The Stem State in Cancer

  • Dov Zipori
Part of the Stem Cell Biology and Regenerative Medicine book series (STEMCELL)


The properties of cells in the stem state differ profoundly from those of tumorinitiating cells (TICs), often referred to as cancer stem cells. The latter are continuously proliferating, while normal stem cells never do. TICs are either poorly differentiating or lack differentiation capacity altogether. Their biology is therefore a mirror image of stemness.


Tumorigenesis Tumor-initiating cells Tumor stem cells Oligopotency 


  1. Berenblum, I. & Shubik, P. (1949) An experimental study of the initiating stage of carcinogenesis, and a re-examination of the somatic cell mutation theory of cancer. Br J Cancer, 3, 109–118.PubMedGoogle Scholar
  2. Oppenheimer, B.S., Oppenheimer, E.T. & Stout, A.P. (1952) Sarcomas induced in rodents by imbedding various plastic films. Proc Soc Exp Biol Med, 79, 366–369.PubMedGoogle Scholar
  3. Cowdry, E. (1955) Cancer Cells. W.B. Saunders, Philadelphia and London.Google Scholar
  4. Furth, J. (1959) A meeting of ways in cancer research: thoughts on the evolution and nature of neoplasms. Cancer Res, 19, 241–258.PubMedGoogle Scholar
  5. Berenblum, I. (1974) Carcinogenesis as a Biological Problem. North-Holland Publishig Company, Amsterdam, Oxford.Google Scholar
  6. Mintz, B. & Illmensee, K. (1975) Normal genetically mosaic mice produced from malignant teratocarcinoma cells. Proc Natl Acad Sci USA, 72, 3585–3589.PubMedGoogle Scholar
  7. Fidler, I.J. & Kripke, M.L. (1977) Metastasis results from preexisting variant cells within a malignant tumor. Science, 197, 893–895.PubMedGoogle Scholar
  8. Courtenay, V.D., Selby, P.J., Smith, I.E., Mills, J. & Peckham, M.J. (1978) Growth of human tumour cell colonies from biopsies using two soft-agar techniques. Br J Cancer, 38, 77–81.PubMedGoogle Scholar
  9. Hamburger, A.W., Salmon, S.E., Kim, M.B., Trent, J.M., Soehnlen, B.J., Alberts, D.S. & Schmidt, H.J. (1978) Direct cloning of human ovarian carcinoma cells in agar. Cancer Res, 38, 3438–3444.PubMedGoogle Scholar
  10. Buick, R.N., Stanisic, T.H., Fry, S.E., Salmon, S.E., Trent, J.M. & Krasovich, P. (1979) Development of an agar-methyl cellulose clonogenic assay for cells in transitional cell carcinoma of the human bladder. Cancer Res, 39, 5051–5056.PubMedGoogle Scholar
  11. Ben-Nun, A., Wekerle, H. & Cohen, I.R. (1981) The rapid isolation of clonable antigen-specific T lymphocyte lines capable of mediating autoimmune encephalomyelitis. Eur J Immunol, 11, 195–199.PubMedGoogle Scholar
  12. Zipori, D. (1981) Conditions required for the inhibition of in vitro growth of a mouse myeloma cell line by adherent bone-marrow cells. Cell Tissue Kinet, 14, 479–488.PubMedGoogle Scholar
  13. Carney, D.N., Gazdar, A.F., Bunn, P.A., Jr. & Guccion, J.G. (1982) Demonstration of the stem cell nature of clonogenic tumor cells from lung cancer patients. Stem Cells, 1, 149–164.PubMedGoogle Scholar
  14. Poste, G., Tzeng, J., Doll, J., Greig, R., Rieman, D. & Zeidman, I. (1982) Evolution of tumor cell heterogeneity during progressive growth of individual lung metastases. Proc Natl Acad Sci USA, 79, 6574–6578.PubMedGoogle Scholar
  15. Woodruff, M. (1982) The Walter Hubert Lecture, 1982. Interaction of cancer and host. Br J Cancer, 46, 313–322.PubMedGoogle Scholar
  16. Frost, P. & Kerbel, R.S. (1983) On a possible epigenetic mechanism(s) of tumor cell heterogeneity. The role of DNA methylation. Cancer Metastasis Rev, 2, 375–378.PubMedGoogle Scholar
  17. Ossowski, L. & Reich, E. (1983) Changes in malignant phenotype of a human carcinoma conditioned by growth environment. Cell, 33, 323–333.PubMedGoogle Scholar
  18. Beresford, W.A. (1986) A stromal role in epithelial metaplasias? Lancet, 2, 925.PubMedGoogle Scholar
  19. Citron, M.L., Jaffe, N.D., Hamburger, A.W., Lindblad, A.L., Banda, F.P., Yenson, A., Nathan, K.A. & Cohen, M.H. (1986) Improvement of human tumor cloning assay by suspension of fibroblasts into the bottom layer of agarose. Cancer, 57, 2357–2362.PubMedGoogle Scholar
  20. Zipori, D., Krupsky, M. & Resnitzky, P. (1987) Stromal cell effects on clonal growth of tumors. Cancer, 60, 1757–1762.PubMedGoogle Scholar
  21. Huang, M.E., Ye, Y.C., Chen, S.R., Chai, J.R., Lu, J.X., Zhoa, L., Gu, L.J. & Wang, Z.Y. (1988) Use of all-trans retinoic acid in the treatment of acute promyelocytic leukemia. Blood, 72, 567–572.PubMedGoogle Scholar
  22. Pierce, G.B. & Speers, W.C. (1988) Tumors as caricatures of the process of tissue renewal: prospects for therapy by directing differentiation. Cancer Res, 48, 1996–2004.PubMedGoogle Scholar
  23. La Rocca, S.A., Grossi, M., Falcone, G., Alema, S. & Tato, F. (1989) Interaction with normal cells suppresses the transformed phenotype of v-myc-transformed quail muscle cells. Cell, 58, 123–131.PubMedGoogle Scholar
  24. Camps, J.L., Chang, S.M., Hsu, T.C., Freeman, M.R., Hong, S.J., Zhau, H.E., von Eschenbach, A.C. & Chung, L.W. (1990) Fibroblast-mediated acceleration of human epithelial tumor growth in vivo. Proc Natl Acad Sci USA, 87, 75–79.PubMedGoogle Scholar
  25. Zipori, D. (1990) Stromal cells in tumor growth and regression. The Cancer Journal, 3, 164–169.Google Scholar
  26. Brocker, E.B., Magiera, H. & Herlyn, M. (1991) Nerve growth and expression of receptors for nerve growth factor in tumors of melanocyte origin. J Invest Dermatol, 96, 662–665.PubMedGoogle Scholar
  27. Haran-Ghera, N. (1994) Lymphomagenesis in AKR mice: B cell lymphomas as a model of tumor dormancy. Adv Cancer Res, 63, 245–293.PubMedGoogle Scholar
  28. Lapidot, T., Sirard, C., Vormoor, J., Murdoch, B., Hoang, T., Caceres-Cortes, J., Minden, M., Paterson, B., Caligiuri, M.A. & Dick, J.E. (1994) A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature, 367, 645–648.PubMedGoogle Scholar
  29. Kinzler, K.W. & Vogelstein, B. (1996) Lessons from hereditary colorectal cancer. Cell, 87, 159–170.PubMedGoogle Scholar
  30. Reed, J.A., Finnerty, B. & Albino, A.P. (1999) Divergent cellular differentiation pathways during the invasive stage of cutaneous malignant melanoma progression. Am J Pathol, 155, 549–555.PubMedGoogle Scholar
  31. Deininger, M.W., Goldman, J.M. & Melo, J.V. (2000) The molecular biology of chronic myeloid leukemia. Blood, 96, 3343–3356.PubMedGoogle Scholar
  32. Hanahan, D. & Weinberg, R.A. (2000) The hallmarks of cancer. Cell, 100, 57–70.PubMedGoogle Scholar
  33. Reya, T., Morrison, S.J., Clarke, M.F. & Weissman, I.L. (2001) Stem cells, cancer, and cancer stem cells. Nature, 414, 105–111.PubMedGoogle Scholar
  34. Normile, D. (2002) Cell proliferation. Common control for cancer, stem cells. Science, 298, 1869.PubMedGoogle Scholar
  35. Dick, J.E. (2003) Breast cancer stem cells revealed. Proc Natl Acad Sci USA, 100, 3547–3549.PubMedGoogle Scholar
  36. Li, Y., Welm, B., Podsypanina, K., Huang, S., Chamorro, M., Zhang, X., Rowlands, T., Egeblad, M., Cowin, P., Werb, Z., Tan, L.K., Rosen, J.M. & Varmus, H.E. (2003) Evidence that transgenes encoding components of the Wnt signaling pathway preferentially induce mammary cancers from progenitor cells. Proc Natl Acad Sci USA, 100, 15853–15858.PubMedGoogle Scholar
  37. Marx, J. (2003) Cancer research. Mutant stem cells may seed cancer. Science, 301, 1308–1310.PubMedGoogle Scholar
  38. Owens, D.M. & Watt, F.M. (2003) Contribution of stem cells and differentiated cells to epidermal tumours. Nat Rev Cancer, 3, 444–451.PubMedGoogle Scholar
  39. Rajagopalan, H., Nowak, M.A., Vogelstein, B. & Lengauer, C. (2003) The significance of unstable chromosomes in colorectal cancer. Nat Rev Cancer, 3, 695–701.PubMedGoogle Scholar
  40. Beachy, P.A., Karhadkar, S.S. & Berman, D.M. (2004) Tissue repair and stem cell renewal in carcinogenesis. Nature, 432, 324–331.PubMedGoogle Scholar
  41. Bell, D.R. & Van Zant, G. (2004) Stem cells, aging, and cancer: inevitabilities and outcomes. Oncogene, 23, 7290–7296.PubMedGoogle Scholar
  42. Clayton, H., Titley, I. & Vivanco, M. (2004) Growth and differentiation of progenitor/stem cells derived from the human mammary gland. Exp Cell Res, 297, 444–460.PubMedGoogle Scholar
  43. Couzin, J. (2004) Cancer research. Proposed leukemia stem cell encounters a blast of scrutiny. Science, 305, 929.PubMedGoogle Scholar
  44. Daley, G.Q. (2004) Chronic myeloid leukemia: proving ground for cancer stem cells. Cell, 119, 314–316.PubMedGoogle Scholar
  45. Hirschmann-Jax, C., Foster, A.E., Wulf, G.G., Nuchtern, J.G., Jax, T.W., Gobel, U., Goodell, M.A. & Brenner, M.K. (2004) A distinct “side population” of cells with high drug efflux capacity in human tumor cells. Proc Natl Acad Sci USA, 101, 14228–14233.PubMedGoogle Scholar
  46. Hope, K.J., Jin, L. & Dick, J.E. (2004) Acute myeloid leukemia originates from a hierarchy of leukemic stem cell classes that differ in self-renewal capacity. Nat Immunol, 5, 738–743.PubMedGoogle Scholar
  47. Huntly, B.J. & Gilliland, D.G. (2004) Blasts from the past: new lessons in stem cell biology from chronic myelogenous leukemia. Cancer Cell, 6, 199–201.PubMedGoogle Scholar
  48. Jamieson, C.H., Ailles, L.E., Dylla, S.J., Muijtjens, M., Jones, C., Zehnder, J.L., Gotlib, J., Li, K., Manz, M.G., Keating, A., Sawyers, C.L. & Weissman, I.L. (2004a) Granulocyte-macrophage progenitors as candidate leukemic stem cells in blast-crisis CML. N Engl J Med, 351, 657–667.PubMedGoogle Scholar
  49. Jamieson, C.H., Weissman, I.L. & Passegue, E. (2004b) Chronic versus acute myelogenous leukemia: a question of self-renewal. Cancer Cell, 6, 531–533.PubMedGoogle Scholar
  50. Passegue, E., Wagner, E.F. & Weissman, I.L. (2004) JunB deficiency leads to a myeloproliferative disorder arising from hematopoietic stem cells. Cell, 119, 431–443.PubMedGoogle Scholar
  51. Scadden, D.T. (2004) Cancer stem cells refined. Nat Immunol, 5, 701–703.PubMedGoogle Scholar
  52. Serakinci, N., Guldberg, P., Burns, J.S., Abdallah, B., Schrodder, H., Jensen, T. & Kassem, M. (2004) Adult human mesenchymal stem cell as a target for neoplastic transformation. Oncogene, 23, 5095–5098.PubMedGoogle Scholar
  53. Singh, S.K., Clarke, I.D., Hide, T. & Dirks, P.B. (2004a) Cancer stem cells in nervous system tumors. Oncogene, 23, 7267–7273.PubMedGoogle Scholar
  54. Singh, S.K., Hawkins, C., Clarke, I.D., Squire, J.A., Bayani, J., Hide, T., Henkelman, R.M., Cusimano, M.D. & Dirks, P.B. (2004b) Identification of human brain tumour initiating cells. Nature, 432, 396–401.PubMedGoogle Scholar
  55. Trounson, A. (2004) Stem cells, plasticity and cancer – uncomfortable bed fellows. Development, 131, 2763–2768.PubMedGoogle Scholar
  56. Alcalay, M., Tiacci, E., Bergomas, R., Bigerna, B., Venturini, E., Minardi, S.P., Meani, N., Diverio, D., Bernard, L., Tizzoni, L., Volorio, S., Luzi, L., Colombo, E., Lo Coco, F., Mecucci, C., Falini, B. & Pelicci, P.G. (2005) Acute myeloid leukemia bearing cytoplasmic nucleophosmin (NPMc+ AML) shows a distinct gene expression profile characterized by up-regulation of genes involved in stem-cell maintenance. Blood, 106, 899–902.PubMedGoogle Scholar
  57. Behbod, F. & Rosen, J.M. (2005) Will cancer stem cells provide new therapeutic targets? Carcinogenesis, 26, 703–711.PubMedGoogle Scholar
  58. Bissell, M.J. & Labarge, M.A. (2005) Context, tissue plasticity, and cancer: are tumor stem cells also regulated by the microenvironment? Cancer Cell, 7, 17–23.PubMedGoogle Scholar
  59. Burns, J.S., Abdallah, B.M., Guldberg, P., Rygaard, J., Schroder, H.D. & Kassem, M. (2005) Tumorigenic heterogeneity in cancer stem cells evolved from long-term cultures of telomerase-immortalized human mesenchymal stem cells. Cancer Res, 65, 3126–3135.PubMedGoogle Scholar
  60. Caussinus, E. & Gonzalez, C. (2005) Induction of tumor growth by altered stem-cell asymmetric division in Drosophila melanogaster. Nat Genet, 37, 1125–1129.PubMedGoogle Scholar
  61. Clevers, H. (2005) Stem cells, asymmetric division and cancer. Nat Genet, 37, 1027–1028.PubMedGoogle Scholar
  62. Dean, M., Fojo, T. & Bates, S. (2005) Tumour stem cells and drug resistance. Nat Rev Cancer, 5, 275–284.PubMedGoogle Scholar
  63. Elrick, L.J., Jorgensen, H.G., Mountford, J.C. & Holyoake, T.L. (2005) Punish the parent not the progeny. Blood, 105, 1862–1866.PubMedGoogle Scholar
  64. Fang, D., Nguyen, T.K., Leishear, K., Finko, R., Kulp, A.N., Hotz, S., Van Belle, P.A., Xu, X., Elder, D.E. & Herlyn, M. (2005) A tumorigenic subpopulation with stem cell properties in melanomas. Cancer Res, 65, 9328–9337.PubMedGoogle Scholar
  65. Fomchenko, E.I. & Holland, E.C. (2005) Stem cells and brain cancer. Exp Cell Res, 306, 323–329.PubMedGoogle Scholar
  66. Glinsky, G.V. (2005) Death-from-cancer signatures and stem cell contribution to metastatic cancer. Cell Cycle, 4, 1171–1175.PubMedGoogle Scholar
  67. Hill, R., Song, Y., Cardiff, R.D. & Van Dyke, T. (2005) Selective evolution of stromal mesenchyme with p53 loss in response to epithelial tumorigenesis. Cell, 123, 1001–1011.PubMedGoogle Scholar
  68. Huntly, B.J. & Gilliland, D.G. (2005) Leukaemia stem cells and the evolution of cancer-stem-cell research. Nat Rev Cancer, 5, 311–321.PubMedGoogle Scholar
  69. Locke, M., Heywood, M., Fawell, S. & Mackenzie, I.C. (2005) Retention of intrinsic stem cell hierarchies in carcinoma-derived cell lines. Cancer Res, 65, 8944–8950.PubMedGoogle Scholar
  70. Mahnke, Y.D., Schwendemann, J., Beckhove, P. & Schirrmacher, V. (2005) Maintenance of long-term tumour-specific T-cell memory by residual dormant tumour cells. Immunology, 115, 325–336.PubMedGoogle Scholar
  71. Miles, J.J., Silins, S.L., Brooks, A.G., Davis, J.E., Misko, I. & Burrows, S.R. (2005) T-cell grit: large clonal expansions of virus-specific CD8+ T cells can dominate in the peripheral circulation for at least 18 years. Blood, 106, 4412–4413.PubMedGoogle Scholar
  72. Miller, S.J., Lavker, R.M. & Sun, T.T. (2005) Interpreting epithelial cancer biology in the context of stem cells: tumor properties and therapeutic implications. Biochim Biophys Acta, 1756, 25–52.PubMedGoogle Scholar
  73. Orimo, A., Gupta, P.B., Sgroi, D.C., Arenzana-Seisdedos, F., Delaunay, T., Naeem, R., Carey, V.J., Richardson, A.L. & Weinberg, R.A. (2005) Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell, 121, 335–348.PubMedGoogle Scholar
  74. Radtke, F. & Clevers, H. (2005) Self-renewal and cancer of the gut: two sides of a coin. Science, 307, 1904–1909.PubMedGoogle Scholar
  75. Reya, T. & Clevers, H. (2005) Wnt signalling in stem cells and cancer. Nature, 434, 843–850.PubMedGoogle Scholar
  76. Rubio, D., Garcia-Castro, J., Martin, M.C., de la Fuente, R., Cigudosa, J.C., Lloyd, A.C. & Bernad, A. (2005) Spontaneous human adult stem cell transformation. Cancer Res, 65, 3035–3039.PubMedGoogle Scholar
  77. Shachaf, C.M. & Felsher, D.W. (2005) Tumor dormancy and MYC inactivation: pushing cancer to the brink of normalcy. Cancer Res, 65, 4471–4474.PubMedGoogle Scholar
  78. Tai, M.H., Chang, C.C., Kiupel, M., Webster, J.D., Olson, L.K. & Trosko, J.E. (2005) Oct4 expression in adult human stem cells: evidence in support of the stem cell theory of carcinogenesis. Carcinogenesis, 26, 495–502.PubMedGoogle Scholar
  79. Wang, G.G., Pasillas, M.P. & Kamps, M.P. (2005) Meis1 programs transcription of FLT3 and cancer stem cell character, using a mechanism that requires interaction with Pbx and a novel function of the Meis1 C-terminus. Blood, 106, 254–264.PubMedGoogle Scholar
  80. Weissman, I. (2005) Stem cell research: paths to cancer therapies and regenerative medicine. JAMA, 294, 1359–1366.PubMedGoogle Scholar
  81. Xin, L., Lawson, D.A. & Witte, O.N. (2005) The Sca-1 cell surface marker enriches for a prostate-regenerating cell subpopulation that can initiate prostate tumorigenesis. Proc Natl Acad Sci USA, 102, 6942–6947.PubMedGoogle Scholar
  82. Zhang, Y., Joe, G., Hexner, E., Zhu, J. & Emerson, S.G. (2005) Host-reactive CD8(+) memory stem cells in graft-versus-host disease. Nat Med, 11, 1299–1305.PubMedGoogle Scholar
  83. Blagosklonny, M.V. (2006) Target for cancer therapy: proliferating cells or stem cells. Leukemia, 20, 385–391.PubMedGoogle Scholar
  84. Hill, R.P. (2006) Identifying cancer stem cells in solid tumors: case not proven. Cancer Res, 66, 1891–1895; discussion 1890.PubMedGoogle Scholar
  85. Jin, L., Hope, K.J., Zhai, Q., Smadja-Joffe, F. & Dick, J.E. (2006) Targeting of CD44 eradicates human acute myeloid leukemic stem cells. Nat Med, 12, 1167–1174.PubMedGoogle Scholar
  86. Jordan, C.T. (2006) Searching for leukemia stem cells – not yet the end of the road? Cancer Cell, 10, 253–254.PubMedGoogle Scholar
  87. Krivtsov, A.V., Twomey, D., Feng, Z., Stubbs, M.C., Wang, Y., Faber, J., Levine, J.E., Wang, J., Hahn, W.C., Gilliland, D.G., Golub, T.R. & Armstrong, S.A. (2006) Transformation from committed progenitor to leukaemia stem cell initiated by MLL-AF9. Nature, 442, 818–822.PubMedGoogle Scholar
  88. Nadav, L., Katz, B.Z., Baron, S., Cohen, N., Naparstek, E. & Geiger, B. (2006) The generation and regulation of functional diversity of malignant plasma cells. Cancer Res, 66, 8608–8616.PubMedGoogle Scholar
  89. Somervaille, T.C. & Cleary, M.L. (2006) Identification and characterization of leukemia stem cells in murine MLL-AF9 acute myeloid leukemia. Cancer Cell, 10, 257–268.PubMedGoogle Scholar
  90. Szotek, P.P., Pieretti-Vanmarcke, R., Masiakos, P.T., Dinulescu, D.M., Connolly, D., Foster, R., Dombkowski, D., Preffer, F., Maclaughlin, D.T. & Donahoe, P.K. (2006) Ovarian cancer side population defines cells with stem cell-like characteristics and Mullerian Inhibiting Substance responsiveness. Proc Natl Acad Sci USA, 103, 11154–11159.PubMedGoogle Scholar
  91. Tan, B.T., Park, C.Y., Ailles, L.E. & Weissman, I.L. (2006) The cancer stem cell hypothesis: a work in progress. Lab Invest, 86, 1203–1207.PubMedGoogle Scholar
  92. Vescovi, A.L., Galli, R. & Reynolds, B.A. (2006) Brain tumour stem cells. Nat Rev Cancer, 6, 425–436.PubMedGoogle Scholar
  93. Wang, S., Garcia, A.J., Wu, M., Lawson, D.A., Witte, O.N. & Wu, H. (2006) Pten deletion leads to the expansion of a prostatic stem/progenitor cell subpopulation and tumor initiation. Proc Natl Acad Sci USA, 103, 1480–1485.PubMedGoogle Scholar
  94. Yilmaz, O.H., Valdez, R., Theisen, B.K., Guo, W., Ferguson, D.O., Wu, H. & Morrison, S.J. (2006) Pten dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells. Nature, 441, 475–482.PubMedGoogle Scholar
  95. Hendrix, M.J., Seftor, E.A., Seftor, R.E., Kasemeier-Kulesa, J., Kulesa, P.M. & Postovit, L.M. (2007) Reprogramming metastatic tumour cells with embryonic microenvironments. Nat Rev Cancer, 7, 246–255.PubMedGoogle Scholar
  96. Hermann, P.C., Huber, S.L., Herrler, T., Aicher, A., Ellwart, J.W., Guba, M., Bruns, C.J. & Heeschen, C. (2007) Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell, 1, 313–323.PubMedGoogle Scholar
  97. Kelly, P.N., Dakic, A., Adams, J.M., Nutt, S.L. & Strasser, A. (2007) Tumor growth need not be driven by rare cancer stem cells. Science, 317, 337.PubMedGoogle Scholar
  98. Zheng, X., Shen, G., Yang, X. & Liu, W. (2007) Most c6 cells are cancer stem cells: evidence from clonal and population analyses. Cancer Res, 67, 3691–3697.PubMedGoogle Scholar
  99. Dick, J.E. (2008) Stem cell concepts renew cancer research. Blood, 112, 4793–4807.PubMedGoogle Scholar
  100. Nadav, L., Kalchenko, V., Barak, M.M., Naparstek, E., Geiger, B. & Katz, B.Z. (2008) Tumorigenic potential and disease manifestations of malignant B-cell variants differing in their fibronectin adhesiveness. Exp Hematol.Google Scholar
  101. Odoux, C., Fohrer, H., Hoppo, T., Guzik, L., Stolz, D.B., Lewis, D.W., Gollin, S.M., Gamblin, T.C., Geller, D.A. & Lagasse, E. (2008) A stochastic model for cancer stem cell origin in metastatic colon cancer. Cancer Res, 68, 6932–6941.PubMedGoogle Scholar
  102. Quintana, E., Shackleton, M., Sabel, M.S., Fullen, D.R., Johnson, T.M. & Morrison, S.J. (2008) Efficient tumour formation by single human melanoma cells. Nature, 456, 593–598.PubMedGoogle Scholar
  103. Schuller, U., Heine, V.M., Mao, J., Kho, A.T., Dillon, A.K., Han, Y.G., Huillard, E., Sun, T., Ligon, A.H., Qian, Y., Ma, Q., Alvarez-Buylla, A., McMahon, A.P., Rowitch, D.H. & Ligon, K.L. (2008) Acquisition of granule neuron precursor identity is a critical determinant of progenitor cell competence to form Shh-induced medulloblastoma. Cancer Cell, 14, 123–134.PubMedGoogle Scholar
  104. Yang, Z.J., Ellis, T., Markant, S.L., Read, T.A., Kessler, J.D., Bourboulas, M., Schuller, U., Machold, R., Fishell, G., Rowitch, D.H., Wainwright, B.J. & Wechsler-Reya, R.J. (2008) Medulloblastoma can be initiated by deletion of Patched in lineage-restricted progenitors or stem cells. Cancer Cell, 14, 135–145.PubMedGoogle Scholar
  105. Yoo, M.H. & Hatfield, D.L. (2008) The Cancer Stem Cell Theory: Is It Correct? Mol Cells, 26.Google Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Molecular Cell BiologyWeizmann Institute of ScienceRehovotIsrael

Personalised recommendations