Scholar 

  28. Hartil K, Charron MJ (2005) Genetic modification of the heart: transgenic modification of cardiac lipid and carbohydrate utilization. J Mol Cell Cardiol 39:581–593

    Article  PubMed  CAS  Google Scholar 

  29. Stepien G, Torroni A, Chung AB, Hodge JA, Wallace DC (1992) Differential expression of adenine nucleotide translocator isoforms in mammalian tissues and during muscle cell differentiation. J Biol Chem 267:14592–14597

    PubMed  CAS  Google Scholar 

  30. Graham BH, Waymire KG, Cottrell B, Trounce IA, MacGregor GR, Wallace DC (1997) A mouse model for mitochondrial myopathy and cardiomyopathy resulting from a deficiency in the heart/muscle isoform of the adenine nucleotide translocator. Nat Genet 16:226–234

    Article  PubMed  CAS  Google Scholar 

  31. Exil VJ, Roberts RL, Sims H, McLaughlin JE, Malkin RA, Gardner CD, Ni G, Rottman JN, Strauss AW (2003) Very-long-chain acyl-coenzyme a dehydrogenase deficiency in mice. Circ Res 93:448–455

    Article  PubMed  CAS  Google Scholar 

  32. Kurtz DM, Rinaldo P, Rhead WJ et al (1998) Targeted disruption of mouse long-chain acyl-CoA dehydrogenase gene reveals crucial roles for fatty acid oxidation. Proc Natl Acad Sci USA 95:15592–15597

    Article  PubMed  CAS  Google Scholar 

  33. Watanabe K, Fujii H, Takahashi T et al (2000) Constitutive regulation of cardiac fatty acid metabolism through peroxisome proliferator-activated receptor alpha associated with age-dependent cardiac toxicity. J Biol Chem 275:22293–22299

    Article  PubMed  CAS  Google Scholar 

  34. Lopaschuk GD (2002) Metabolic abnormalities in the diabetic heart. Heart Fail Rev 7:149–159

    Article  PubMed  CAS  Google Scholar 

  35. Finck BN, Lehman JJ, Leone TC et al (2002) The cardiac phenotype induced by PPARalpha overexpression mimics that caused by diabetes mellitus. J Clin Invest 109:121–130

    PubMed  CAS  Google Scholar 

  36. Finck BN, Han X, Courtois M, Aimond F, Nerbonne JM, Kovacs A, Gross RW, Kelly DP (2003) A critical role for PPARalpha-mediated lipotoxicity in the pathogenesis of diabetic cardiomyopathy: modulation by dietary fat content. Proc Natl Acad Sci USA 100:1226–1231

    Article  PubMed  CAS  Google Scholar 

  37. Chiu HC, Kovacs A, Ford DA, Hsu FF, Garcia R, Herrero P, Saffitz JE, Schaffer JE (2001) A novel mouse model of lipotoxic cardiomyopathy. J Clin Invest 107:813–822

    Article  PubMed  CAS  Google Scholar 

  38. Sugden PH, Clerk A (1998) “Stress-responsive” mitogen-activated protein kinases (c-Jun N-terminal kinases and p38 mitogen-activated protein kinases) in the myocardium. Circ Res 83:345–352

    Article  PubMed  CAS  Google Scholar 

  39. Rockman HA, Koch WJ, Lefkowitz RJ (2002) Seven-transmembrane-spanning receptors and heart function. Nature 415:206–212

    Article  PubMed  CAS  Google Scholar 

  40. Houser SR, Margulies KB (2003) Is depressed myocyte contractility centrally involved in heart failure? Circ Res 92:350–358

    Article  PubMed  CAS  Google Scholar 

  41. Davies CH, Davia K, Bennett JG, Pepper JR, Poole-Wilson PA, Harding SE (1995) Reduced contraction and altered frequency response of isolated ventricular myocytes from patients with heart failure. Circulation 92:2540–2549

    Article  PubMed  CAS  Google Scholar 

  42. Harding SE, MacLeod KT, Davies CH, Wynne DG, Poole-Wilson PA (1995) Abnormalities of the myocytes in ischaemic cardiomyopathy. Eur Heart J 16:74–81

    Article  PubMed  Google Scholar 

  43. Anand IS, Liu D, Chugh SS, Prahash AJ, Gupta S, John R, Popescu F, Chandrashekhar Y (1997) Isolated myocyte contractile function is normal in postinfarct remodeled rat heart with systolic dysfunction. Circulation 96:3974–3984

    Article  PubMed  CAS  Google Scholar 

  44. Hein S, Kostin S, Heling A, Maeno Y, Schaper J (2000) The role of the cytoskeleton in heart failure. Cardiovasc Res 45:273–278

    Article  PubMed  CAS  Google Scholar 

  45. Sugden PH (1999) Signaling in myocardial hypertrophy: life after calcineurin? Circ Res 84:633–646

    Article  PubMed  CAS  Google Scholar 

  46. Maron BJ (2002) Hypertrophic cardiomyopathy: a systematic review. JAMA 287:1308–1320

    Article  PubMed  Google Scholar 

  47. Swynghedauw B (1999) Molecular mechanisms of myocardial remodeling. Physiol Rev 79:215–262

    PubMed  CAS  Google Scholar 

  48. Weber KT, Jalil JE, Janicki JS, Pick R (1989) Myocardial collagen remodeling in pressure overload hypertrophy. A case for interstitial heart disease. Am J Hypertens 2:931–940

    PubMed  CAS  Google Scholar 

  49. Litwin SE, Raya TE, Anderson PG, Litwin CM, Bressler R, Goldman S (1991) Induction of myocardial hypertrophy after coronary ligation in rats decreases ventricular dilatation and improves systolic function. Circulation 84:1819–1827

    Article  PubMed  CAS  Google Scholar 

  50. Asakura M, Kitakaze M, Takashima S et al (2002) Cardiac hypertrophy is inhibited by antagonism of ADAM12 processing of HB-EGF: metalloproteinase inhibitors as a new therapy. Nat Med 8:35–40

    Article  PubMed  CAS  Google Scholar 

  51. Liao JK (2002) Shedding growth factors in cardiac hypertrophy. Nat Med 8:20–21

    Article  PubMed  CAS  Google Scholar 

  52. Ross RS, Borg TK (2001) Integrins and the myocardium. Circ Res 88:1112–1119

    Article  PubMed  CAS  Google Scholar 

  53. Terracio L, Rubin K, Gullberg D, Balog E, Carver W, Jyring R, Borg TK (1991) Expression of collagen binding integrins during cardiac development and hypertrophy. Circ Res 68:734–744

    Article  PubMed  CAS  Google Scholar 

  54. Frey N, Olson EN (2003) Cardiac hypertrophy: the good, the bad, and the ugly. Annu Rev Physiol 65:45–79

    Article  PubMed  CAS  Google Scholar 

  55. Divakaran V, Mann DL (2008) The emerging role of microRNAs in cardiac remodeling and heart failure. Circ Res 103:1072–1083

    Article  PubMed  CAS  Google Scholar 

  56. Li Z, Bing OH, Long X, Robinson KG, Lakatta EG (1997) Increased cardiomyocyte apoptosis during the transition to heart failure in the spontaneously hypertensive rat. Am J Physiol 272:H2313–H2319

    PubMed  CAS  Google Scholar 

  57. Mani K, Kitsis RN (2003) Myocyte apoptosis: programming ventricular remodeling. J Am Coll Cardiol 41:761–764

    Article  PubMed  Google Scholar 

  58. Moe GW, Naik G, Konig A, Lu X, Feng Q (2002) Early and persistent activation of myocardial apoptosis, bax and caspases: insights into mechanisms of progression of heart failure. Pathophysiology 8:183–192

    Article  PubMed  CAS  Google Scholar 

  59. Kang PM, Izumo S (2000) Apoptosis and heart failure: a critical review of the literature. Circ Res 86:1107–1113

    Article  PubMed  CAS  Google Scholar 

  60. Condorelli G, Morisco C, Stassi G et al (1999) Increased cardiomyocyte apoptosis and changes in proapoptotic and antiapoptotic genes bax and bcl-2 during left ventricular adaptations to chronic pressure overload in the rat. Circulation 99:3071–3078

    Article  PubMed  CAS  Google Scholar 

  61. Schulze-Osthoff K, Ferrari D, Los M, Wesselborg S, Peter ME (1998) Apoptosis signaling by death receptors. Eur J Biochem 254:439–459

    Article  PubMed  CAS  Google Scholar 

  62. Yue TL, Ma XL, Wang X et al (1998) Possible involvement of stress-activated protein kinase signaling pathway and Fas receptor expression in prevention of ischemia/reperfusion-induced cardiomyocyte apoptosis by carvedilol. Circ Res 82:166–174

    Article  PubMed  CAS  Google Scholar 

  63. Danial NN, Korsmeyer SJ (2004) Cell death: critical control points. Cell 116:205–219

    Article  PubMed  CAS  Google Scholar 

  64. Ashkenazi A, Dixit VM (1998) Death receptors: signaling and modulation. Science 281:1305–1308

    Article  PubMed  CAS  Google Scholar 

  65. Muzio M, Chinnaiyan AM, Kischkel FC et al (1996) FLICE, a novel FADD-homologous ICE/CED-3-like protease, is recruited to the CD95 (Fas/APO-1) death – inducing signaling complex. Cell 85:817–827

    Article  PubMed  CAS  Google Scholar 

  66. Boatright KM, Renatus M, Scott FL et al (2003) A unified model for apical caspase activation. Mol Cell 11:529–541

    Article  PubMed  CAS  Google Scholar 

  67. Crow MT, Mani K, Nam YJ, Kitsis RN (2004) The mitochondrial death pathway and cardiac myocyte apoptosis. Circ Res 95:957–970

    Article  PubMed  CAS  Google Scholar 

  68. Du C, Fang M, Li Y, Li L, Wang X (2000) Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 102:33–42

    Article  PubMed  CAS  Google Scholar 

  69. Li LY, Luo X, Wang X (2001) Endonuclease G is an apoptotic DNase when released from mitochondria. Nature 412:95–99

    Article  PubMed  CAS  Google Scholar 

  70. Liu X, Kim CN, Yang J, Jemmerson R, Wang X (1996) Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 86:147–157

    Article  PubMed  CAS  Google Scholar 

  71. Susin SA, Lorenzo HK, Zamzami N et al (1999) Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 397:441–446

    Article  PubMed  CAS  Google Scholar 

  72. Acehan D, Jiang X, Morgan DG, Heuser JE, Wang X, Akey CW (2002) Three-dimensional structure of the apoptosome: implications for assembly, procaspase-9 binding, and activation. Mol Cell 9:423–432

    Article  PubMed  CAS  Google Scholar 

  73. Hu Y, Ding L, Spencer DM, Nunez G (1998) WD-40 repeat region regulates Apaf-1 self-association and procaspase-9 activation. J Biol Chem 273:33489–33494

    Article  PubMed  CAS  Google Scholar 

  74. Qin H, Srinivasula SM, Wu G, Fernandes-Alnemri T, Alnemri ES, Shi Y (1999) Structural basis of procaspase-9 recruitment by the apoptotic protease-activating factor 1. Nature 399:549–557

    Article  PubMed  CAS  Google Scholar 

  75. Zou H, Henzel WJ, Liu X, Lutschg A, Wang X (1997) Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell 90:405–413

    Article  PubMed  CAS  Google Scholar 

  76. Gross A, Yin XM, Wang K et al (1999) Caspase cleaved BID targets mitochondria and is required for cytochrome c release, while BCL-XL prevents this release but not tumor necrosis factor-R1/Fas death. J Biol Chem 274:1156–1163

    Article  PubMed  CAS  Google Scholar 

  77. Luo X, Budihardjo I, Zou H, Slaughter C, Wang X (1998) Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 94:481–490

    Article  PubMed  CAS  Google Scholar 

  78. Peter ME (2004) The flip side of FLIP. Biochem J 382:e1–e3

    Article  PubMed  CAS  Google Scholar 

  79. Guo B, Zhai D, Cabezas E, Welsh K, Nouraini S, Satterthwait AC, Reed JC (2003) Humanin peptide suppresses apoptosis by interfering with Bax activation. Nature 423:456–461

    Article  PubMed  CAS  Google Scholar 

  80. Shiozaki EN, Chai J, Rigotti DJ et al (2003) Mechanism of XIAP-mediated inhibition of caspase-9. Mol Cell 11:519–527

    Article  PubMed  CAS  Google Scholar 

  81. Sun C, Cai M, Meadows RP, Xu N, Gunasekera AH, Herrmann J, Wu JC, Fesik SW (2000) NMR structure and mutagenesis of the third Bir domain of the inhibitor of apoptosis protein XIAP. J Biol Chem 275:33777–33781

    Article  PubMed  CAS  Google Scholar 

  82. Nam YJ, Mani K, Ashton AW et al (2004) Inhibition of both the extrinsic and intrinsic death pathways through nonhomotypic death-fold interactions. Mol Cell 15:901–912

    Article  PubMed  CAS  Google Scholar 

  83. Gustafsson AB, Tsai JG, Logue SE, Crow MT, Gottlieb RA (2004) Apoptosis repressor with caspase recruitment domain protects against cell death by interfering with Bax activation. J Biol Chem 279:21233–21238

    Article  PubMed  CAS  Google Scholar 

  84. Olivetti G, Abbi R, Quaini F et al (1997) Apoptosis in the failing human heart. N Engl J Med 336:1131–1141

    Article  PubMed  CAS  Google Scholar 

  85. Abbate A, Biondi-Zoccai GG, Bussani R et al (2003) Increased myocardial apoptosis in patients with unfavorable left ventricular remodeling and early symptomatic post-infarction heart failure. J Am Coll Cardiol 41:753–760

    Article  PubMed  Google Scholar 

  86. Schaper J, Lorenz-Meyer S, Suzuki K (1999) The role of apoptosis in dilated cardiomyopathy. Herz 24:219–224

    Article  PubMed  CAS  Google Scholar 

  87. Saraste A, Pulkki K, Kallajoki M et al (1999) Cardiomyocyte apoptosis and progression of heart failure to transplantation. Eur J Clin Invest 29:380–386

    Article  PubMed  CAS  Google Scholar 

  88. Chatterjee S, Stewart AS, Bish LT et al (2002) Viral gene transfer of the antiapoptotic factor Bcl-2 protects against chronic postischemic heart failure. Circulation 106:I212–I217

    PubMed  Google Scholar 

  89. Ren J, Samson WK, Sowers JR (1999) Insulin-like growth factor I as a cardiac hormone: physiological and pathophysiological implications in heart disease. J Mol Cell Cardiol 31:2049–2061

    Article  PubMed  CAS  Google Scholar 

  90. Li Q, Li B, Wang X, Leri A, Jana KP, Liu Y, Kajstura J, Baserga R, Anversa P (1997) Overexpression of insulin-like growth factor-1 in mice protects from myocyte death after infarction, attenuating ventricular dilation, wall stress, and cardiac hypertrophy. J Clin Invest 100:1991–1999

    Article  PubMed  CAS  Google Scholar 

  91. Lee WL, Chen JW, Ting CT, Ishiwata T, Lin SJ, Korc M, Wang PH (1999) Insulin-like growth factor I improves cardiovascular function and suppresses apoptosis of cardiomyocytes in dilated cardiomyopathy. Endocrinology 140:4831–4840

    Article  PubMed  CAS  Google Scholar 

  92. Nadal-Ginard B, Kajstura J, Leri A, Anversa P (2003) Myocyte death, growth, and regeneration in cardiac hypertrophy and failure. Circ Res 92:139–150

    Article  PubMed  CAS  Google Scholar 

  93. Nadal-Ginard B, Kajstura J, Anversa P, Leri A (2003) A matter of life and death: cardiac myocyte apoptosis and regeneration. J Clin Invest 111:1457–1459

    PubMed  CAS  Google Scholar 

  94. Anversa P, Nadal-Ginard B (2002) Myocyte renewal and ventricular remodelling. Nature 415:240–243

    Article  PubMed  CAS  Google Scholar 

  95. Soonpaa MH, Field LJ (1998) Survey of studies examining mammalian cardiomyocyte DNA synthesis. Circ Res 83:15–26

    Article  PubMed  CAS  Google Scholar 

  96. Anversa P, Kajstura J (1998) Ventricular myocytes are not terminally differentiated in the adult mammalian heart. Circ Res 83:1–14

    Article  PubMed  CAS  Google Scholar 

  97. Beltrami AP, Urbanek K, Kajstura J et al (2001) Evidence that human cardiac myocytes divide after myocardial infarction. N Engl J Med 344:1750–1757

    Article  PubMed  CAS  Google Scholar 

  98. Kajstura J, Leri A, Finato N, Di LC, Beltrami CA, Anversa P (1998) Myocyte proliferation in end-stage cardiac failure in humans. Proc Natl Acad Sci USA 95:8801–8805

    Article  PubMed  CAS  Google Scholar 

  99. Orlic D, Kajstura J, Chimenti S et al (2001) Bone marrow cells regenerate infarcted myocardium. Nature 410:701–705

    Article  PubMed  CAS  Google Scholar 

  100. Orlic D, Kajstura J, Chimenti S et al (2001) Mobilized bone marrow cells repair the infarcted heart, improving function and survival. Proc Natl Acad Sci USA 98:10344–10349

    Article  PubMed  CAS  Google Scholar 

  101. Orlic D, Kajstura J, Chimenti S, Bodine DM, Leri A, Anversa P (2001) Transplanted adult bone marrow cells repair myocardial infarcts in mice. Ann N Y Acad Sci 938:221–229

    Article  PubMed  CAS  Google Scholar 

  102. Orlic D, Hill JM, Arai AE (2002) Stem cells for myocardial regeneration. Circ Res 91:1092–1102

    Article  PubMed  CAS  Google Scholar 

  103. Laflamme MA, Myerson D, Saffitz JE, Murry CE (2002) Evidence for cardiomyocyte repopulation by extracardiac progenitors in transplanted human hearts. Circ Res 90:634–640

    Article  PubMed  CAS  Google Scholar 

  104. Quaini F, Urbanek K, Beltrami AP et al (2002) Chimerism of the transplanted heart. N Engl J Med 346:5–15

    Article  PubMed  Google Scholar 

  105. Deb A, Wang S, Skelding KA, Miller D, Simper D, Caplice NM (2003) Bone marrow-derived cardiomyocytes are present in adult human heart: a study of gender-mismatched bone marrow transplantation patients. Circulation 107:1247–1249

    Article  PubMed  Google Scholar 

  106. Goldsmith EC, Borg TK (2002) The dynamic interaction of the extracellular matrix in cardiac remodeling. J Card Fail 8:S314–S318

    Article  PubMed  CAS  Google Scholar 

  107. Janicki JS, Brower GL (2002) The role of myocardial fibrillar collagen in ventricular remodeling and function. J Card Fail 8:S319–S325

    Article  PubMed  CAS  Google Scholar 

  108. Weber KT, Anversa P, Armstrong PW et al (1992) Remodeling and reparation of the cardiovascular system. J Am Coll Cardiol 20:3–16

    Article  PubMed  CAS  Google Scholar 

  109. Iwami K, Ashizawa N, Do YS, Graf K, Hsueh WA (1996) Comparison of ANG II with other growth factors on Egr-1 and matrix gene expression in cardiac fibroblasts. Am J Physiol 270:H2100–H2107

    PubMed  CAS  Google Scholar 

  110. Gerdes AM (2002) Cardiac myocyte remodeling in hypertrophy and progression to failure. J Card Fail 8:S264–S268

    Article  PubMed  Google Scholar 

  111. Libby P, Lee RT (2000) Matrix matters. Circulation 102:1874–1876

    Article  PubMed  CAS  Google Scholar 

  112. Bonnin CM, Sparrow MP, Taylor RR (1981) Collagen synthesis and content in right ventricular hypertrophy in the dog. Am J Physiol 241:H708–H713

    PubMed  CAS  Google Scholar 

  113. Weber KT (1989) Cardiac interstitium in health and disease: the fibrillar collagen network. J Am Coll Cardiol 13:1637–1652

    Article  PubMed  CAS  Google Scholar 

  114. Benjamin IJ (2001) Matrix metalloproteinases: from biology to therapeutic strategies in cardiovascular disease. J Investig Med 49:381–397

    PubMed  CAS  Google Scholar 

  115. Vu TH, Werb Z (2000) Matrix metalloproteinases: effectors of development and normal physiology. Genes Dev 14:2123–2133

    Article  PubMed  CAS  Google Scholar 

  116. Nagase H (1997) Activation mechanisms of matrix metalloproteinases. Biol Chem 378:151–160

    PubMed  CAS  Google Scholar 

  117. Nelson AR, Fingleton B, Rothenberg ML, Matrisian LM (2000) Matrix metalloproteinases: biologic activity and clinical implications. J Clin Oncol 18:1135–1149

    PubMed  CAS  Google Scholar 

  118. Spinale FG, Coker ML, Heung LJ et al (2000) A matrix metalloproteinase induction/activation system exists in the human left ventricular myocardium and is upregulated in heart failure. Circulation 102:1944–1949

    Article  PubMed  CAS  Google Scholar 

  119. Thomas CV, Coker ML, Zellner JL, Handy JR, Crumbley AJ III, Spinale FG (1998) Increased matrix metalloproteinase activity and selective upregulation in LV myocardium from patients with end-stage dilated cardiomyopathy. Circulation 97:1708–1715

    Article  PubMed  CAS  Google Scholar 

  120. Knauper V, Murphy G (1998) Membrane-type matrix metalloproteinases and cell surface-associated activation cascades for matrix metalloproteinases. In: Parks WC, Mecham RP (eds) Matrix metalloproteinases. Academic, San Diego, pp 199–218

    Chapter  Google Scholar 

  121. Woessner JF, Nagase H (2003) Activation of the zymogen forms of MMPs. In: Woessner JF, Nagase H (eds) Matrix metalloproteinases and TIMPs. Oxford University Press, Oxford, pp 72–86

    Google Scholar 

  122. Woessner JF, Nagase H (2000) Function of the TIMPs. Matrix metalloproteinases and TIMPs. Oxford University Press, Oxford, pp 130–135

    Google Scholar 

  123. Sternlicht MD, Werb Z (2001) How matrix metalloproteinases regulate cell behavior. Annu Rev Cell Dev Biol 17:463–516

    Article  PubMed  CAS  Google Scholar 

  124. Li YY, Feldman AM, Sun Y, McTiernan CF (1998) Differential expression of tissue inhibitors of metalloproteinases in the failing human heart. Circulation 98:1728–1734

    Article  PubMed  CAS  Google Scholar 

  125. Schlondorff J, Blobel CP (1999) Metalloprotease-disintegrins: modular proteins capable of promoting cell-cell interactions and triggering signals by protein-ectodomain shedding. J Cell Sci 112:3603–3617

    PubMed  CAS  Google Scholar 

  126. Amour A, Slocombe PM, Webster A et al (1998) TNF-alpha converting enzyme (TACE) is inhibited by TIMP-3. FEBS Lett 435:39–44

    Article  PubMed  CAS  Google Scholar 

  127. Leco KJ, Khokha R, Pavloff N, Hawkes SP, Edwards DR (1994) Tissue inhibitor of metalloproteinases-3 (TIMP-3) is an extracellular matrix-associated protein with a distinctive pattern of expression in mouse cells and tissues. J Biol Chem 269:9352–9360

    PubMed  CAS  Google Scholar 

  128. Woessner JF Jr (2001) That impish TIMP: the tissue inhibitor of metalloproteinases-3. J Clin Invest 108:799–800

    PubMed  CAS  Google Scholar 

  129. Shastry S, Hayden MR, Lucchesi PA, Tyagi SC (2003) Matrix metalloproteinase in left ventricular remodeling and heart failure. Curr Cardiol Rep 5:200–204

    Article  PubMed  Google Scholar 

  130. Sierevogel MJ, Pasterkamp G, De Kleijn DP, Strauss BH (2003) Matrix metalloproteinases: a therapeutic target in cardiovascular disease. Curr Pharm Des 9:1033–1040

    Article  PubMed  CAS  Google Scholar 

  131. Bradham WS, Moe G, Wendt KA et al (2002) TNF-alpha and myocardial matrix metalloproteinases in heart failure: relationship to LV remodeling. Am J Physiol Heart Circ Physiol 282:H1288–H1295

    PubMed  CAS  Google Scholar 

  132. Coker ML, Thomas CV, Clair MJ, Hendrick JW, Krombach RS, Galis ZS, Spinale FG (1998) Myocardial matrix metalloproteinase activity and abundance with congestive heart failure. Am J Physiol 274:H1516–H1523

    PubMed  CAS  Google Scholar 

  133. Rohde LE, Ducharme A, Arroyo LH et al (1999) Matrix metalloproteinase inhibition attenuates early left ventricular enlargement after experimental myocardial infarction in mice. Circulation 99:3063–3070

    Article  PubMed  CAS  Google Scholar 

  134. Spinale FG, Coker ML, Krombach SR et al (1999) Matrix metalloproteinase inhibition during the development of congestive heart failure: effects on left ventricular dimensions and function. Circ Res 85:364–376

    Article  PubMed  CAS  Google Scholar 

  135. Bauvois B (2001) Transmembrane proteases in focus: diversity and redundancy? J Leukoc Biol 70:11–17

    PubMed  CAS  Google Scholar 

  136. Kim HE, Dalal SS, Young E, Legato MJ, Weisfeldt ML, D’Armiento J (2000) Disruption of the myocardial extracellular matrix leads to cardiac dysfunction. J Clin Invest 106:857–866

    Article  PubMed  CAS  Google Scholar 

  137. Peterson JT, Hallak H, Johnson L et al (2001) Matrix metalloproteinase inhibition attenuates left ventricular remodeling and dysfunction in a rat model of progressive heart failure. Circulation 103:2303–2309

    Article  PubMed  CAS  Google Scholar 

  138. Roten L, Nemoto S, Simsic J et al (2000) Effects of gene deletion of the tissue inhibitor of the matrix metalloproteinase-type 1 (TIMP-1) on left ventricular geometry and function in mice. J Mol Cell Cardiol 32:109–120

    Article  PubMed  CAS  Google Scholar 

  139. Sivakumar P, Gupta S, Sarkar S, Sen S (2008) Upregulation of lysyl oxidase and MMPs during cardiac remodeling in human dilated cardiomyopathy. Mol Cell Biochem 307:159–167

    Article  PubMed  CAS  Google Scholar 

  140. Marrus SB, Nerbonne JM (2008) Mechanisms linking short- and long-term electrical remodeling in the heart...is it a stretch? Channels 2:125–129

    Article  Google Scholar 

  141. Jeyaraj D, Wilson LD, Zhong J, Flask C, Saffitz JE, Deschênes I, Yu X, Rosenbaum DS (2007) Mechanoelectrical feedback as novel mechanism of cardiac electrical remodeling. Circulation 115:3145–3155

    Article  PubMed  Google Scholar 

  142. St John Sutton M, Lee D, Rouleau JL, Goldman S, Plappert T, Braunwald E, Pfeffer MA (2003) Left ventricular remodeling and ventricular arrhythmias after myocardial infarction. Circulation 107:2577–2582

    PubMed  Google Scholar 

  143. Margulies KB (2002) Reversal mechanisms of left ventricular remodeling: lessons from left ventricular assist device experiments. J Card Fail 8:S500–S505

    Article  PubMed  Google Scholar 

  144. Blaxall BC, Tschannen-Moran BM, Milano CA, Koch WJ (2003) Differential gene expression and genomic patient stratification following left ventricular assist device support. J Am Coll Cardiol 41:1096–1106

    Article  PubMed  CAS  Google Scholar 

  145. Hall JL, Grindle S, Han X et al (2004) Genomic profiling of the human heart before and after mechanical support with a ventricular assist device reveals alterations in vascular signaling networks. Physiol Genomics 17:283–291

    Article  PubMed  CAS  Google Scholar 

  146. Chen Y, Park S, Li Y et al (2003) Alterations of gene expression in failing myocardium following left ventricular assist device support. Physiol Genomics 14:251–260

    PubMed  Google Scholar 

  147. Klotz S, Jan Danser AH, Burkhoff D (2008) Impact of left ventricular assist device (LVAD) support on the cardiac reverse remodeling process. Prog Biophys Mol Biol 97:479–496

    Article  PubMed  Google Scholar 

  148. Soppa GK, Barton PJ, Terracciano CM, Yacoub MH (2008) Left ventricular assist device-induced molecular changes in the failing myocardium. Curr Opin Cardiol 23:206–218

    Article  PubMed  Google Scholar 

  149. McAlister FA, Ezekowitz J, Hooton N et al (2007) Cardiac resynchronization therapy for patients with left ventricular systolic dysfunction: a systematic review. JAMA 297:2502–2514

    Article  PubMed  CAS  Google Scholar 

  150. Linde C, Abraham WT, Gold MR, St John Sutton M, Ghio S, Daubert C; REVERSE (REsynchronization reVErses Remodeling in Systolic left vEntricular dysfunction) Study Group (2008) Randomized trial of cardiac resynchronization in mildly symptomatic heart failure patients and in asymptomatic patients with left ventricular dysfunction and previous heart failure symptoms. J Am Coll Cardiol 52:1834–1843

    Article  PubMed  Google Scholar 

  151. Remme WJ, Riegger G, Hildebrandt P et al (2004) The benefits of early combination treatment of carvedilol and an ACE-inhibitor in mild heart failure and left ventricular systolic dysfunction. The carvedilol and ACE-inhibitor remodelling mild heart failure evaluation trial (CARMEN). Cardiovasc Drugs Ther 18:57–66

    Article  PubMed  CAS  Google Scholar 

  152. Doughty RN, White HD (2007) Carvedilol: use in chronic heart failure. Expert Rev Cardiovasc Ther 5:21–31

    Article  PubMed  CAS  Google Scholar 

  153. McKelvie RS, et al. The RESOLVD Pilot Study Investigators (1999) Comparison of candesartan, enalapril, and their combination in congestive heart failure: Randomized Evaluation of Strategies for Left Ventricular Dysfunction (RESOLVD) pilot study. Circulation 100:1056–1064

    Article  PubMed  CAS  Google Scholar 

  154. Yan RT, White M, Yan AT et al Randomized Evaluation of Strategies for Left Ventricular Dysfunction (RESOLVD) Investigators (2005) Usefulness of temporal changes in neurohormones as markers of ventricular remodeling and prognosis in patients with left ventricular systolic dysfunction and heart failure receiving either candesartan or enalapril or both. Am J Cardiol 96:698–704

    Article  PubMed  CAS  Google Scholar 

  155. Mudd JO, Kass DA (2007) Reversing chronic remodeling in heart failure. Expert Rev Cardiovasc Ther 5:585–598

    Article  PubMed  Google Scholar 

  156. Frigerio M, Roubina E (2005) Drugs for left ventricular remodeling in heart failure. Am J Cardiol 96:10L–18L

    Article  PubMed  CAS  Google Scholar 

  157. Dhalla NS, Saini-Chohan HK, Rodriguez-Leyva D, Elimban V, Dent MR, Tappia PS (2009) Subcellular remodelling may induce cardiac dysfunction in congestive heart failure. Cardiovasc Res 81:429–438

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Marín-García MD .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Marín-García, J. (2010). Cardiac Remodeling and Cell Death in Heart Failure. In: Heart Failure. Contemporary Cardiology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-147-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-147-9_11

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-146-2

  • Online ISBN: 978-1-60761-147-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics