Stem Cell Niches

Chapter
Part of the Stem Cell Biology and Regenerative Medicine book series (STEMCELL)

Abstract

Niche dependence is an outstanding property of several stem cell types. This dependence has been unequivocally proven, and molecularly analyzed, in Drosophila gonads. The various types of mammalian stem cell niches, and their cellular and molecular structure are discussed. The lack of complete dependence on a niche, in certain stem cell types, raises the question as to whether niche dependence is a stem cell property. Alternatively, as shown in the following chapters, some of the cells defined thus far as stem cells and are not niche dependent, should not be regarded as members of the stem cell category.

Keywords

Stem cell niches Homing Engraftment 

References

  1. Lord, B.I., Testa, N.G. & Hendry, J.H. (1975) The relative spatial distributions of CFUs and CFUc in the normal mouse femur. Blood, 46, 65–72.PubMedGoogle Scholar
  2. Gong, J.K. (1978) Endosteal marrow: a rich source of hematopoietic stem cells. Science, 199, 1443–1445.PubMedCrossRefGoogle Scholar
  3. Schofield, R. (1978) The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells, 4, 7–25.PubMedGoogle Scholar
  4. Zipori, D. & Sasson, T. (1980) Adherent cells from mouse bone marrow inhibit the formation of colony stimulating factor (CSF) induced myeloid colonies. Exp Hematol, 8, 816–817.PubMedGoogle Scholar
  5. Zipori, D. (1981) Cell interactions in the bone marrow microenvironment: role of endogenous colony-stimulating activity. J Supramol Struct Cell Biochem, 17, 347–357.PubMedCrossRefGoogle Scholar
  6. Zipori, D. & Sasson, T. (1981) Myelopoiesis in the presence of stromal cells from mouse bone marrow: II. Mechanism of glucose dependent colony formation. Exp Hematol, 9, 663–674.PubMedGoogle Scholar
  7. Zipori, D., Sasson, T. & Frenkel, A. (1981) Myelopoiesis in the presence of stromal cells from mouse bone marrow: I. Monosaccharides regulate colony formation. Exp Hematol, 9, 656–663.PubMedGoogle Scholar
  8. Zipori, D., Sasson, T. & Friedman, S. (1982) Bone marrow resident colony stimulating factor activity (CSA) produced by stromal cells. In: Experimental Hematology Today-1982 (ed. by Baum, S.), pp. 19–26. Springer-Verlag, New York, Berlin, Heidelberg, Tokyo.Google Scholar
  9. Zipori, D. (1986) Self-renewal is modulated by the composition and density of hemopoietic cell populations. Leuk Res, 10, 1485–1486.PubMedCrossRefGoogle Scholar
  10. Aizawa, S. & Tavassoli, M. (1987a) In vitro homing of hemopoietic stem cells is mediated by a recognition system with galactosyl and mannosyl specificities. Proc Natl Acad Sci USA, 84, 4485–4489.PubMedCrossRefGoogle Scholar
  11. Aizawa, S. & Tavassoli, M. (1987b) Interaction of murine granulocyte-macrophage progenitors and supporting stroma involves a recognition mechanism with galactosyl and mannosyl specificities. J Clin Invest, 80, 1698–1705.PubMedCrossRefGoogle Scholar
  12. Emerson, S.G., Sieff, C.A., Gross, R.G., Rozans, M.K., Miller, R.A., Rappeport, J.M. & Nathan, D.G. (1987) Decreased hematopoietic accessory cell function following bone marrow transplantation. Exp Hematol, 15, 1013–1021.PubMedGoogle Scholar
  13. Driever, W. & Nusslein-Volhard, C. (1988a) A gradient of bicoid protein in Drosophila embryos. Cell, 54, 83–93.PubMedCrossRefGoogle Scholar
  14. Driever, W. & Nusslein-Volhard, C. (1988b) The bicoid protein determines position in the Drosophila embryo in a concentration-dependent manner. Cell, 54, 95–104.PubMedCrossRefGoogle Scholar
  15. Williams, R.L., Hilton, D.J., Pease, S., Willson, T.A., Stewart, C.L., Gearing, D.P., Wagner, E.F., Metcalf, D., Nicola, N.A. & Gough, N.M. (1988) Myeloid leukaemia inhibitory factor maintains the developmental potential of embryonic stem cells. Nature, 336, 684–687.PubMedCrossRefGoogle Scholar
  16. Zipori, D. & Lee, F. (1988) Introduction of interleukin-3 gene into stromal cells from the bone marrow alters hemopoietic differentiation but does not modify stem cell renewal. Blood, 71, 586–596.PubMedGoogle Scholar
  17. Dexter, T.M., Coutinho, L.H., Spooncer, E., Heyworth, C.M., Daniel, C.P., Schiro, R., Chang , J. & Allen, T.D. (1990) Stromal cells in haemopoiesis. Ciba Found Symp, 148, 76–86; discussion 86–95.PubMedGoogle Scholar
  18. Zipori, D. (1990) Regulation of hemopoiesis by cytokines that restrict options for growth and differentiation. Cancer Cells, 2, 205–211.PubMedGoogle Scholar
  19. Otsuka, T., Satoh, H., Ogo, T., Bairy, O., Gluck, U., Zipori, D., Nakano, T., Okamura, S. & Niho, Y. (1992) Long-term survival of human myeloid progenitor cells induced by a mouse bone marrow stromal cell line. Int J Cell Cloning, 10, 153–160.PubMedCrossRefGoogle Scholar
  20. Toksoz, D., Zsebo, K.M., Smith, K.A., Hu, S., Brankow, D., Suggs, S.V., Martin, F.H. & Williams, D.A. (1992) Support of human hematopoiesis in long-term bone marrow cultures by murine stromal cells selectively expressing the membrane-bound and secreted forms of the human homolog of the steel gene product, stem cell factor. Proc Natl Acad Sci USA, 89, 7350–7354.PubMedCrossRefGoogle Scholar
  21. Blazsek, I., Liu, X.H., Anjo, A., Quittet, P., Comisso, M., Kim-Triana, B. & Misset, J.L. (1995) The hematon, a morphogenetic functional complex in mammalian bone marrow, involves erythroblastic islands and granulocytic cobblestones. Exp Hematol, 23, 309–319.PubMedGoogle Scholar
  22. Fleischman, R.A., Simpson, F., Gallardo, T., Jin, X.L. & Perkins, S. (1995) Isolation of endothelial-like stromal cells that express Kit ligand and support in vitro hematopoiesis. Exp Hematol, 23, 1407–1416.PubMedGoogle Scholar
  23. Lindsell, C.E., Shawber, C.J., Boulter, J. & Weinmaster, G. (1995) Jagged: a mammalian ligand that activates Notch1. Cell, 80, 909–917.PubMedCrossRefGoogle Scholar
  24. Papayannopoulou, T., Craddock, C., Nakamoto, B., Priestley, G.V. & Wolf, N.S. (1995) The VLA4/VCAM-1 adhesion pathway defines contrasting mechanisms of lodgement of transplanted murine hemopoietic progenitors between bone marrow and spleen. Proc Natl Acad Sci USA, 92, 9647–9651.PubMedCrossRefGoogle Scholar
  25. Rafii, S., Shapiro, F., Pettengell, R., Ferris, B., Nachman, R.L., Moore, M.A. & Asch, A.S. (1995) Human bone marrow microvascular endothelial cells support long-term proliferation and differentiation of myeloid and megakaryocytic progenitors. Blood, 86, 3353–3363.PubMedGoogle Scholar
  26. van den Berg, C., Willemsen, V., Hage, W., Weisbeek, P. & Scheres, B. (1995) Cell fate in the Arabidopsis root meristem determined by directional signalling. Nature, 378, 62–65.PubMedCrossRefGoogle Scholar
  27. Goldstein, B. & Hird, S.N. (1996) Specification of the anteroposterior axis in Caenorhabditis elegans. Development, 122, 1467–1474.PubMedGoogle Scholar
  28. Nellen, D., Burke, R., Struhl, G. & Basler, K. (1996) Direct and long-range action of a DPP morphogen gradient. Cell, 85, 357–368.PubMedCrossRefGoogle Scholar
  29. Reilly, K.M. & Melton, D.A. (1996) Short-range signaling by candidate morphogens of the TGF beta family and evidence for a relay mechanism of induction. Cell, 86, 743–754.PubMedCrossRefGoogle Scholar
  30. Sternberg, D., Peled, A., Shezen, E., Abramsky, O., Jiang, W., Bertolero, F. & Zipori, D. (1996) Control of stroma-dependent hematopoiesis by basic fibroblast growth factor: stromal phenotypic plasticity and modified myelopoietic functions. Cytokines Mol Ther, 2, 29–38.PubMedGoogle Scholar
  31. Frenette, P.S., Subbarao, S., Mazo, I.B., von Andrian, U.H. & Wagner, D.D. (1998) Endothelial selectins and vascular cell adhesion molecule-1 promote hematopoietic progenitor homing to bone marrow. Proc Natl Acad Sci USA, 95, 14423–14428.PubMedCrossRefGoogle Scholar
  32. Griswold, M.D. (1998) The central role of Sertoli cells in spermatogenesis. Semin Cell Dev Biol, 9, 411–416.PubMedCrossRefGoogle Scholar
  33. Schuldt, A.J., Adams, J.H., Davidson, C.M., Micklem, D.R., Haseloff, J., St. Johnston, D. & Brand, A.H. (1998) Miranda mediates asymmetric protein and RNA localization in the developing nervous system. Genes Dev, 12, 1847–1857.PubMedCrossRefGoogle Scholar
  34. van der Loo, J.C., Xiao, X., McMillin, D., Hashino, K., Kato, I. & Williams, D.A. (1998) VLA-5 is expressed by mouse and human long-term repopulating hematopoietic cells and mediates adhesion to extracellular matrix protein fibronectin. J Clin Invest, 102, 1051–1061.PubMedCrossRefGoogle Scholar
  35. Zou, Y.R., Kottmann, A.H., Kuroda, M., Taniuchi, I. & Littman, D.R. (1998) Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development. Nature, 393, 595–599.PubMedCrossRefGoogle Scholar
  36. Bhatia, M., Bonnet, D., Wu, D., Murdoch, B., Wrana, J., Gallacher, L. & Dick, J.E. (1999) Bone morphogenetic proteins regulate the developmental program of human hematopoietic stem cells. J Exp Med, 189, 1139–1148.PubMedCrossRefGoogle Scholar
  37. Levesque, J.P., Zannettino, A.C., Pudney, M., Niutta, S., Haylock, D.N., Snapp, K.R., Kansas, G.S., Berndt, M.C. & Simmons, P.J. (1999) PSGL-1-mediated adhesion of human hematopoietic progenitors to P-selectin results in suppression of hematopoiesis. Immunity, 11, 369–378.PubMedCrossRefGoogle Scholar
  38. Olumi, A.F., Grossfeld, G.D., Hayward, S.W., Carroll, P.R., Tlsty, T.D. & Cunha, G.R. (1999) Carcinoma-associated fibroblasts direct tumor progression of initiated human prostatic epithelium. Cancer Res, 59, 5002–5011.PubMedGoogle Scholar
  39. Peled, A., Grabovsky, V., Habler, L., Sandbank, J., Arenzana-Seisdedos, F., Petit, I., Ben-Hur, H., Lapidot, T. & Alon, R. (1999a) The chemokine SDF-1 stimulates integrin-mediated arrest of CD34(+) cells on vascular endothelium under shear flow. J Clin Invest, 104, 1199–1211.PubMedCrossRefGoogle Scholar
  40. Peled, A., Petit, I., Kollet, O., Magid, M., Ponomaryov, T., Byk, T., Nagler, A., Ben-Hur, H., Many, A., Shultz, L., Lider, O., Alon, R., Zipori, D. & Lapidot, T. (1999b) Dependence of human stem cell engraftment and repopulation of NOD/SCID mice on CXCR4. Science, 283, 845–848.PubMedCrossRefGoogle Scholar
  41. Ramirez-Weber, F.A. & Kornberg, T.B. (1999) Cytonemes: cellular processes that project to the principal signaling center in Drosophila imaginal discs. Cell, 97, 599–607.PubMedCrossRefGoogle Scholar
  42. Sternlicht, M.D., Lochter, A., Sympson, C.J., Huey, B., Rougier, J.P., Gray, J.W., Pinkel, D., Bissell, M.J. & Werb, Z. (1999) The stromal proteinase MMP3/stromelysin-1 promotes mammary carcinogenesis. Cell, 98, 137–146.PubMedCrossRefGoogle Scholar
  43. Barcellos-Hoff, M.H. & Ravani, S.A. (2000) Irradiated mammary gland stroma promotes the expression of tumorigenic potential by unirradiated epithelial cells. Cancer Res, 60, 1254–1260.PubMedGoogle Scholar
  44. Pages, F. & Kerridge, S. (2000) Morphogen gradients. A question of time or concentration? Trends Genet, 16, 40–44.PubMedCrossRefGoogle Scholar
  45. Sims, D.E. (2000) Diversity within pericytes. Clin Exp Pharmacol Physiol, 27, 842–846.PubMedCrossRefGoogle Scholar
  46. Bryder, D., Ramsfjell, V., Dybedal, I., Theilgaard-Monch, K., Hogerkorp, C.M., Adolfsson, J., Borge, O.J. & Jacobsen, S.E. (2001) Self-renewal of multipotent long-term repopulating hematopoietic stem cells is negatively regulated by Fas and tumor necrosis factor receptor activation. J Exp Med, 194, 941–952.PubMedCrossRefGoogle Scholar
  47. de Rooij, D.G. (2001) Proliferation and differentiation of spermatogonial stem cells. Reproduction, 121, 347–354.PubMedCrossRefGoogle Scholar
  48. Devine, S.M., Bartholomew, A.M., Mahmud, N., Nelson, M., Patil, S., Hardy, W., Sturgeon, C., Hewett, T., Chung, T., Stock, W., Sher, D., Weissman, S., Ferrer, K., Mosca, J., Deans, R., Moseley, A. & Hoffman, R. (2001) Mesenchymal stem cells are capable of homing to the bone marrow of non-human primates following systemic infusion. Exp Hematol, 29, 244–255.PubMedCrossRefGoogle Scholar
  49. Greco, V., Hannus, M. & Eaton, S. (2001) Argosomes: a potential vehicle for the spread of morphogens through epithelia. Cell, 106, 633–645.PubMedCrossRefGoogle Scholar
  50. Kiger, A.A., Jones, D.L., Schulz, C., Rogers, M.B. & Fuller, M.T. (2001) Stem cell self-renewal specified by JAK-STAT activation in response to a support cell cue. Science, 294, 2542–2545.PubMedCrossRefGoogle Scholar
  51. Kuznetsov, S.A., Mankani, M.H., Gronthos, S., Satomura, K., Bianco, P. & Robey, P.G. (2001) Circulating skeletal stem cells. J Cell Biol, 153, 1133–1140.PubMedCrossRefGoogle Scholar
  52. Nilsson, S.K., Johnston, H.M. & Coverdale, J.A. (2001) Spatial localization of transplanted hemopoietic stem cells: inferences for the localization of stem cell niches. Blood, 97, 2293–2299.PubMedCrossRefGoogle Scholar
  53. Quesenberry, P., Habibian, H., Dooner, M., McAuliffe, C., Lambert, J.F., Colvin, G., Miller, C., Frimberger, A. & Becker, P. (2001) Physical and physiological plasticity of hematopoietic stem cells. Blood Cells Mol Dis, 27, 934–937.PubMedCrossRefGoogle Scholar
  54. Toma, J.G., Akhavan, M., Fernandes, K.J., Barnabe-Heider, F., Sadikot, A., Kaplan, D.R. & Miller, F.D. (2001) Isolation of multipotent adult stem cells from the dermis of mammalian skin. Nat Cell Biol, 3, 778–784.PubMedCrossRefGoogle Scholar
  55. Tulina, N. & Matunis, E. (2001) Control of stem cell self-renewal in Drosophila spermatogenesis by JAK-STAT signaling. Science, 294, 2546–2549.PubMedCrossRefGoogle Scholar
  56. Wright, D.E., Wagers, A.J., Gulati, A.P., Johnson, F.L. & Weissman, I.L. (2001) Physiological migration of hematopoietic stem and progenitor cells. Science, 294, 1933–1936.PubMedCrossRefGoogle Scholar
  57. Antonchuk, J., Sauvageau, G. & Humphries, R.K. (2002) HOXB4-induced expansion of adult hematopoietic stem cells ex vivo. Cell, 109, 39–45.PubMedCrossRefGoogle Scholar
  58. Batlle, E., Henderson, J.T., Beghtel, H., van den Born, M.M., Sancho, E., Huls, G., Meeldijk, J., Robertson, J., van de Wetering, M., Pawson, T. & Clevers, H. (2002) Beta-catenin and TCF mediate cell positioning in the intestinal epithelium by controlling the expression of EphB/ephrinB. Cell, 111, 251–263.PubMedCrossRefGoogle Scholar
  59. Gerber, H.P., Malik, A.K., Solar, G.P., Sherman, D., Liang, X.H., Meng, G., Hong, K., Marsters, J.C. & Ferrara, N. (2002) VEGF regulates haematopoietic stem cell survival by an internal autocrine loop mechanism. Nature, 417, 954–958.PubMedCrossRefGoogle Scholar
  60. Lazebnik, Y. (2002) Can a biologist fix a radio? – Or, what I learned while studying apoptosis. Cancer Cell, 2, 179–182.PubMedCrossRefGoogle Scholar
  61. Nishimura, E.K., Jordan, S.A., Oshima, H., Yoshida, H., Osawa, M., Moriyama, M., Jackson, I.J., Barrandon, Y., Miyachi, Y. & Nishikawa, S. (2002) Dominant role of the niche in melanocyte stem-cell fate determination. Nature, 416, 854–860.PubMedCrossRefGoogle Scholar
  62. Ohta, H., Sawada, A., Kim, J.Y., Tokimasa, S., Nishiguchi, S., Humphries, R.K., Hara, J. & Takihara, Y. (2002) Polycomb group gene rae28 is required for sustaining activity of hematopoietic stem cells. J Exp Med, 195, 759–770.PubMedCrossRefGoogle Scholar
  63. Qiao, D., Zeeman, A.M., Deng, W., Looijenga, L.H. & Lin, H. (2002) Molecular characterization of hiwi, a human member of the piwi gene family whose overexpression is correlated to seminomas. Oncogene, 21, 3988–3999.PubMedCrossRefGoogle Scholar
  64. Song, X., Zhu, C.H., Doan, C. & Xie, T. (2002) Germline stem cells anchored by adherens junctions in the Drosophila ovary niches. Science, 296, 1855–1857.PubMedCrossRefGoogle Scholar
  65. Takaki, S. (2002) [Lnk, an adaptor protein regulate production of B cells and hematopoietic stem cells]. Tanpakushitsu Kakusan Koso, 47, 2188–2193.PubMedGoogle Scholar
  66. van de Wetering, M., Sancho, E., Verweij, C., de Lau, W., Oving, I., Hurlstone, A., van der Horn, K., Batlle, E., Coudreuse, D., Haramis, A.P., Tjon-Pon-Fong, M., Moerer, P., van den Born, M., Soete, G., Pals, S., Eilers, M., Medema, R. & Clevers, H. (2002) The beta-catenin/TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells. Cell, 111,241–250.PubMedCrossRefGoogle Scholar
  67. Weigel, D. & Jurgens, G. (2002) Stem cells that make stems. Nature, 415, 751–754.PubMedGoogle Scholar
  68. Badiavas, E.V., Abedi, M., Butmarc, J., Falanga, V. & Quesenberry, P. (2003) Participation of bone marrow derived cells in cutaneous wound healing. J Cell Physiol, 196, 245–250.PubMedCrossRefGoogle Scholar
  69. Calvi, L.M., Adams, G.B., Weibrecht, K.W., Weber, J.M., Olson, D.P., Knight, M.C., Martin, R.P., Schipani, E., Divieti, P., Bringhurst, F.R., Milner, L.A., Kronenberg, H.M. & Scadden, D.T. (2003) Osteoblastic cells regulate the haematopoietic stem cell niche. Nature, 425, 841–846.PubMedCrossRefGoogle Scholar
  70. Choong, M.L., Tan, A.C., Luo, B. & Lodish, H.F. (2003) A novel role for proliferin-2 in the ex vivo expansion of hematopoietic stem cells. FEBS Lett, 550, 155–162.PubMedCrossRefGoogle Scholar
  71. Crittenden, S.L., Eckmann, C.R., Wang, L., Bernstein, D.S., Wickens, M. & Kimble, J. (2003) Regulation of the mitosis/meiosis decision in the Caenorhabditis elegans germline. Philos Trans R Soc Lond B Biol Sci, 358, 1359–1362.PubMedCrossRefGoogle Scholar
  72. de Haan, G., Weersing, E., Dontje, B., van Os, R., Bystrykh, L.V., Vellenga, E. & Miller, G. (2003) In vitro generation of long-term repopulating hematopoietic stem cells by fibroblast growth factor-1. Dev Cell, 4, 241–251.PubMedCrossRefGoogle Scholar
  73. Devine, S.M., Cobbs, C., Jennings, M., Bartholomew, A. & Hoffman, R. (2003) Mesenchymal stem cells distribute to a wide range of tissues following systemic infusion into nonhuman primates. Blood, 101, 2999–3001.PubMedCrossRefGoogle Scholar
  74. Doetsch, F. (2003) A niche for adult neural stem cells. Curr Opin Genet Dev, 13, 543–550.PubMedCrossRefGoogle Scholar
  75. Ishii, G., Sangai, T., Oda, T., Aoyagi, Y., Hasebe, T., Kanomata, N., Endoh, Y., Okumura, C., Okuhara, Y., Magae, J., Emura, M., Ochiya, T. & Ochiai, A. (2003) Bone-marrow-derived myofibroblasts contribute to the cancer-induced stromal reaction. Biochem Biophys Res Commun, 309, 232–240.PubMedCrossRefGoogle Scholar
  76. Kai, T. & Spradling, A. (2003) An empty Drosophila stem cell niche reactivates the proliferation of ectopic cells. Proc Natl Acad Sci USA, 100, 4633–4638.PubMedCrossRefGoogle Scholar
  77. Kobielak, K., Pasolli, H.A., Alonso, L., Polak, L. & Fuchs, E. (2003) Defining BMP functions in the hair follicle by conditional ablation of BMP receptor IA. J Cell Biol, 163, 609–623.PubMedCrossRefGoogle Scholar
  78. Kunisato, A., Chiba, S., Nakagami-Yamaguchi, E., Kumano, K., Saito, T., Masuda, S., Yamaguchi, T., Osawa, M., Kageyama, R., Nakauchi, H., Nishikawa, M. & Hirai, H. (2003) HES-1 preserves purified hematopoietic stem cells ex vivo and accumulates side population cells in vivo. Blood, 101, 1777–1783.PubMedCrossRefGoogle Scholar
  79. Larsson, J., Blank, U., Helgadottir, H., Bjornsson, J.M., Ehinger, M., Goumans, M.J., Fan, X., Leveen, P. & Karlsson, S. (2003) TGF-beta signaling-deficient hematopoietic stem cells have normal self-renewal and regenerative ability in vivo despite increased proliferative capacity in vitro. Blood, 102, 3129–3135. Epub 2003 Jul 3123.PubMedCrossRefGoogle Scholar
  80. Lessard, J. & Sauvageau, G. (2003) Bmi-1 determines the proliferative capacity of normal and leukaemic stem cells. Nature, 423, 255–260.PubMedCrossRefGoogle Scholar
  81. Murdoch, B., Chadwick, K., Martin, M., Shojaei, F., Shah, K.V., Gallacher, L., Moon, R.T. & Bhatia, M. (2003) Wnt-5A augments repopulating capacity and primitive hematopoietic development of human blood stem cells in vivo. Proc Natl Acad Sci USA, 100, 3422–3427. Epub 2003 Mar 3427.PubMedCrossRefGoogle Scholar
  82. Park, I.K., Qian, D., Kiel, M., Becker, M.W., Pihalja, M., Weissman, I.L., Morrison, S.J. & Clarke, M.F. (2003) Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells. Nature, 423, 302–305.PubMedCrossRefGoogle Scholar
  83. Rombouts, W.J. & Ploemacher, R.E. (2003) Primary murine MSC show highly efficient homing to the bone marrow but lose homing ability following culture. Leukemia, 17, 160–170.PubMedCrossRefGoogle Scholar
  84. Ueno, H., Sakita-Ishikawa, M., Morikawa, Y., Nakano, T., Kitamura, T. & Saito, M. (2003) A stromal cell-derived membrane protein that supports hematopoietic stem cells. Nat Immunol, 4, 457–463.PubMedCrossRefGoogle Scholar
  85. Willert, K., Brown, J.D., Danenberg, E., Duncan, A.W., Weissman, I.L., Reya, T., Yates, J.R., 3rd & Nusse, R. (2003) Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature, 423, 448–452.PubMedCrossRefGoogle Scholar
  86. Zhang, J., Niu, C., Ye, L., Huang, H., He, X., Tong, W.G., Ross, J., Haug, J., Johnson, T., Feng, J.Q., Harris, S., Wiedemann, L.M., Mishina, Y. & Li, L. (2003) Identification of the haematopoietic stem cell niche and control of the niche size. Nature, 425, 836–841.PubMedCrossRefGoogle Scholar
  87. Arai, F., Hirao, A., Ohmura, M., Sato, H., Matsuoka, S., Takubo, K., Ito, K., Koh, G.Y. & Suda, T. (2004) Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell, 118, 149–161.PubMedCrossRefGoogle Scholar
  88. Attar, E.C. & Scadden, D.T. (2004) Regulation of hematopoietic stem cell growth. Leukemia, 18, 1760–1768.PubMedCrossRefGoogle Scholar
  89. Fernandes, K.J., McKenzie, I.A., Mill, P., Smith, K.M., Akhavan, M., Barnabe-Heider, F., Biernaskie, J., Junek, A., Kobayashi, N.R., Toma, J.G., Kaplan, D.R., Labosky, P.A., Rafuse, V., Hui, C.C. & Miller, F.D. (2004) A dermal niche for multipotent adult skin-derived precursor cells. Nat Cell Biol, 6, 1082–1093.PubMedCrossRefGoogle Scholar
  90. Gilboa, L. & Lehmann, R. (2004) Repression of primordial germ cell differentiation parallels germ line stem cell maintenance. Curr Biol, 14, 981–986.PubMedCrossRefGoogle Scholar
  91. He, X.C., Zhang, J., Tong, W.G., Tawfik, O., Ross, J., Scoville, D.H., Tian, Q., Zeng, X., He, X., Wiedemann, L.M., Mishina, Y. & Li, L. (2004) BMP signaling inhibits intestinal stem cell self-renewal through suppression of Wnt-beta-catenin signaling. Nat Genet, 36, 1117–1121.PubMedCrossRefGoogle Scholar
  92. Hock, H., Hamblen, M.J., Rooke, H.M., Schindler, J.W., Saleque, S., Fujiwara, Y. & Orkin, S.H. (2004) Gfi-1 restricts proliferation and preserves functional integrity of haematopoietic stem cells. Nature, 431, 1002–1007.PubMedCrossRefGoogle Scholar
  93. Houghton, J., Stoicov, C., Nomura, S., Rogers, A.B., Carlson, J., Li, H., Cai, X., Fox, J.G., Goldenring, J.R. & Wang, T.C. (2004) Gastric cancer originating from bone marrow-derived cells. Science, 306, 1568–1571.PubMedCrossRefGoogle Scholar
  94. Ito, K., Hirao, A., Arai, F., Matsuoka, S., Takubo, K., Hamaguchi, I., Nomiyama, K., Hosokawa, K., Sakurada, K., Nakagata, N., Ikeda, Y., Mak, T.W. & Suda, T. (2004) Regulation of oxidative stress by ATM is required for self-renewal of haematopoietic stem cells. Nature, 431,997–1002.PubMedCrossRefGoogle Scholar
  95. Kawase, E., Wong, M.D., Ding, B.C. & Xie, T. (2004) Gbb/Bmp signaling is essential for maintaining germline stem cells and for repressing bam transcription in the Drosophila testis. Development, 131, 1365–1375.PubMedCrossRefGoogle Scholar
  96. Langer, J.C., Henckaerts, E., Orenstein, J. & Snoeck, H.W. (2004) Quantitative Trait Analysis Reveals Transforming Growth Factor-{beta}2 as a Positive Regulator of Early Hematopoietic Progenitor and Stem Cell Function. J Exp Med, 199, 5–14.PubMedCrossRefGoogle Scholar
  97. O’Donoghue, K., Chan, J., de la Fuente, J., Kennea, N., Sandison, A., Anderson, J.R., Roberts, I.A. & Fisk, N.M. (2004) Microchimerism in female bone marrow and bone decades after fetal mesenchymal stem-cell trafficking in pregnancy. Lancet, 364, 179–182.PubMedCrossRefGoogle Scholar
  98. Schuringa, J.J., Chung, K.Y., Morrone, G. & Moore, M.A. (2004) Constitutive activation of STAT5A promotes human hematopoietic stem cell self-renewal and erythroid differentiation. J Exp Med, 200, 623–635.PubMedCrossRefGoogle Scholar
  99. Shen, Q., Goderie, S.K., Jin, L., Karanth, N., Sun, Y., Abramova, N., Vincent, P., Pumiglia, K. & Temple, S. (2004) Endothelial cells stimulate self-renewal and expand neurogenesis of neural stem cells. Science, 304, 1338–1340.PubMedCrossRefGoogle Scholar
  100. Song, X., Wong, M.D., Kawase, E., Xi, R., Ding, B.C., McCarthy, J.J. & Xie, T. (2004) Bmp signals from niche cells directly repress transcription of a differentiation-promoting gene, bag of marbles, in germline stem cells in the Drosophila ovary. Development, 18, 18.Google Scholar
  101. Visnjic, D., Kalajzic, Z., Rowe, D.W., Katavic, V., Lorenzo, J. & Aguila, H.L. (2004) Hematopoiesis is severely altered in mice with an induced osteoblast deficiency. Blood, 103, 3258–3264.PubMedCrossRefGoogle Scholar
  102. Yuan, Y., Shen, H., Franklin, D.S., Scadden, D.T. & Cheng, T. (2004) In vivo self-renewing divisions of haematopoietic stem cells are increased in the absence of the early G1-phase inhibitor, p18INK4C. Nat Cell Biol, 6, 436–442.PubMedCrossRefGoogle Scholar
  103. Ahn, S. & Joyner, A.L. (2005) In vivo analysis of quiescent adult neural stem cells responding to Sonic hedgehog. Nature, 437, 894–897.PubMedCrossRefGoogle Scholar
  104. Chen, C., Ouyang, W., Grigura, V., Zhou, Q., Carnes, K., Lim, H., Zhao, G.Q., Arber, S., Kurpios, N., Murphy, T.L., Cheng, A.M., Hassell, J.A., Chandrashekar, V., Hofmann, M.C., Hess, R.A. & Murphy, K.M. (2005) ERM is required for transcriptional control of the spermatogonial stem cell niche. Nature, 436, 1030–1034.PubMedCrossRefGoogle Scholar
  105. Dar, A., Goichberg, P., Shinder, V., Kalinkovich, A., Kollet, O., Netzer, N., Margalit, R., Zsak, M., Nagler, A., Hardan, I., Resnick, I., Rot, A. & Lapidot, T. (2005) Chemokine receptor CXCR4-dependent internalization and resecretion of functional chemokine SDF-1 by bone marrow endothelial and stromal cells. Nat Immunol, 6, 1038–1046.PubMedCrossRefGoogle Scholar
  106. Fischbach, N.A., Rozenfeld, S., Shen, W., Fong, S., Chrobak, D., Ginzinger, D., Kogan, S.C., Radhakrishnan, A., Le Beau, M.M., Largman, C. & Lawrence, H.J. (2005) HOXB6 overexpression in murine bone marrow immortalizes a myelomonocytic precursor in vitro and causes hematopoietic stem cell expansion and acute myeloid leukemia in vivo. Blood, 105,1456–1466.PubMedCrossRefGoogle Scholar
  107. Kiel, M.J., Yilmaz, O.H., Iwashita, T., Terhorst, C. & Morrison, S.J. (2005) SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell, 121, 1109–1121.PubMedCrossRefGoogle Scholar
  108. Lie, D.C., Colamarino, S.A., Song, H.J., Desire, L., Mira, H., Consiglio, A., Lein, E.S., Jessberger, S., Lansford, H., Dearie, A.R. & Gage, F.H. (2005) Wnt signalling regulates adult hippocampal neurogenesis. Nature, 437, 1370–1375.PubMedCrossRefGoogle Scholar
  109. Mancini, S.J., Mantei, N., Dumortier, A., Suter, U., MacDonald, H.R. & Radtke, F. (2005) Jagged1-dependent Notch signaling is dispensable for hematopoietic stem cell self-renewal and differentiation. Blood, 105, 2340–2342.PubMedCrossRefGoogle Scholar
  110. Mendes, S.C., Robin, C. & Dzierzak, E. (2005) Mesenchymal progenitor cells localize within hematopoietic sites throughout ontogeny. Development, 132, 1127–1136.PubMedCrossRefGoogle Scholar
  111. Nilsson, S.K., Johnston, H.M., Whitty, G.A., Williams, B., Webb, R.J., Denhardt, D.T., Bertoncello, I., Bendall, L.J., Simmons, P.J. & Haylock, D.N. (2005) Osteopontin, a key component of the hematopoietic stem cell niche and regulator of primitive hematopoietic progenitor cells. Blood, 106, 1232–1239.PubMedCrossRefGoogle Scholar
  112. Nishimura, E.K., Granter, S.R. & Fisher, D.E. (2005) Mechanisms of hair graying: incomplete melanocyte stem cell maintenance in the niche. Science, 307, 720–724.PubMedCrossRefGoogle Scholar
  113. Nyfeler, Y., Kirch, R.D., Mantei, N., Leone, D.P., Radtke, F., Suter, U. & Taylor, V. (2005) Jagged1 signals in the postnatal subventricular zone are required for neural stem cell self-renewal. EMBO J, 24, 3504–3515.PubMedCrossRefGoogle Scholar
  114. Passegue, E., Wagers, A.J., Giuriato, S., Anderson, W.C. & Weissman, I.L. (2005) Global analysis of proliferation and cell cycle gene expression in the regulation of hematopoietic stem and progenitor cell fates. J Exp Med, 202, 1599–1611.PubMedCrossRefGoogle Scholar
  115. Radtke, F. & Clevers, H. (2005) Self-renewal and cancer of the gut: two sides of a coin. Science, 307, 1904–1909.PubMedCrossRefGoogle Scholar
  116. Reddien, P.W., Oviedo, N.J., Jennings, J.R., Jenkin, J.C. & Sanchez Alvarado, A. (2005) SMEDWI-2 is a PIWI-like protein that regulates planarian stem cells. Science, 310,1327–1330.PubMedCrossRefGoogle Scholar
  117. Reya, T. & Clevers, H. (2005) Wnt signalling in stem cells and cancer. Nature, 434, 843–850.PubMedCrossRefGoogle Scholar
  118. Shojaei, F., Trowbridge, J., Gallacher, L., Yuefei, L., Goodale, D., Karanu, F., Levac, K. & Bhatia, M. (2005) Hierarchical and ontogenic positions serve to define the molecular basis of human hematopoietic stem cell behavior. Dev Cell, 8, 651–663.PubMedCrossRefGoogle Scholar
  119. Sipkins, D.A., Wei, X., Wu, J.W., Runnels, J.M., Cote, D., Means, T.K., Luster, A.D., Scadden, D.T. & Lin, C.P. (2005) In vivo imaging of specialized bone marrow endothelial microdomains for tumour engraftment. Nature, 435, 969–973.PubMedCrossRefGoogle Scholar
  120. Stier, S., Ko, Y., Forkert, R., Lutz, C., Neuhaus, T., Grunewald, E., Cheng, T., Dombkowski, D., Calvi, L.M., Rittling, S.R. & Scadden, D.T. (2005) Osteopontin is a hematopoietic stem cell niche component that negatively regulates stem cell pool size. J Exp Med, 201, 1781–1791.PubMedCrossRefGoogle Scholar
  121. Szakmary, A., Cox, D.N., Wang, Z. & Lin, H. (2005) Regulatory relationship among piwi, pumilio, and bag-of-marbles in Drosophila germline stem cell self-renewal and differentiation. Curr Biol, 15, 171–178.PubMedCrossRefGoogle Scholar
  122. Xi, R. & Xie, T. (2005) Stem cell self-renewal controlled by chromatin remodeling factors. Science, 310, 1487–1489.PubMedCrossRefGoogle Scholar
  123. Zhu, J., Zhang, Y., Joe, G.J., Pompetti, R. & Emerson, S.G. (2005) NF-Ya activates multiple hematopoietic stem cell (HSC) regulatory genes and promotes HSC self-renewal. Proc Natl Acad Sci USA, 102, 11728–11733.PubMedCrossRefGoogle Scholar
  124. Adams, G.B., Chabner, K.T., Alley, I.R., Olson, D.P., Szczepiorkowski, Z.M., Poznansky, M.C., Kos, C.H., Pollak, M.R., Brown, E.M. & Scadden, D.T. (2006) Stem cell engraftment at the endosteal niche is specified by the calcium-sensing receptor. Nature, 439, 599–603.PubMedCrossRefGoogle Scholar
  125. Bhattacharya, D., Rossi, D.J., Bryder, D. & Weissman, I.L. (2006) Purified hematopoietic stem cell engraftment of rare niches corrects severe lymphoid deficiencies without host conditioning. J Exp Med, 203, 73–85.PubMedCrossRefGoogle Scholar
  126. Clevers, H. (2006) Wnt/beta-catenin signaling in development and disease. Cell, 127, 469–480.PubMedCrossRefGoogle Scholar
  127. Crosnier, C., Stamataki, D. & Lewis, J. (2006) Organizing cell renewal in the intestine: stem cells, signals and combinatorial control. Nat Rev Genet, 7, 349–359.PubMedCrossRefGoogle Scholar
  128. Grayson, W.L., Zhao, F., Izadpanah, R., Bunnell, B. & Ma, T. (2006) Effects of hypoxia on human mesenchymal stem cell expansion and plasticity in 3D constructs. J Cell Physiol, 207, 331–339.PubMedCrossRefGoogle Scholar
  129. Holmberg, J., Genander, M., Halford, M.M., Anneren, C., Sondell, M., Chumley, M.J., Silvany, R.E., Henkemeyer, M. & Frisen, J. (2006) EphB receptors coordinate migration and proliferation in the intestinal stem cell niche. Cell, 125, 1151–1163.PubMedCrossRefGoogle Scholar
  130. Katayama, Y., Battista, M., Kao, W.M., Hidalgo, A., Peired, A.J., Thomas, S.A. & Frenette, P.S. (2006) Signals from the sympathetic nervous system regulate hematopoietic stem cell egress from bone marrow. Cell, 124, 407–421.PubMedCrossRefGoogle Scholar
  131. Kollet, O., Dar, A., Shivtiel, S., Kalinkovich, A., Lapid, K., Sztainberg, Y., Tesio, M., Samstein, R.M., Goichberg, P., Spiegel, A., Elson, A. & Lapidot, T. (2006) Osteoclasts degrade endosteal components and promote mobilization of hematopoietic progenitor cells. Nat Med, 12, 657–664.PubMedCrossRefGoogle Scholar
  132. Ramirez-Castillejo, C., Sanchez-Sanchez, F., Andreu-Agullo, C., Ferron, S.R., Aroca-Aguilar, J.D., Sanchez, P., Mira, H., Escribano, J. & Farinas, I. (2006) Pigment epithelium-derived factor is a niche signal for neural stem cell renewal. Nat Neurosci, 9, 331–339.PubMedCrossRefGoogle Scholar
  133. Ryu, B.Y., Orwig, K.E., Oatley, J.M., Avarbock, M.R. & Brinster, R.L. (2006) Effects of aging and niche microenvironment on spermatogonial stem cell self-renewal. Stem Cells, 24, 1505–1511.PubMedCrossRefGoogle Scholar
  134. Scadden, D.T. (2006) The stem-cell niche as an entity of action. Nature, 441, 1075–1079.PubMedCrossRefGoogle Scholar
  135. Singh, M.B. & Bhalla, P.L. (2006) Plant stem cells carve their own niche. Trends Plant Sci, 11, 241–246.PubMedCrossRefGoogle Scholar
  136. Sugiyama, T., Kohara, H., Noda, M. & Nagasawa, T. (2006) Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity, 25, 977–988.PubMedCrossRefGoogle Scholar
  137. Suzuki, N., Ohneda, O., Minegishi, N., Nishikawa, M., Ohta, T., Takahashi, S., Engel, J.D. & Yamamoto, M. (2006) Combinatorial Gata2 and Sca1 expression defines hematopoietic stem cells in the bone marrow niche. Proc Natl Acad Sci USA, 103, 2202–2207.PubMedCrossRefGoogle Scholar
  138. Van Hoffelen, S. & Herman, M.A. (2006) Stem cells: specifying stem-cell niches in the worm. Curr Biol, 16, R175–R177.PubMedCrossRefGoogle Scholar
  139. Wang, H., Singh, S.R., Zheng, Z., Oh, S.W., Chen, X., Edwards, K. & Hou, S.X. (2006) Rap-GEF signaling controls stem cell anchoring to their niche through regulating DE-cadherin-mediated cell adhesion in the Drosophila testis. Dev Cell, 10, 117–126.PubMedCrossRefGoogle Scholar
  140. Zhang, C.C., Steele, A.D., Lindquist, S. & Lodish, H.F. (2006) Prion protein is expressed on long-term repopulating hematopoietic stem cells and is important for their self-renewal. Proc Natl Acad Sci USA, 103, 2184–2189.PubMedCrossRefGoogle Scholar
  141. Zipori, D. (2006) The mesenchyme in cancer therapy as a target tumor component, effector cell modality and cytokine expression vehicle. Cancer Metastasis Rev, 25, 459–467.PubMedCrossRefGoogle Scholar
  142. Abraham, M., Biyder, K., Begin, M., Wald, H., Weiss, I.D., Galun, E., Nagler, A. & Peled, A. (2007) Enhanced unique pattern of hematopoietic cell mobilization induced by the CXCR4 antagonist 4F-benzoyl-TN14003. Stem Cells, 25, 2158–2166.PubMedCrossRefGoogle Scholar
  143. Adams, G.B., Martin, R.P., Alley, I.R., Chabner, K.T., Cohen, K.S., Calvi, L.M., Kronenberg, H.M. & Scadden, D.T. (2007) Therapeutic targeting of a stem cell niche. Nat Biotechnol, 25,238–243.PubMedCrossRefGoogle Scholar
  144. Bendall, S.C., Stewart, M.H., Menendez, P., George, D., Vijayaragavan, K., Werbowetski-Ogilvie, T., Ramos-Mejia, V., Rouleau, A., Yang, J., Bosse, M., Lajoie, G. & Bhatia, M. (2007) IGF and FGF cooperatively establish the regulatory stem cell niche of pluripotent human cells in vitro. Nature, 448, 1015–1021.PubMedCrossRefGoogle Scholar
  145. Bowie, M.B., Kent, D.G., Copley, M.R. & Eaves, C.J. (2007) Steel factor responsiveness regulates the high self-renewal phenotype of fetal hematopoietic stem cells. Blood, 109, 5043–5048.PubMedCrossRefGoogle Scholar
  146. Dao, M.A., Creer, M.H., Nolta, J.A. & Verfaillie, C.M. (2007) Biology of umbilical cord blood progenitors in bone marrow niches. Blood, 110, 74–81.PubMedCrossRefGoogle Scholar
  147. Hung, S.C., Pochampally, R.R., Hsu, S.C., Sanchez, C., Chen, S.C., Spees, J. & Prockop, D.J. (2007) Short-term exposure of multipotent stromal cells to low oxygen increases their expression of CX3CR1 and CXCR4 and their engraftment in vivo. PLoS ONE, 2, e416.PubMedCrossRefGoogle Scholar
  148. Jang, Y.Y. & Sharkis, S.J. (2007) A low level of reactive oxygen species selects for primitive hematopoietic stem cells that may reside in the low-oxygenic niche. Blood, 110, 3056–3063.PubMedCrossRefGoogle Scholar
  149. Jankovic, V., Ciarrocchi, A., Boccuni, P., DeBlasio, T., Benezra, R. & Nimer, S.D. (2007) Id1 restrains myeloid commitment, maintaining the self-renewal capacity of hematopoietic stem cells. Proc Natl Acad Sci USA, 104, 1260–1265.PubMedCrossRefGoogle Scholar
  150. Karlsson, G., Blank, U., Moody, J.L., Ehinger, M., Singbrant, S., Deng, C.X. & Karlsson, S. (2007) Smad4 is critical for self-renewal of hematopoietic stem cells. J Exp Med, 204, 467–474.PubMedCrossRefGoogle Scholar
  151. Kiel, M.J., Radice, G.L. & Morrison, S.J. (2007) Lack of evidence that hematopoietic stem cells depend on N-cadherin-mediated adhesion to osteoblasts for their maintenance. Cell Stem Cell, 1, 204–217.PubMedCrossRefGoogle Scholar
  152. Kobielak, K., Stokes, N., de la Cruz, J., Polak, L. & Fuchs, E. (2007) Loss of a quiescent niche but not follicle stem cells in the absence of bone morphogenetic protein signaling. Proc Natl Acad Sci USA, 104, 10063–10068.PubMedCrossRefGoogle Scholar
  153. Nishikawa, S. & Osawa, M. (2007) Generating quiescent stem cells. Pigment Cell Res, 20,263–270.PubMedCrossRefGoogle Scholar
  154. Ringe, J., Strassburg, S., Neumann, K., Endres, M., Notter, M., Burmester, G.R., Kaps, C. & Sittinger, M. (2007) Towards in situ tissue repair: human mesenchymal stem cells express chemokine receptors CXCR1, CXCR2 and CCR2, and migrate upon stimulation with CXCL8 but not CCL2. J Cell Biochem, 101, 135–146.PubMedCrossRefGoogle Scholar
  155. Sacchetti, B., Funari, A., Michienzi, S., Di Cesare, S., Piersanti, S., Saggio, I., Tagliafico, E., Ferrari, S., Robey, P.G., Riminucci, M. & Bianco, P. (2007) Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell, 131, 324–336.PubMedCrossRefGoogle Scholar
  156. Sneddon, J.B. & Werb, Z. (2007) Location, location, location: the cancer stem cell niche. Cell Stem Cell, 1, 607–611.PubMedCrossRefGoogle Scholar
  157. Song, X., Call, G.B., Kirilly, D. & Xie, T. (2007) Notch signaling controls germline stem cell niche formation in the Drosophila ovary. Development, 134, 1071–1080.PubMedCrossRefGoogle Scholar
  158. Tanentzapf, G., Devenport, D., Godt, D. & Brown, N.H. (2007) Integrin-dependent anchoring of a stem-cell niche. Nat Cell Biol, 9, 1413–1418.PubMedCrossRefGoogle Scholar
  159. Yamashita, Y.M., Mahowald, A.P., Perlin, J.R. & Fuller, M.T. (2007) Asymmetric inheritance of mother versus daughter centrosome in stem cell division. Science, 315, 518–521.PubMedCrossRefGoogle Scholar
  160. Yoshida, S., Sukeno, M. & Nabeshima, Y. (2007) A vasculature-associated niche for undifferentiated spermatogonia in the mouse testis. Science, 317, 1722–1726.PubMedCrossRefGoogle Scholar
  161. Yoshihara, H., Arai, F., Hosokawa, K., Hagiwara, T., Takubo, K., Nakamura, Y., Gomei, Y., Iwasaki, H., Matsuoka, S., Miyamoto, K., Miyazaki, H., Takahashi, T. & Suda, T. (2007) Thrombopoietin/MPL signaling regulates hematopoietic stem cell quiescence and interaction with the osteoblastic niche. Cell Stem Cell, 1, 685–697.PubMedCrossRefGoogle Scholar
  162. Zhu, J., Garrett, R., Jung, Y., Zhang, Y., Kim, N., Wang, J., Joe, G.J., Hexner, E., Choi, Y., Taichman, R.S. & Emerson, S.G. (2007) Osteoblasts support B-lymphocyte commitment and differentiation from hematopoietic stem cells. Blood, 109, 3706–3712.PubMedCrossRefGoogle Scholar
  163. Celso, C.L., Fleming, H.E., Wu, J.W., Zhao, C.X., Miake-Lye, S., Fujisaki, J., Cote, D., Rowe, D.W., Lin, C.P. & Scadden, D.T. (2008) Live-animal tracking of individual haematopoietic stem/progenitor cells in their niche. Nature.Google Scholar
  164. Chen, C., Liu, Y., Liu, R., Ikenoue, T., Guan, K.L. & Zheng, P. (2008) TSC-mTOR maintains quiescence and function of hematopoietic stem cells by repressing mitochondrial biogenesis and reactive oxygen species. J Exp Med, 205, 2397–2408.PubMedCrossRefGoogle Scholar
  165. Crisan, M., Yap, S., Casteilla, L., Chen, C.W., Corselli, M., Park, T.S., Andriolo, G., Sun, B., Zheng, B., Zhang, L., Norotte, C., Teng, P.N., Traas, J., Schugar, R., Deasy, B.M., Badylak, S., Buhring, H.J., Giacobino, J.P., Lazzari, L., Huard, J. & Peault, B. (2008) A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell, 3, 301–313.PubMedCrossRefGoogle Scholar
  166. Devine, S.M., Vij, R., Rettig, M., Todt, L., McGlauchlen, K., Fisher, N., Devine, H., Link, D.C., Calandra, G., Bridger, G., Westervelt, P. & Dipersio, J.F. (2008) Rapid mobilization of functional donor hematopoietic cells without G-CSF using AMD3100, an antagonist of the CXCR4/SDF-1 interaction. Blood, 112, 990–998.PubMedCrossRefGoogle Scholar
  167. Dinneny, J.R. & Benfey, P.N. (2008) Plant stem cell niches: standing the test of time. Cell, 132, 553–557.PubMedCrossRefGoogle Scholar
  168. Fleming, H.E., Janzen, V., Lo Celso, C., Guo, J., Leahy, K.M., Kronenberg, H.M. & Scadden, D.T. (2008) Wnt signaling in the niche enforces hematopoietic stem cell quiescence and is necessary to preserve self-renewal in vivo. Cell Stem Cell, 2, 274–283.PubMedCrossRefGoogle Scholar
  169. Gonczy, P. (2008) Mechanisms of asymmetric cell division: flies and worms pave the way. Nat Rev Mol Cell Biol, 9, 355–366.PubMedCrossRefGoogle Scholar
  170. Jin, Z., Kirilly, D., Weng, C., Kawase, E., Song, X., Smith, S., Schwartz, J. & Xie, T. (2008) Differentiation-defective stem cells outcompete normal stem cells for niche occupancy in the Drosophila ovary. Cell Stem Cell, 2, 39–49.PubMedCrossRefGoogle Scholar
  171. Kiel, M.J. & Morrison, S.J. (2008) Uncertainty in the niches that maintain haematopoietic stem cells. Nat Rev Immunol, 8, 290–301.PubMedCrossRefGoogle Scholar
  172. Knoblich, J.A. (2008) Mechanisms of asymmetric stem cell division. Cell, 132, 583–597.PubMedCrossRefGoogle Scholar
  173. Larsson, J., Ohishi, M., Garrison, B., Aspling, M., Janzen, V., Adams, G.B., Curto, M., McClatchey, A.I., Schipani, E. & Scadden, D.T. (2008) Nf2/merlin regulates hematopoietic stem cell behavior by altering microenvironmental architecture. Cell Stem Cell, 3, 221–227.PubMedCrossRefGoogle Scholar
  174. Min, I.M., Pietramaggiori, G., Kim, F.S., Passegue, E., Stevenson, K.E. & Wagers, A.J. (2008) The transcription factor EGR1 controls both the proliferation and localization of hematopoietic stem cells. Cell Stem Cell, 2, 380–391.PubMedCrossRefGoogle Scholar
  175. Mirzadeh, Z., Merkle, F.T., Soriano-Navarro, M., Garcia-Verdugo, J.M. & Alvarez-Buylla, A. (2008) Neural stem cells confer unique pinwheel architecture to the ventricular surface in neurogenic regions of the adult brain. Cell Stem Cell, 3, 265–278.PubMedCrossRefGoogle Scholar
  176. Morad, V., Pevsner-Fischer, M., Barnees, S., Samokovlisky, A., Rousso-Noori, L., Rosenfeld, R. & Zipori, D. (2008) The myelopoietic supportive capacity of mesenchymal stromal cells is uncoupled from multipotency and is influenced by lineage determination and interference with glycosylation. Stem Cells, 26, 2275–2286.PubMedCrossRefGoogle Scholar
  177. Nie, Y., Han, Y.C. & Zou, Y.R. (2008) CXCR4 is required for the quiescence of primitive hematopoietic cells. J Exp Med, 205, 777–783.PubMedCrossRefGoogle Scholar
  178. Orford, K.W. & Scadden, D.T. (2008) Deconstructing stem cell self-renewal: genetic insights into cell-cycle regulation. Nat Rev Genet, 9, 115–128.PubMedCrossRefGoogle Scholar
  179. Parameswaran, R., Morad, V., Laronne, A., Rousso-Noori, L., Shani, N., Naffar-Abu-Amara, S. & Zipori, D. (2008) Targeting the bone marrow with activin A-overexpressing embryonic multipotent stromal cells specifically modifies B lymphopoiesis. Stem Cells Dev, 17, 93–106.PubMedCrossRefGoogle Scholar
  180. Shen, Q., Wang, Y., Kokovay, E., Lin, G., Chuang, S.M., Goderie, S.K., Roysam, B. & Temple, S. (2008) Adult SVZ stem cells lie in a vascular niche: a quantitative analysis of niche cell-cell interactions. Cell Stem Cell, 3, 289–300.PubMedCrossRefGoogle Scholar
  181. Spaeth, E., Klopp, A., Dembinski, J., Andreeff, M. & Marini, F. (2008) Inflammation and tumor microenvironments: defining the migratory itinerary of mesenchymal stem cells. Gene Ther, 15, 730–738.PubMedCrossRefGoogle Scholar
  182. Tavazoie, M., Van der Veken, L., Silva-Vargas, V., Louissaint, M., Colonna, L., Zaidi, B., Garcia-Verdugo, J.M. & Doetsch, F. (2008) A specialized vascular niche for adult neural stem cells. Cell Stem Cell, 3, 279–288.PubMedCrossRefGoogle Scholar
  183. Thangarajah, H., Vial, I.N., Chang, E., El-Ftesi, S., Januszyk, M., Chang, E.I., Paterno, J., Neofytou, E., Longaker, M.T. & Gurtner, G.C. (2008) IFATS series: adipose stromal cells adopt a proangiogenic phenotype under the influence of hypoxia. Stem Cells.Google Scholar
  184. Thoren, L.A., Liuba, K., Bryder, D., Nygren, J.M., Jensen, C.T., Qian, H., Antonchuk, J. & Jacobsen, S.E. (2008) Kit regulates maintenance of quiescent hematopoietic stem cells. J Immunol, 180, 2045–2053.PubMedGoogle Scholar
  185. Voog, J., D’Alterio, C. & Jones, D.L. (2008) Multipotent somatic stem cells contribute to the stem cell niche in the Drosophila testis. Nature, 454, 1132–1136.PubMedCrossRefGoogle Scholar
  186. Wang, M.C., O’Rourke, E.J. & Ruvkun, G. (2008) Fat metabolism links germline stem cells and longevity in C. elegans. Science, 322, 957–960.PubMedCrossRefGoogle Scholar
  187. Witz, I.P. (2008) Yin-yang activities and vicious cycles in the tumor microenvironment. Cancer Res, 68, 9–13.PubMedCrossRefGoogle Scholar
  188. Xie, Y., Yin, T., Wiegraebe, W., He, X.C., Miller, D., Stark, D., Perko, K., Alexander, R., Schwartz, J., Grindley, J.C., Park, J., Haug, J.S., Wunderlich, J.P., Li, H., Zhang, S., Johnson, T., Feldman, R.A. & Li, L. (2008) Detection of functional haematopoietic stem cell niche using real-time imaging. Nature.Google Scholar
  189. Yahata, T., Muguruma, Y., Yumino, S., Sheng, Y., Uno, T., Matsuzawa, H., Ito, M., Kato, S., Hotta, T. & Ando, K. (2008) Quiescent Human Hematopoietic Stem Cells in the Bone Marrow Niches Organize the Hierarchical Structure of Hematopoiesis. Stem Cells.Google Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Molecular Cell BiologyWeizmann Institute of ScienceRehovotIsrael

Personalised recommendations