Advertisement

The Neuroscientist

  • James A. KaltenbachEmail author

Keypoints

  1. 1.

    This chapter reviews the current state of knowledge of tinnitus from the neuroscientist’s perspective.

     
  2. 2.

    Tinnitus is viewed as a disorder involving changes in the rate and timing of spontaneous discharges at multiple levels of the auditory system.

     
  3. 3.

    Its mechanisms vary, depending on etiology, but most commonly the disorder stems from increases in the excitability of neurons in the central auditory system.

     
  4. 4.

    Most of the available data suggest that this increase is synaptic in origin, caused by shifts in the balance of excitatory and inhibitory inputs to neurons.

     
  5. 5.

    However, other mechanisms, such as shifts in the expression of ion channels that determine the resting membrane potential of neurons, may also play a contributing role.

     
  6. 6.

    Since these changes occur at multiple levels of the auditory system, it is likely that new therapies that will prove most effective will be those that take a system-wide approach rather than those that target specific generator sites.

     

Keywords

Tinnitus Dorsal cochlear nucleus Plasticity Excitotoxicity Neurodegeneration Inferior colliculus Auditory cortex 

Abbreviations

DCN

Dorsal cochlear nucleus

GABA

Gamma amino butyric acid

IC

Inferior colliculus

LTD

Long-term depression

LTP

Long-term potentiation

NMDA

N-Methyl-d-aspartate

rTMS

Repetitive TMS

TMS

Transcranial magnetic stimulation

Notes

Acknowledgments

The experiments conducted by the author, which contributed in part to this review, were supported by NIH grant R01 DC009097.

References

  1. 1.
    House, JW, Brackman, DE, Tinnitus: surgical treatment. In: Evered, D, Lawrenson, G (Eds), Tinnitus Ciba Found Symp 85. London: Pitman, 1982, pp 204–216Google Scholar
  2. 2.
    Berliner, KI, Shelton, C, Hitselberger, WE, Luxford, WM, Acoustic tumors: effect of surgical removal on tinnitus. Am J Otol, 1992;13:13–17PubMedGoogle Scholar
  3. 3.
    Fahy, C, Nikolopoulos, TP, O’Donoghue, GM, Acoustic neuroma surgery and tinnitus. Eur Arch Otorhinolaryngol, 2002;259:299–301PubMedGoogle Scholar
  4. 4.
    Dallos, P, Harris, D, Properties of auditory nerve responses in absence of outer hair cells. J Neurophysiol, 1978;41:365–383PubMedGoogle Scholar
  5. 5.
    Liberman, MC, Dodds, LW, Single-neuron labeling and chronic cochlear pathology. II. Stereocilia damage and alterations of spontaneous discharge rates. Hear Res, 1984;16:43–53PubMedCrossRefGoogle Scholar
  6. 6.
    Liberman, MC, Kiang, NY, Acoustic trauma in cats Cochlear pathology and auditory-nerve activity. Acta Otolaryngol Suppl, 1978;358:1–63PubMedGoogle Scholar
  7. 7.
    Evans, EF, Borerwe, TA, Ototoxic effects of salicylates on the responses of single cochlear nerve fibers and on cochlear potentials. Br J Audiol, 1982;16:101–108PubMedCrossRefGoogle Scholar
  8. 8.
    Mulheran, M, Evans, EF, A comparison of two experimental tinnitogenic agents: the effect of salicylate and quinine on activity of cochlear nerve fibers in the guinea pig. In: Hazell, J (Ed), Proceedings of the Sixth International Tinnitus Seminar. London: The Tinnitus and Hyperacusis Center, 1999, pp 189–192Google Scholar
  9. 9.
    Martin, WH, Schwegler, JW, Scheibelhoffer, J, Ronis ML, Salicylate-induced changes in cat auditory nerve activity. Laryngoscope, 1993;103:600–604PubMedCrossRefGoogle Scholar
  10. 10.
    Cazals, Y, Horner, KC, Huang, ZW, Alterations in average spectrum of cochleoneural activity by long-term salicylate treatment in the guinea pig: a plausible index of tinnitus. J Neurophysiol, 1998;80:2113–2120PubMedGoogle Scholar
  11. 11.
    Lenarz, T, Schreiner, C, Snyder, RL, Ernst, A, Neural mechanisms of tinnitus. Eur Arch Otorhinolaryngol, 1993;249:441–446PubMedCrossRefGoogle Scholar
  12. 12.
    Kaltenbach, JA, Godfrey DA, Neumann, JB, McCaslin, DL, Afman, CE, Zhang, J, Changes in spontaneous neural activity in the dorsal cochlear nucleus following exposure to intense sound: relation to threshold shift. Hearing Res, 1998;124:78–84CrossRefGoogle Scholar
  13. 13.
    Shore, SE, Koehler, S, Oldakowski, M, Hughes, LF, Syed, S, Dorsal cochlear nucleus responses to somatosensory stimulation are enhanced after noise-induced hearing loss. Eur J Neurosci, 2008;27:155–168PubMedCrossRefGoogle Scholar
  14. 14.
    Finlayson, PG, Kaltenbach, JA, Alterations in the spontaneous discharge patterns of single units in the dorsal cochlear nucleus following intense sound exposure. Hear Res, 2009;256:104–117PubMedCrossRefGoogle Scholar
  15. 15.
    Imig, TJ, Durham, D, Effect of unilateral noise exposure on the tonotopic distribution of spontaneous activity in the cochlear nucleus and inferior colliculus in the cortically intact and decorticate rat. J Comp Neurol, 2005;490:391–413PubMedCrossRefGoogle Scholar
  16. 16.
    Kaltenbach, JA, Afman, CE, Hyperactivity in the dorsal cochlear nucleus after intense sound exposure and its resemblance to tone-evoked activity: a physiological model for tinnitus. Hear Res, 2000;140:165–172PubMedCrossRefGoogle Scholar
  17. 17.
    Brozoski, TJ, Bauer, CA, Caspary, DM, Elevated fusiform cell activity in the dorsal cochlear nucleus of chinchillas with psychophysical evidence of tinnitus. J Neurosci, 2002;22:2383–2390PubMedGoogle Scholar
  18. 18.
    Zhang, JS, Kaltenbach, JA, Increases in spontaneous activity in the dorsal cochlear nucleus of the rat following exposure to high intensity sound. Neurosci Lett, 1998;250:197–200PubMedCrossRefGoogle Scholar
  19. 19.
    Gerken, GM, Saunders, SS, Paul, RE, Hypersensitivity to electrical stimulation of auditory nuclei follows hearing loss in cats. Hear Res, 1984;13:249–259PubMedCrossRefGoogle Scholar
  20. 20.
    Ma, WL, Hidaka, H, May, BJ, Spontaneous activity in the inferior colliculus of CBA/J mice after manipulations that induce tinnitus. Hear Res, 2006;212:9–21PubMedCrossRefGoogle Scholar
  21. 21.
    Kwon, O, Jastreboff, MM, Hu, S, Shi, J, Jastreboff, PJ, Modification of single unit activity related to noise-induced tinnitus in rats. In: Proc of the 6th Internat Tinn Sem,1999, pp 459–462Google Scholar
  22. 22.
    Brozoski, TJ, Ciobanu, L, Bauer, CA, Central neural activity in rats with tinnitus evaluated with manganese-enhanced magnetic resonance imaging (MEMRI). Hear Res, 2007;228:168–179PubMedCrossRefGoogle Scholar
  23. 23.
    Bauer, CA, Turner, JG, Caspary, DM, Myers, KS, Brozoski, TJ, Tinnitus and inferior colliculus activity in chinchillas related to three distinct patterns of cochlear trauma. J Neurosci Res, 2008;86:2564–2578PubMedCrossRefGoogle Scholar
  24. 24.
    Salvi, RJ, Wang, J, Ding, D, Auditory plasticity and hyperactivity following cochlear damage. Hear Res, 2000;147(1–2):261–274PubMedCrossRefGoogle Scholar
  25. 25.
    Mulders, WH, Robertson, D, Hyperactivity in the auditory midbrain after acoustic trauma: dependence on cochlear activity. Neuroscience, 2009;164:733–746PubMedCrossRefGoogle Scholar
  26. 26.
    Dong, S, Mulders, WH, Rodger, J, Robertson, D, Changes in neuronal activity and gene expression in guinea-pig auditory brainstem after unilateral partial hearing loss. Neuroscience, 2009;159:1164–1174PubMedCrossRefGoogle Scholar
  27. 27.
    Seki, S, Eggermont, JJ, Changes in spontaneous firing rate and neural synchrony in cat primary auditory cortex after localized tone-induced hearing loss. Hear Res, 2003;180:28–38PubMedCrossRefGoogle Scholar
  28. 28.
    Komiya, H, Eggermont, JJ, Spontaneous firing activity of cortical neurons in adult cats with reorganized tonotopic map following pure-tone trauma. Acta Otolaryngol, 2000;120:750–756PubMedCrossRefGoogle Scholar
  29. 29.
    Eggermont, JJ, Komiya, H, Moderate noise trauma in juvenile cats results in profound cortical topographic map changes in adulthood. Hear Res, 2000;142:89–101PubMedCrossRefGoogle Scholar
  30. 30.
    Noreña, AJ, Eggermont, JJ, Enriched acoustic environment after noise trauma abolishes neural signs of tinnitus. Neuroreport, 2006;17:559–563PubMedCrossRefGoogle Scholar
  31. 31.
    Mahlke, C, Wallhäusser-Franke, E, Evidence for tinnitus-related plasticity in the auditory and limbic system, demonstrated by arg31 and c-fos immunocytochemistry. Hear Res, 2004;195:17–34PubMedCrossRefGoogle Scholar
  32. 32.
    Heffner, HE, Harrington, IA, Tinnitus in hamsters following exposure to intense sound. Hear Res, 2002;170:83–95PubMedCrossRefGoogle Scholar
  33. 33.
    Zheng, Y, Baek. JH, Smith, PF, Darlington CL Cannabinoid receptor down regulation in the ventral cochlear nucleus in a salicylate model of tinnitus. Hear Res, 2007;228:105–111Google Scholar
  34. 34.
    Jastreboff, PJ, Brennan, JF, Coleman, JK, Sasaki, CT, Phantom auditory sensation in rats: an animal model for tinnitus. Behav Neurosci, 1988;102:811–822PubMedCrossRefGoogle Scholar
  35. 35.
    Kaltenbach, JA, Zacharek, MA, Zhang, JS, Frederick, S, Activity in the dorsal cochlear nucleus of hamsters previously tested for tinnitus following intense tone exposure. Neurosci Lett, 2004;355:121–125PubMedCrossRefGoogle Scholar
  36. 36.
    Guitton, MJ, Dudai, Y, Blockade of cochlear NMDA receptors prevents long-term tinnitus during a brief consolidation window after acoustic trauma. Neural Plast, 2007;2007:80904PubMedCrossRefGoogle Scholar
  37. 37.
    Turner, JG, Brozoski, TJ, Bauer, CA, Parrish, JL, Myers, K, Hughes, LF, Caspary, DM, Gap detection deficits in rats with tinnitus: a potential novel screening tool. Behav Neurosci, 2006;120:188–195PubMedCrossRefGoogle Scholar
  38. 38.
    Rüttiger, L, Ciuffani, J, Zenner, HP, Knipper, M, A behavioral paradigm to judge acute sodium salicylate-induced sound experience in rats: a new approach for an animal model on tinnitus. Hear Res, 2003;180:39–50PubMedCrossRefGoogle Scholar
  39. 39.
    Tan, J, Rüttiger, L, Panford-Walsh, R, Singer, W, Schulze, H, Kilian, SB, Hadjab, S, Zimmermann, U, Köpschall, I, Rohbock, K, Knipper, M, Tinnitus behavior and hearing function correlate with the reciprocal expression patterns of BDNF and Arg31/arc in auditory neurons following acoustic trauma. Neuroscience, 2007;145:715–726PubMedCrossRefGoogle Scholar
  40. 40.
    Jastreboff, PJ, Sasaki, CT, Salicylate-induced changes in spontaneous activity of single units in the inferior colliculus of the guinea pig. J Acoust Soc Am, 1986;80:1384–1391PubMedCrossRefGoogle Scholar
  41. 41.
    Chen, G-D, Jastreboff, PJ, Salicylate-induced abnormal activity in the inferior colliculus of rats. Hear Res, 1995;82:158–178PubMedCrossRefGoogle Scholar
  42. 42.
    Manabe, Y, Saito, T, Saito, H, Effects of lidocaine on salicylate-induced discharges of neurons in the inferior colliculus of the guinea pig. Hear Res, 1997;103:192–198PubMedCrossRefGoogle Scholar
  43. 43.
    Wallhäusser-Franke, E, Mahlke, C, Oliva, R, Braun, S, Wenz, G, Langner, G, Expression of c-fos in auditory and non-auditory brain regions of the gerbil after manipulations that induce tinnitus. Exp Brain Res, 2003;153:649–654PubMedCrossRefGoogle Scholar
  44. 44.
    Melamed, SB, Kaltenbach, JA, Church, MW, Burgio, DL, Afman, CE, Cisplatin-induced increases in spontaneous neural activity in the dorsal cochlear nucleus and associated outer hair cell loss. Audiology, 2000;39:24–29PubMedCrossRefGoogle Scholar
  45. 45.
    Kaltenbach, JA, Rachel, JD, Mathog, TA, Zhang, JS, Falzarano, PR, Lewandowski, M, Cisplatin induced hyperactivity in the dorsal cochlear nucleus and its relation to outer hair cell loss: relevance to tinnitus. J Neurophys, 2002;88:699–714Google Scholar
  46. 46.
    Eggermont, JJ, Kenmochi, M, Salicylate and quinine selectively increase spontaneous firing rates in secondary auditory cortex. Hear Res, 1998;117:149–160PubMedCrossRefGoogle Scholar
  47. 47.
    Jastreboff, PJ, Brennan, JF, Sasaki, CT, Quinine-induced tinnitus in rats. Arch Otolaryngol Head Neck Surg, 1991;117:1162–1166PubMedCrossRefGoogle Scholar
  48. 48.
    Bauer, CA, Brozoski, TJ, Rojas, R, Boley, J, Wyder, M, Behavioral model of chronic tinnitus in rats. Otolaryngol Head Neck Surg,1999;121:457–462PubMedCrossRefGoogle Scholar
  49. 49.
    Lobarinas, E, Sun, W, Cushing, R, Salvi, R, A novel behavioral paradigm for assessing tinnitus using schedule-induced polydipsia avoidance conditioning (SIP-AC). Hear Res, 2004;190:109–114PubMedCrossRefGoogle Scholar
  50. 50.
    Melcher, JR, Sigalovsky, IS, Guinan, JJ Jr, Levine, RA, Lateralized tinnitus studied with functional magnetic resonance imaging: abnormal inferior colliculus activation. J Neurophysiol, 2000;83:1058–1072PubMedGoogle Scholar
  51. 51.
    Lanting, CP, De Kleine, E, Bartels, H, Van Dijk, P, Functional imaging of unilateral tinnitus using fMRI. Acta Otolaryngol, 2008;128:415–421PubMedCrossRefGoogle Scholar
  52. 52.
    Lockwood, AH, Salvi, RJ, Coad, ML, Towsley, ML, Wack, DS, Murphy, BW, The functional neuroanatomy of tinnitus: evidence for limbic system links and neural plasticity. Neurology, 1998;50:114–120PubMedCrossRefGoogle Scholar
  53. 53.
    Arnold, W, Bartenstein, P, Oestreicher, E, Romer, W, Schwaiger, M, Focal metabolic activation in the predominant left auditory cortex in patients suffering from tinnitus: a PET study with [18F]deoxyglucose. ORL J Otorhinolaryngol Relat Spec, 1996;58:195–199PubMedCrossRefGoogle Scholar
  54. 54.
    Andersson, G, Lyttkens, L, Hirvela, C, Furmark, T, Tillfors, M, Fredrikson, M, Regional cerebral blood flow during tinnitus: a PET case study with lidocaine and auditory stimulation. Acta Otolaryngol, 2000;120:967–972PubMedCrossRefGoogle Scholar
  55. 55.
    Giraud, AL, Chery-Croze, S, Fischer, G, Fischer, C, Vighetto, A, Gregoire, MC, Lavenne, F, Collet, L, A selective imaging of tinnitus. Neuroreport, 1999;10:1–5PubMedCrossRefGoogle Scholar
  56. 56.
    Lockwood, AH, Wack, DS, Burkard, RF, Goad, ML, Reyes, SA, Arnold, SA, Salvi, RJ, The functional anatomy of gaze-evoked tinnitus and sustained lateral gaze. Neurology, 2001;56:472–480PubMedCrossRefGoogle Scholar
  57. 57.
    Wang, H, Tian, J, Yin, D, Positron emission tomography of tinnitus-related brain areas. Zhonghua Er BiVan Hou Ke Za Zhi, 2000;35:420–424Google Scholar
  58. 58.
    Mirz, F, Gjedde, A, Ishizu, K, Pedersen, CB, Cortical networks subserving the perception of tinnitus-a PET study. Acta Otolaryngol Suppl, 2000;543:241–243PubMedCrossRefGoogle Scholar
  59. 59.
    Reyes, SA, Salvi, RJ, Burkard, RF, Coad, ML, Wack, DS, Galantowicz, PJ, Lockwood, AH, Brain imaging of the effects of lidocaine on tinnitus. Hear Res, 2002;171:43–50PubMedCrossRefGoogle Scholar
  60. 60.
    Kanold, PO, Young, ED, Proprioceptive information from the pinna provides somatosensory input to cat dorsal cochlear nucleus. J Neurosci, 2001;21:7848–7858PubMedGoogle Scholar
  61. 61.
    Shore, SE, Zhou, J, Somatosensory influence on the cochlear nucleus and beyond. Hear Res, 2006;216–217:90–99PubMedCrossRefGoogle Scholar
  62. 62.
    Shore, SE, Vass, Z, Wys, NL, Altschuler, RA, Trigeminal ganglion innervates the auditory brainstem. J Comp Neurol, 2004;19:271–285Google Scholar
  63. 63.
    Shore, SE, Multisensory integration in the dorsal cochlear nucleus: unit responses to acoustic and trigeminal ganglion stimulation. Eur J Neurosci, 2005;21:3334–3348PubMedCrossRefGoogle Scholar
  64. 64.
    Levine, RA, Somatic (craniocervical) tinnitus and the dorsal cochlear nucleus hypothesis. Am J Otolaryngol, 1999;20:351–362PubMedCrossRefGoogle Scholar
  65. 65.
    Levine, RA, Somatic tinnitus. In: Snow, JB Jr (Ed), Tinnitus: Theory and management. Hamilton, Ontario, Canada: Decker, 2004, pp 108–124Google Scholar
  66. 66.
    Levine, RA, Abel, M, Cheng, H, CNS somatosensory–auditory interactions elicit or modulate tinnitus. Exp Brain Res, 2003;153:643–648PubMedCrossRefGoogle Scholar
  67. 67.
    Abel, MD, Levine, RA, Muscle contractions and auditory perception in tinnitus patients and nonclinical subjects. Cranio, 2004;22:181–191PubMedGoogle Scholar
  68. 68.
    Ochi, K, Eggermont, JJ, Effects of salicylate on neural activity in cat primary auditory cortex. Hear Res, 1996;95:63–76PubMedCrossRefGoogle Scholar
  69. 69.
    Ochi, K, Eggermont, JJ, Effects of quinine on neural activity in cat primary auditory cortex. Hear Res, 1997;105:105–118PubMedCrossRefGoogle Scholar
  70. 70.
    Evans, EF, Place and time coding of frequency in the peripheral auditory system: some physiological pros and cons. Audiology, 1978;17:369–420PubMedCrossRefGoogle Scholar
  71. 71.
    Joris, PX, Smith, PH, The volley theory and the spherical cell puzzle. Neuroscience, 2008;154:65–76PubMedCrossRefGoogle Scholar
  72. 72.
    Eggermont, JJ, Pathophysiology of tinnitus. Prog Brain Res, 2007;166:19–35PubMedCrossRefGoogle Scholar
  73. 73.
    Eggermont, JJ, Roberts, LE, The neuroscience of tinnitus. Trends Neurosci, 2004;27:676–682PubMedCrossRefGoogle Scholar
  74. 74.
    Vernon, JA (Ed), Tinnitus: Treatment and Relief. Boston, MA: Allyn & Bacon, 1997Google Scholar
  75. 75.
    Cacace, AT, Lovely, TJ, McFarland, DJ, Parnes, SM, Winter, DF, Anomalous cross-modal plasticity following posterior fossa surgery: some speculations on gaze-evoked tinnitus. Hear Res, 1994;81:22–32PubMedCrossRefGoogle Scholar
  76. 76.
    Cacace, AT, Expanding the biological basis of tinnitus: crossmodal origins and the role of neuroplasticity. Hear Res, 2003;175:112–132PubMedCrossRefGoogle Scholar
  77. 77.
    Møller, MB, Møller, AR, Jannetta, PJ, Jho, HD, Vascular decompression surgery for severe tinnitus: selection criteria and results. Laryngoscope, 1993;103:421–427PubMedCrossRefGoogle Scholar
  78. 78.
    Møller, AR, Møller, MB, Microvascular decompression operations. Prog Brain Res, 2007;166:397–400PubMedCrossRefGoogle Scholar
  79. 79.
    Nodar, RH, Graham, JT, An investigation of frequency characteristics of tinnituis associated with Meniere’s disease. Arch Otolaryngol Head Neck Surg, 1965;82:28–31CrossRefGoogle Scholar
  80. 80.
    Hazell, JW, Tinnitus II: surgical management of conditions associated with tinnitus and somatosounds. J Otolaryngol, 1990;19:6–10PubMedGoogle Scholar
  81. 81.
    Mills, RP, Cherry, JR, Subjective tinnitus in children with otological disorders. Int J Pediatr Otorhinolaryngol, 1984;7:21–27PubMedCrossRefGoogle Scholar
  82. 82.
    Lonsbury-Martin, BL, Martin, GK, Otoacoustic emissions and tinnitus. In: Snow, JB Jr (Ed), Tinnitus: Theory and Management. Hamilton, Ontario, Canada: Decker, 2004, pp 69–78Google Scholar
  83. 83.
    Brown, MC, Ledwith, JV III, Projections of thin (type-II) and thick (type-I) auditory-nerve fibers into the cochlear nucleus of the mouse. Hear Res, 1990;49:105–118PubMedCrossRefGoogle Scholar
  84. 84.
    Benson, TE, Brown, MC, Postsynaptic targets of type II auditory nerve fibers in the cochlear nucleus. J Assoc Res Otolaryngol, 2004;5:111–125PubMedGoogle Scholar
  85. 85.
    Shore SE, Moore JK, Sources of input to the cochlear granule cell region in the guinea pig. Hear Res, 1998;116(1–2):33–42PubMedCrossRefGoogle Scholar
  86. 86.
    Berglund AM, Brown MC, Central trajectories of type II spiral ganglion cells from various cochlear regions in mice. Hear Res, 1994;75(1–2):121–130.PubMedCrossRefGoogle Scholar
  87. 87.
    Godfrey, DA, Godfrey, TG, Mikesell, NL, Waller, HJ, Yao, W, Chen, K, Kaltenbach, JA, Chemistry of granular and closely related regions of the cochlear nucleus In: Syka, J (Ed), Acoustical Signal Processing in the Central Auditory System. New York: Plenum, 1997, pp 139–153CrossRefGoogle Scholar
  88. 88.
    Rubinstein, B, Tinnitus and craniomandibular disorders – is there a link? Swed Dent J Suppl, 1993;95:1–46PubMedGoogle Scholar
  89. 89.
    Seydel, C, Reisshauer, A, Haupt, H, Klapp, BF, Mazurek, B, The role of stress in the pathogenesis of tinnitus and in the ability to cope with it. HNO, 2006;54:709–714PubMedCrossRefGoogle Scholar
  90. 90.
    Schmitt, C, Patak, M, Kröner-Herwig, B, Stress and the onset of sudden hearing loss and tinnitus. Int Tinnitus J, 2000;6:41–49PubMedGoogle Scholar
  91. 91.
    Mazurek, B, Stöver, T, Haupt, H, Klapp, BF, Adli, M, Gross, J, Szczepek, AJ, The significance of stress: its role in the auditory system and the pathogenesis of tinnitus. HNO, 2010;58:162–172PubMedCrossRefGoogle Scholar
  92. 92.
    Wright, DD, Ryugo, DK, Mossy fiber projections from the cuneate nucleus to the cochlear nucleus in the rat. J Comp Neurol, 1996;365:159–172PubMedCrossRefGoogle Scholar
  93. 93.
    Weinberg, RJ, Rustioni, AA, Cuneocochlear pathway in the rat. Neuroscience, 1987;20:209–219PubMedCrossRefGoogle Scholar
  94. 94.
    Itoh, K, Kamiya, H, Mitani, A, Yasui, Y, Takada, M, Mizuno, N, Direct projections from the dorsal column nuclei and the spinal trigeminal nuclei to the cochlear nuclei in the cat. Brain Res, 1987;400:145–150PubMedCrossRefGoogle Scholar
  95. 95.
    Manis, PB, Responses to parallel fiber stimulation in the guinea pig dorsal cochlear nucleus in vitro. J Neurophysiol, 1989;61:149–161PubMedGoogle Scholar
  96. 96.
    Suneja, SK, Potashner, SJ, Benson, CG, Plastic changes in glycine and GABA release and uptake in adult brain stem auditory nuclei after unilateral middle ear ossicle removal and cochlear ablation. Exp Neurol, 1998;151:273–288PubMedCrossRefGoogle Scholar
  97. 97.
    Suneja, SK, Potashner, SJ, Benson, CG, Glycine receptors in adult guinea pig brain stem auditory nuclei: regulation after unilateral cochlear ablation. Exp Neurol, 1998;154:473–488PubMedCrossRefGoogle Scholar
  98. 98.
    Potashner, SJ, Suneja, SK, Benson, CG, Altered glycinergic synaptic activities in guinea pig brain stem auditory nuclei after unilateral cochlear ablation. Hear Res, 2000;147:125–136PubMedCrossRefGoogle Scholar
  99. 99.
    Asako, M, Holt, AG, Griffith, RD, Buras, ED, Altschuler, RA, Deafness-related decreases in glycine-immunoreactive labeling in the rat cochlear nucleus. J Neurosci Res, 2005;81:102–109PubMedCrossRefGoogle Scholar
  100. 100.
    Wang, H, Brozoski, TJ, Turner, JG, Ling, L, Parrish, JL, Hughes, LF, Caspary, DM, Plasticity at glycinergic synapses in dorsal cochlear nucleus of rats with behavioral evidence of tinnitus. Neuroscience, 2009;164:747–759PubMedCrossRefGoogle Scholar
  101. 101.
    Abbott, SD, Hughes, L, Bauer, CA, Salvi, R, Caspary, DM, Detection of glutamate decarboxylase isoforms in rat inferior colliculus following acoustic exposure. Neuroscience, 1999;93:1375–1381PubMedCrossRefGoogle Scholar
  102. 102.
    Milbrandt, JC, Holder, TM, Wilson, MC, Salvi, RJ, Caspary, DM, GAD levels and muscimol binding in rat inferior colliculus following acoustic trauma. Hear Res, 2000;147:251–260PubMedCrossRefGoogle Scholar
  103. 103.
    Bledsoe, SCJ, Nagase, S, Miller, JM, Altschuler, RA, Deafness induced plasticity in the mature central auditory system. Neuroreport, 1995;7:225–229PubMedGoogle Scholar
  104. 104.
    Caspary DM, Raza A, Lawhorn Armour BA, et al. Immunocytochemical and neurochemical evidence for age-related loss of GABA in the inferior colliculus: implications for neural presbycusis. J Neurosci, 1990;10:2363–2372PubMedGoogle Scholar
  105. 105.
    Schaette, R, Kempter, R, Development of tinnitus-related neuronal hyperactivity through homeostatic plasticity after hearing loss: a computational model. Eur J Neurosci, 2006;23:3124–3138PubMedCrossRefGoogle Scholar
  106. 106.
    Chang, H, Chen, K, Kaltenbach, JA, Zhang, J, Godfrey, DA, Effects of acoustic trauma on dorsal cochlear nucleus neuron activity in slices. Hear Res, 2002;164:59–68PubMedCrossRefGoogle Scholar
  107. 107.
    Kaltenbach, JA, Zhang, J, Intense sound-induced plasticity in the dorsal cochlear nucleus of rats: evidence for cholinergic receptor upregulation. Hear Res, 2007;226:232–243PubMedCrossRefGoogle Scholar
  108. 108.
    Jin, YM, Godfrey, DA, Wang, J, Kaltenbach, JA, Effects of intense tone exposure on choline acetyltransferase activity in the hamster cochlear nucleus. Hear Res, 2006;216–217:168–175PubMedCrossRefGoogle Scholar
  109. 109.
    Illing, RB, Kraus, KS, Meidinger, MA, Reconnecting neuronal networks in the auditory brainstem following unilateral deafening. Hear Res, 2005;206:185–199PubMedCrossRefGoogle Scholar
  110. 110.
    Muly, SM, Gross, JS, Potashner, SJ, Noise trauma alters d-[3H]aspartate release and AMPA binding in chinchilla cochlear nucleus. J Neurosci Res, 2004;75:585–596PubMedCrossRefGoogle Scholar
  111. 111.
    Suneja, SK, Potashner, SJ, Benson, CG, AMPA receptor binding in adult guinea pig brain stem auditory nuclei after unilateral cochlear ablation. Exp Neurol, 2000;165:355–369PubMedCrossRefGoogle Scholar
  112. 112.
    Rubio, ME, Redistribution of synaptic AMPA receptors at glutamatergic synapses in the dorsal cochlear nucleus as an early response to cochlear ablation in rats. Hear Res, 2006;216–217:154–167PubMedCrossRefGoogle Scholar
  113. 113.
    Whiting, B, Moiseff, A, Rubio, ME, Cochlear nucleus neurons redistribute synaptic AMPA and glycine receptors in response to monaural conductive hearing loss. Neuroscience, 2009;163:1264–1276PubMedCrossRefGoogle Scholar
  114. 114.
    Kim, J, Morest, DK, Bohne, BA, Degeneration of axons in the brainstem of the chinchilla after auditory overstimulation. Hear Res, 1997;103:169–191PubMedCrossRefGoogle Scholar
  115. 115.
    Kim, JJ, Gross, J, Potashner, SJ, Morest, DK, Fine structure of long-term changes in the cochlear nucleus after acoustic overstimulation: chronic degeneration and new growth of synaptic endings. J Neurosci Res, 2004;77:817–828PubMedCrossRefGoogle Scholar
  116. 116.
    Holt, AG, Asako, M, Duncan, RK, Lomax, CA, Juiz, JM, Altschuler, RA, Deafness associated changes in expression of two-pore domain potassium channels in the rat cochlear nucleus. Hear Res, 2006;216–217:146–153PubMedCrossRefGoogle Scholar
  117. 117.
    von Hehn, CA, Bhattacharjee, A, Kaczmarek, LK, Loss of Kv31 tonotopicity and alterations in cAMP response element-binding protein signaling in central auditory neurons of hearing impaired mice. J Neurosci, 2004;24:1936–1940CrossRefGoogle Scholar
  118. 118.
    Morest, DK, Kim, J, Potashner, SJ, Bohne, BA, Long-term degeneration in the cochlear nerve and cochlear nucleus of the adult chinchilla following acoustic overstimulation. Microsc Res Tech, 1998;41:205–216PubMedCrossRefGoogle Scholar
  119. 119.
    Kimura, A, Pavlides, C, Long-term potentiation/depotentiation are accompanied by complex changes in spontaneous unit activity in the hippocampus. J Neurophysiol, 2000;84:1894–1906PubMedGoogle Scholar
  120. 120.
    Fujino, K, Oertel, D, Bidirectional synaptic plasticity in the cerebellum-like mammalian dorsal cochlear nucleus. Proc Natl Acad Sci U S A, 2003;100:265–270PubMedCrossRefGoogle Scholar
  121. 121.
    Oertel, D, Young, ED, What’s a cerebellar circuit doing in the auditory system? Trends Neurosci, 2004;27:104–110PubMedCrossRefGoogle Scholar
  122. 122.
    Tzounopoulos, T, Kim, Y, Oertel, D, Trussell, LO, Cell-specific, spike timing-dependent plasticities in the dorsal cochlear nucleus. Nat Neurosci, 2004;7:719–725PubMedCrossRefGoogle Scholar
  123. 123.
    Wu, SH, Ma, CL, Sivaramakrishnan S, Oliver DL, Synaptic modification in neurons of the central nucleus of the inferior colliculus. Hear Res, 2002;168:43–54PubMedCrossRefGoogle Scholar
  124. 124.
    Zhang, Y, Wu, SH, Long-term potentiation in the inferior colliculus studied in rat brain slice. Hear Res, 2000;147:92–103PubMedCrossRefGoogle Scholar
  125. 125.
    Seki, K, Kudoh, M, Shibuki, K, Long-term potentiation of Ca2+ signal in the rat auditory cortex. Neurosci Res, 1999;34:187–197PubMedCrossRefGoogle Scholar
  126. 126.
    Kudoh, M, Shibuki, K, Long-term potentiation in the auditory cortex of adult rats. Neurosci Lett, 1994;171:21–23PubMedCrossRefGoogle Scholar
  127. 127.
    Tzounopoulos, T, Mechanisms of synaptic plasticity in the dorsal cochlear nucleus: plasticity-induced changes that could underlie tinnitus. Am J Audiol, 2008;17:S170–S175PubMedCrossRefGoogle Scholar
  128. 128.
    König, O, Schaette, R, Kempter, R, Gross, M, Course of hearing loss and occurrence of tinnitus. Hear Res, 2006;221:59–64PubMedCrossRefGoogle Scholar
  129. 129.
    Schaette, R, Kempter, R, Predicting tinnitus pitch from patients’ audiograms with a computational model for the development of neuronal hyperactivity. J Neurophysiol, 2009;101:3042–3052PubMedCrossRefGoogle Scholar
  130. 130.
    Bauer, CA, Brozoski, TJ, Effect of gabapentin on the sensation and impact of tinnitus. Laryngoscope, 2006;116:675–681PubMedCrossRefGoogle Scholar
  131. 131.
    Piccirillo, JF, Finnell, J, Vlahiotis, A, Chole, RA, Spitznagel, E Jr, Relief of idiopathic subjective tinnitus: is gabapentin effective? Arch Otolaryngol Head Neck Surg, 2007;133:390–397PubMedCrossRefGoogle Scholar
  132. 132.
    Witsell, DL, Hannley, MT, Stinnet, S, Tucci, DL, Treatment of tinnitus with gabapentin: a pilot study. Otol Neurotol, 2007;28:11–15PubMedCrossRefGoogle Scholar
  133. 133.
    Szczepaniak, WS, Møller, AR, Evidence of decreased GABAergic influence on temporal integration in the inferior colliculus following acute noise exposure: a study of evoked potentials in the rat. Neurosci Lett, 1995;196:77–80PubMedCrossRefGoogle Scholar
  134. 134.
    Zhang, JS, Kaltenbach, JA, Effects of GABAB receptor activation on sound-induced hyperactivity in the DCN of hamsters in vivo. In: ARO Abs, 2000 #5020Google Scholar
  135. 135.
    Westerberg, BD, Roberson, JB Jr, Stach, BA, A double-blind placebo-controlled trial of baclofen in the treatment of tinnitus. Am J Otol, 1996;17:896–903PubMedGoogle Scholar
  136. 136.
    Bahmad, FM Jr, Venosa, AR, Oliveira, CA, Benzodiazepines and GABAergics in treating severe disabling tinnitus of predominantly cochlear origin. Int Tinnitus J, 2006;12:140–144PubMedGoogle Scholar
  137. 137.
    Gananca, MM, Caovilla, HH, Gananca, FF, Gananca, CF, Munhoz, MS, da Silva, ML, Serafini, F, Clonazepam in the pharmacological treatment of vertigo and tinnitus. Int Tinnitus J, 2002;8:50–53PubMedGoogle Scholar
  138. 138.
    Azevedo, AA, Figueiredo, RR, Tinnitus treatment with acamprosate: double-blind study. Braz J Otorhinolaryngol, 2005;71:618–623PubMedGoogle Scholar
  139. 139.
    Azevedo, AA, Figueiredo, RR, Treatment of tinnitus with acamprosate. Prog Brain Res, 2007;166:273–277PubMedCrossRefGoogle Scholar
  140. 140.
    Ehrenberger, K, Topical administration of Caroverine in somatic tinnitus treatment: proof-of-concept study. Int Tinnitus J, 2005;11:34–37PubMedGoogle Scholar
  141. 141.
    Budzyn, B, Kaltenbach, JA, Effects of neramexane on tinnitus-related hyperactivity in the dorsal cochlear nucleus. In: Abstract for the 3rd meeting of the Tinnitus Research Initiative, Stresa, Italy, 2009Google Scholar
  142. 142.
    Althaus, M, Clinical development of new drugs for the treatment of tinnitus using the example of Neramexane. In: Abstract for the 3rd meeting of the Tinnitus Research Initiative, Stresa, Italy, 2009Google Scholar
  143. 143.
    Pan, T, Tyler, RS, Ji, H, Coelho, C, Gehringer, AK, Gogel, SA, Changes in the tinnitus handicap questionnaire after cochlear implantation. Am J Audiol, 2009;18:144–151PubMedCrossRefGoogle Scholar
  144. 144.
    Rubinstein, JT, Tyler, RS, Johnson, A, Brown, CJ, Electrical suppression of tinnitus with high-rate pulse trains. Otol Neurotol, 2003;24:478–485PubMedCrossRefGoogle Scholar
  145. 145.
    Soussi, T, Otto, SR, Effects of electrical brainstem stimulation on tinnitus. Acta Otolaryngol, 1994;114:135–140PubMedCrossRefGoogle Scholar
  146. 146.
    De Ridder, D, Vanneste, S, van der Loo, E, Plazier, M, Menovsky, T, van de Heyning, P, Burst stimulation of the auditory cortex: a new form of neurostimulation for noise-like tinnitus suppression. J Neurosurg, 2010;112:1289–1294PubMedCrossRefGoogle Scholar
  147. 147.
    De Ridder, D, De Mulder, G, Verstraeten, E, Van der Kelen, K, Sunaert, S, Smits, M, Kovacs, S, Verlooy, J, Van de Heyning, P, Møller, AR, Primary and secondary auditory cortex stimulation for intractable tinnitus. ORL J Otorhinolaryngol Relat Spec, 2006;68:48–54PubMedCrossRefGoogle Scholar
  148. 148.
    Seidman, MD, Ridder, DD, Elisevich, K, Bowyer, SM, Darrat, I, Dria, J, Stach, B, Jiang, Q, Tepley, N, Ewing, J, Seidman, M, Zhang, J, Direct electrical stimulation of Heschl’s gyrus for tinnitus treatment. Laryngoscope, 2008;118:491–500PubMedCrossRefGoogle Scholar
  149. 149.
    Kleinjung, T, Steffens, T, Londero, A, Langguth, B, Transcranial magnetic stimulation (TMS) for treatment of chronic tinnitus: clinical effects. Prog Brain Res, 2007;166:359–367PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Neurosciences, NE-63, Head and Neck Institute/Lerner Research InstituteThe Cleveland ClinicClevelandUSA

Personalised recommendations