Skip to main content

Noise-Induced Hearing Loss: Implication for Tinnitus

  • Chapter
Book cover Textbook of Tinnitus

Keypoints

  1. 1.

    Noise-induced hearing loss (NIHL) is often associated with tinnitus.

  2. 2.

    The shape and depth of the audiogram in patients with NIHL varies considerably.

  3. 3.

    Characteristics of tinnitus (sensation level, pulsatile versus continuous, perceived pitch) also vary widely across individuals.

  4. 4.

    The relationship between the pattern of hearing loss and the characteristics of the tinnitus is complex and a relevant topic of research.

  5. 5.

    This chapter focuses on three topics relevant to NIHL and tinnitus:

    1. (a)

      The relationship between the parameters of a noise exposure and the resulting hearing loss.

    2. (b)

      The cochlear pathologies underlying permanent hearing loss and temporary hearing loss and how they differ.

    3. (c)

      Noise-induced tinnitus and the animal modeling of tinnitus used to study the relationship between noise and tinnitus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ATS:

Asymptotic threshold shift

CNS:

Central nervous system

EAM:

External auditory meatus

GPIAS:

Gap-prepulse inhibition of the acoustic startle

IHC:

Inner hair cell

NBN:

Narrow band noise

NIHL:

Noise-induced hearing loss

NIOSH:

National Institute for Occupational Safety and Health

OHC:

Outer hair cell

OSHA:

Occupational Safety and Health Administration

PTS:

Permanent threshold shift

TTS:

Temporary threshold shift

References

  1. Henderson D, M Subramaniam, MA Gratton et al (1991) Impact noise: the importance of level, duration, and repetition rate. J Acoust Soc Am 89:1350–7.

    Article  PubMed  CAS  Google Scholar 

  2. Henderson D and RP Hamernik (1995) Biologic bases of noise-induced hearing loss. Occup Med 10:513–34.

    PubMed  CAS  Google Scholar 

  3. Liberman MC (1990) Quantitative assessment of inner ear pathology following ototoxic drugs or acoustic trauma. Toxicol Pathol 18:138–48.

    PubMed  CAS  Google Scholar 

  4. Saunders JC, SP Dear and ME Schneider (1985) The anatomical consequences of acoustic injury: A review and tutorial. J Acoust Soc Am 78:833–60.

    Article  PubMed  CAS  Google Scholar 

  5. McFadden D and FL Wightman (1983) Audition: some relations between normal and pathological hearing. Annu Rev Psychol 34:95–128.

    Article  PubMed  CAS  Google Scholar 

  6. Davis H, CT Morgan, JE Hawkins et al (1943) Temporary deafness following exposure to loud tones and noise. Acta Otolaryngol Suppl LXXXVIII.

    Google Scholar 

  7. Jerger JF (1952) A difference limen recruitment test and its diagnostic significance. Laryngoscope 62:1316–32.

    Article  PubMed  CAS  Google Scholar 

  8. Ward WD (1968) Susceptibility to auditory fatigue. Contrib Sens Physiol 3:191–226.

    PubMed  CAS  Google Scholar 

  9. Carder HM and JD Miller (1971) Temporary threshold shifts produced by noise-exposure of long duration. Trans Am Acad Ophthalmol Otolaryngol 75:1346–54.

    PubMed  CAS  Google Scholar 

  10. Carder HM and JD Miller (1972) Temporary threshold shifts from prolonged exposure to noise. J Speech Hear Res 15:603–23.

    PubMed  CAS  Google Scholar 

  11. Mills JH (1973) Temporary and permanent threshold shifts produced by nine-day exposures to noise. J Speech Hear Res 16:426–38.

    PubMed  CAS  Google Scholar 

  12. Bohne BA (1977) Growth of cochlear damage with increasing severity of exposure. Trans Sect Otolaryngol Am Acad Ophthalmol Otolaryngol 84:420–1.

    PubMed  CAS  Google Scholar 

  13. Nordmann AS, BA Bohne and GW Harding (2000) Histopathological differences between temporary and permanent threshold shift. Hear Res 139:13–30.

    Article  PubMed  CAS  Google Scholar 

  14. Puel JL, C d’Aldin, J Ruel et al (1997) Synaptic repair mechanisms responsible for functional recovery in various cochlear pathologies. Acta Otolaryngol 117:214–8.

    Article  PubMed  CAS  Google Scholar 

  15. Pujol R and JL Puel (1999) Excitotoxicity, synaptic repair, and functional recovery in the mammalian cochlea: a review of recent findings. Ann N Y Acad Sci 884:249–54.

    Article  PubMed  CAS  Google Scholar 

  16. Zheng XY, J Wang, RJ Salvi et al (1996) Effects of kainic acid on the cochlear potentials and distortion product otoacoustic emissions in chinchilla. Hear Res 95:161–7.

    Article  PubMed  CAS  Google Scholar 

  17. ISO1999 (1990) Acoustics – determination of occupational noise exposure and estimation of noise-induced hearing impairment. International Organization for Standardization.

    Google Scholar 

  18. Mills JH, WY Adkins and RM Gilbert (1981) Temporary threshold shifts produced by wideband noise. J Acoust Soc Am 70:390–6.

    Article  PubMed  CAS  Google Scholar 

  19. Henderson D and R Hamernik (1986) A parametric evaluation of the equal energy hypothesis, in Basic & Applied Aspects of Noise Induced Hearing Loss, R Salvi et al, Editors, pp 369–78.

    Google Scholar 

  20. Bohne BA (1976) Safe level for noise exposure? Ann Otol Rhinol Laryngol 85:711–24.

    PubMed  CAS  Google Scholar 

  21. Ward WD, PA Santi, AJ Duvall, 3 rd et al (1981) Total energy and critical intensity concepts in noise damage. Ann Otol Rhinol Laryngol 90:584–90.

    PubMed  CAS  Google Scholar 

  22. Henderson D and RP Hamernik (1986a) Impulse noise: critical review. J Acoust Soc Am 80:569–84.

    Article  PubMed  CAS  Google Scholar 

  23. Hamernik RP, G Turrentine, M Roberto et al (1984) Anatomical correlates of impulse noise-induced mechanical damage in the cochlea. Hear Res 13:229–47.

    Article  PubMed  CAS  Google Scholar 

  24. Morest DK, J Kim, SJ Potashner et al (1998) Long-term degeneration in the cochlear nerve and cochlear nucleus of the adult chinchilla following acoustic overstimulation. Microsc Res Tech 41:205–16.

    Article  PubMed  CAS  Google Scholar 

  25. Salvi RJ, J Wang and D Ding (2000) Auditory plasticity and hyperactivity following cochlear damage. Hear Res 147:261–74.

    Article  PubMed  CAS  Google Scholar 

  26. Kaltenbach JA and CE Afman (2000) Hyperactivity in the dorsal cochlear nucleus after intense sound exposure and its resemblance to tone-evoked activity: a physiological model for tinnitus. Hear Res 140:165–72.

    Article  PubMed  CAS  Google Scholar 

  27. Sun W, L Zhang, J Lu et al (2008) Noise exposure-induced enhancement of auditory cortex response and changes in gene expression. Neuroscience 156:374–80.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donald Henderson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Henderson, D., Bielefeld, E.C., Lobarinas, E., Tanaka, C. (2011). Noise-Induced Hearing Loss: Implication for Tinnitus. In: Møller, A.R., Langguth, B., De Ridder, D., Kleinjung, T. (eds) Textbook of Tinnitus. Springer, New York, NY. https://doi.org/10.1007/978-1-60761-145-5_37

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-145-5_37

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-60761-144-8

  • Online ISBN: 978-1-60761-145-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics