Skip to main content

Stem Cells with No Tissue Specificity

  • Chapter
  • First Online:
Biology of Stem Cells and the Molecular Basis of the Stem State

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

  • 1056 Accesses

Abstract

In addition to the tissue-specific stem cells, a distinct stem cell class exists, which consists of cells distributed throughout the organism, in a tissue non-specific manner. These cells may be multipotent [such as the mesenchymal stromal cells (MSCs) that give rise to a variety of mesodermal progeny (for example bone, cartilage, and muscle)]. An additional type, of non-tissue-specific stem cells, consists of pluripotent cells, i.e. cells capable of differentiating into derivatives of all germ layers; multipotent adult progenitor cells (MAPCs) are an example of such pluripotent cells. Embryonic stem cells (ESCs) exhibit superior pluripotency. However, these cells are restricted to a very short period during embryogenesis and share more properties with transiently expanding progenitors than with stem cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Evans, V.J., Earle, W.R. et al. (1947) The use of perforated cellophane for the growth of cells in tissue culture. J Natl Cancer Inst, 8, 103–119.

    PubMed  CAS  Google Scholar 

  • Sanford, K.K., Earle, W.R. & Likely, G.D. (1948) The growth in vitro of single isolated tissue cells. J Natl Cancer Inst, 9, 229–246.

    PubMed  CAS  Google Scholar 

  • Earle, W.R., Evans, V.J., Sandford, K.K., Shannon, J.E., Jr. & Waltz, H.K. (1951) Influence of glass and cellophane substrates on proliferation of strain L cells in tissue culture. J Natl Cancer Inst, 12, 563–567.

    PubMed  CAS  Google Scholar 

  • Shannon, J.E., Jr. & Earle, W.R. (1951) Qualitative comparison of the growth of chick heart and strain L fibroblasts planted as suspensions on pyrex glass and perforated cellophane substrates. J Natl Cancer Inst, 12, 155–177.

    PubMed  Google Scholar 

  • Friedenstein, A. & Kuralesova, A.I. (1971) Osteogenic precursor cells of bone marrow in radiation chimeras. Transplantation, 12, 99–108.

    PubMed  CAS  Google Scholar 

  • Friedenstein, A.J., Chailakhyan, R.K., Latsinik, N.V., Panasyuk, A.F. & Keiliss-Borok, I.V. (1974) Stromal cells responsible for transferring the microenvironment of the hemopoietic tissues. Cloning in vitro and retransplantation in vivo. Transplantation, 17, 331–340.

    PubMed  CAS  Google Scholar 

  • Mintz, B. & Illmensee, K. (1975) Normal genetically mosaic mice produced from malignant teratocarcinoma cells. Proc Natl Acad Sci USA, 72, 3585–3589.

    PubMed  Google Scholar 

  • Brinster, R.L. (1976) Participation of teratocarcinoma cells in mouse embryo development. Cancer Res, 36, 3412–3414.

    PubMed  CAS  Google Scholar 

  • Taylor, S.M. & Jones, P.A. (1979) Multiple new phenotypes induced in 10T1/2 and 3T3 cells treated with 5-azacytidine. Cell, 17, 771–779.

    PubMed  CAS  Google Scholar 

  • Zipori, D. & Bol, S. (1979) The role of fibroblastoid cells and macrophages from mouse bone marrow in the in vitro growth promotion of haemopoietic tumour cells. Exp Hematol, 7, 206–218.

    PubMed  CAS  Google Scholar 

  • Zipori, D. & van Bekkum, D.W. (1979) Changes in the fibroblastoid colony forming unit population from mouse bone marrow in early stages of Soule virus induced murine leukemia. Exp Hematol, 7, 137–144.

    PubMed  CAS  Google Scholar 

  • Golde, D.W., Hocking, W.G., Quan, S.G., Sparkes, R.S. & Gale, R.P. (1980) Origin of human bone marrow fibroblasts. Br J Haematol, 44, 183–187.

    PubMed  CAS  Google Scholar 

  • Evans, M.J. & Kaufman, M.H. (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature, 292, 154–156.

    PubMed  CAS  Google Scholar 

  • Keating, A., Singer, J.W., Killen, P.D., Striker, G.E., Salo, A.C., Sanders, J., Thomas, E.D., Thorning, D. & Fialkow, P.J. (1982) Donor origin of the in vitro haematopoietic microenvironment after marrow transplantation in man. Nature, 298, 280–283.

    PubMed  CAS  Google Scholar 

  • Allen, T.D. & Dexter, T.M. (1983) Long term bone marrow cultures: an ultrastructural review. Scan Electron Microsc, 1851–1866.

    Google Scholar 

  • Bradley, A., Evans, M., Kaufman, M.H. & Robertson, E. (1984) Formation of germ-line chimaeras from embryo-derived teratocarcinoma cell lines. Nature, 309, 255–256.

    PubMed  CAS  Google Scholar 

  • Zipori, D., Duksin, D., Tamir, M., Argaman, A., Toledo, J. & Malik, Z. (1985a) Cultured mouse marrow stromal cell lines. II. Distinct subtypes differing in morphology, collagen types, myelopoietic factors, and leukemic cell growth modulating activities. J Cell Physiol, 122, 81–90.

    PubMed  CAS  Google Scholar 

  • Zipori, D., Reichman, N., Arcavi, L., Shtalrid, M., Berrebi, A. & Resnitzky, P. (1985b) In vitro functions of stromal cells from human and mouse bone marrow. Exp Hematol, 13, 603–609.

    PubMed  CAS  Google Scholar 

  • Zipori, D., Toledo, J. & von der Mark, K. (1985c) Phenotypic heterogeneity among stromal cell lines from mouse bone marrow disclosed in their extracellular matrix composition and interactions with normal and leukemic cells. Blood, 66, 447–455.

    PubMed  CAS  Google Scholar 

  • Laver, J., Jhanwar, S.C., O‘Reilly, R.J. & Castro-Malaspina, H. (1987) Host origin of the human hematopoietic microenvironment following allogeneic bone marrow transplantation. Blood, 70, 1966–1968.

    PubMed  CAS  Google Scholar 

  • Tamir, M., Rozenszajn, L.A., Malik, Z. & Zipori, D. (1987) Thymus-derived stromal cell lines. Int J Cell Cloning, 5, 289–301.

    PubMed  CAS  Google Scholar 

  • Whitlock, C.A., Tidmarsh, G.F., Muller-Sieburg, C. & Weissman, I.L. (1987) Bone marrow stromal cell lines with lymphopoietic activity express high levels of a pre-B neoplasia-associated molecule. Cell, 48, 1009–1021.

    PubMed  CAS  Google Scholar 

  • Pietrangeli, C.E., Hayashi, S. & Kincade, P.W. (1988) Stromal cell lines which support lymphocyte growth: characterization, sensitivity to radiation and responsiveness to growth factors. Eur J Immunol, 18, 863–872.

    PubMed  CAS  Google Scholar 

  • Williams, R.L., Hilton, D.J., Pease, S., Willson, T.A., Stewart, C.L., Gearing, D.P., Wagner, E.F., Metcalf, D., Nicola, N.A. & Gough, N.M. (1988) Myeloid leukaemia inhibitory factor maintains the developmental potential of embryonic stem cells. Nature, 336, 684–687.

    PubMed  CAS  Google Scholar 

  • Zipori, D. & Lee, F. (1988) Introduction of interleukin-3 gene into stromal cells from the bone marrow alters hemopoietic differentiation but does not modify stem cell renewal. Blood, 71, 586–596.

    PubMed  CAS  Google Scholar 

  • Benayahu, D., Kletter, Y., Zipori, D. & Wientroub, S. (1989) Bone marrow-derived stromal cell line expressing osteoblastic phenotype in vitro and osteogenic capacity in vivo. J Cell Physiol, 140, 1–7.

    PubMed  CAS  Google Scholar 

  • Gluck, U., Zipori, D., Wetzler, M., Berrebi, A., Shaklai, M., Drezen, O., Zaizov, R., Luria, D., Marcelle, C., Stark, B. et al. (1989) Long-term proliferation of human leukemia cells induced by mouse stroma. Exp Hematol, 17, 398–404.

    PubMed  CAS  Google Scholar 

  • Itoh, K., Tezuka, H., Sakoda, H., Konno, M., Nagata, K., Uchiyama, T., Uchino, H. & Mori, K.J. (1989) Reproducible establishment of hemopoietic supportive stromal cell lines from murine bone marrow. Exp Hematol, 17, 145–153.

    PubMed  CAS  Google Scholar 

  • Tamir, M., Harris, N., Trainin, N., Toledo, J. & Zipori, D. (1989) Multilineage hemopoiesis induced by cloned stromal cells. Int J Cell Cloning, 7, 373–384.

    PubMed  CAS  Google Scholar 

  • Udagawa, N., Takahashi, N., Akatsu, T., Sasaki, T., Yamaguchi, A., Kodama, H., Martin, T.J. & Suda, T. (1989) The bone marrow-derived stromal cell lines MC3T3-G2/PA6 and ST2 support osteoclast-like cell differentiation in cocultures with mouse spleen cells. Endocrinology, 125, 1805–1813.

    PubMed  CAS  Google Scholar 

  • Zipori, D. (1989) Cultured stromal cell lines from hemopoietic tissues. In: Blood Cell Formation: The Role of the Hemopoietic Microenvironment (ed. by Tavassoli, M.), pp. 287–333. Humana Press, Clifton, New York.

    Google Scholar 

  • Henderson, A.J., Johnson, A. & Dorshkind, K. (1990) Functional characterization of two stromal cell lines that support B lymphopoiesis. J Immunol, 145, 423–428.

    PubMed  CAS  Google Scholar 

  • Katagiri, T., Yamaguchi, A., Ikeda, T., Yoshiki, S., Wozney, J.M., Rosen, V., Wang, E.A., Tanaka, H., Omura, S. & Suda, T. (1990) The non-osteogenic mouse pluripotent cell line, C3H10T1/2, is induced to differentiate into osteoblastic cells by recombinant human bone morphogenetic protein-2. Biochem Biophys Res Commun, 172, 295–299.

    PubMed  CAS  Google Scholar 

  • Tamir, M., Eren, R., Globerson, A., Kedar, E., Epstein, E., Trainin, N. & Zipori, D. (1990) Selective accumulation of lymphocyte precursor cells mediated by stromal cells of hemopoietic origin. Exp Hematol, 18, 322–340.

    PubMed  CAS  Google Scholar 

  • Benayahu, D., Fried, A., Zipori, D. & Wientroub, S. (1991) Subpopulations of marrow stromal cells share a variety of osteoblastic markers. Calcif Tissue Int, 49, 202–207.

    PubMed  CAS  Google Scholar 

  • Caplan, A.I. (1991) Mesenchymal stem cells. J Orthop Res, 9, 641–650.

    PubMed  CAS  Google Scholar 

  • Palmer, T.D., Rosman, G.J., Osborne, W.R. & Miller, A.D. (1991) Genetically modified skin fibroblasts persist long after transplantation but gradually inactivate introduced genes. Proc Natl Acad Sci USA, 88, 1330–1334.

    PubMed  CAS  Google Scholar 

  • Peled, A., Zipori, D., Abramsky, O., Ovadia, H. & Shezen, E. (1991) Expression of alpha-smooth muscle actin in murine bone marrow stromal cells. Blood, 78, 304–309.

    PubMed  CAS  Google Scholar 

  • Santucci, M.A., Trabetti, E., Martinelli, G., Buzzi, M., Zaccaria, A., Pileri, S., Farabegoli, P., Sabattini, E., Tura, S. & Pignatti, P.F. (1992) Host origin of bone marrow fibroblasts following allogeneic bone marrow transplantation for chronic myeloid leukemia. Bone Marrow Transplant, 10, 255–259.

    PubMed  CAS  Google Scholar 

  • Knospe, W.H., Husseini, S.G., Zipori, D. & Fried, W. (1993) Hematopoiesis on cellulose ester membranes. XIII. A combination of cloned stromal cells is needed to establish a hematopoietic microenvironment supportive of trilineal hematopoiesis. Exp Hematol, 21,257–262.

    PubMed  CAS  Google Scholar 

  • Wang, E.A., Israel, D.I., Kelly, S. & Luxenberg, D.P. (1993) Bone morphogenetic protein-2 causes commitment and differentiation in C3H10T1/2 and 3T3 cells. Growth Factors, 9, 57–71.

    PubMed  CAS  Google Scholar 

  • Benayahu, D., Peled, A. & Zipori, D. (1994) Myeloblastic cell line expresses osteoclastic properties following coculture with marrow stromal adipocytes. J Cell Biochem, 56, 374–384.

    PubMed  CAS  Google Scholar 

  • Denker, A.E., Nicoll, S.B. & Tuan, R.S. (1995) Formation of cartilage-like spheroids by micromass cultures of murine C3H10T1/2 cells upon treatment with transforming growth factor-beta 1. Differentiation, 59, 25–34.

    PubMed  CAS  Google Scholar 

  • O’Flaherty, E., Sparrow, R. & Szer, J. (1995) Bone marrow stromal function from patients after bone marrow transplantation. Bone Marrow Transplant, 15, 207–212.

    PubMed  Google Scholar 

  • Wakitani, S., Saito, T. & Caplan, A.I. (1995) Myogenic cells derived from rat bone marrow mesenchymal stem cells exposed to 5-azacytidine. Muscle Nerve, 18, 1417–1426.

    PubMed  CAS  Google Scholar 

  • Barda-Saad, M., Rozenszajn, L.A., Globerson, A., Zhang, A.S. & Zipori, D. (1996) Selective adhesion of immature thymocytes to bone marrow stromal cells: relevance to T cell lymphopoiesis. Exp Hematol, 24, 386–391.

    PubMed  CAS  Google Scholar 

  • Peled, A., Lee, B.C., Sternberg, D., Toledo, J., Aracil, M. & Zipori, D. (1996) Interactions between leukemia cells and bone marrow stromal cells: stroma-supported growth vs. serum dependence and the roles of TGF-beta and M-CSF. Exp Hematol, 24, 728–737.

    PubMed  CAS  Google Scholar 

  • Sternberg, D., Peled, A., Shezen, E., Abramsky, O., Jiang, W., Bertolero, F. & Zipori, D. (1996) Control of stroma-dependent hematopoiesis by basic fibroblast growth factor: stromal phenotypic plasticity and modified myelopoietic functions. Cytokines Mol Ther, 2, 29–38.

    PubMed  CAS  Google Scholar 

  • Barda-Saad, M., Zhang, A.S., Zipori, D. & Rozenszajn, L.A. (1997) Adhesion of thymocytes to bone marrow stromal cells: regulation by bFGF and IFN-gamma. Stem Cells, 15, 229–236.

    PubMed  CAS  Google Scholar 

  • Azizi, S.A., Stokes, D., Augelli, B.J., DiGirolamo, C. & Prockop, D.J. (1998) Engraftment and migration of human bone marrow stromal cells implanted in the brains of albino rats – similarities to astrocyte grafts. Proc Natl Acad Sci USA, 95, 3908–3913.

    PubMed  CAS  Google Scholar 

  • El-Badri, N.S., Wang, B.Y., Cherry & Good, R.A. (1998) Osteoblasts promote engraftment of allogeneic hematopoietic stem cells. Exp Hematol, 26, 110–116.

    PubMed  CAS  Google Scholar 

  • Thomson, J.A., Itskovitz-Eldor, J., Shapiro, S.S., Waknitz, M.A., Swiergiel, J.J., Marshall, V.S. & Jones, J.M. (1998) Embryonic stem cell lines derived from human blastocysts. Science, 282, 1145–1147.

    PubMed  CAS  Google Scholar 

  • Almeida-Porada, G., Flake, A.W., Glimp, H.A. & Zanjani, E.D. (1999) Cotransplantation of stroma results in enhancement of engraftment and early expression of donor hematopoietic stem cells in utero. Exp Hematol, 27, 1569–1575.

    PubMed  CAS  Google Scholar 

  • Barda-Saad, M., Rozenszajn, L.A., Ashush, H., Shav-Tal, Y., Ben Nun, A. & Zipori, D. (1999) Adhesion molecules involved in the interactions between early T cells and mesenchymal bone marrow stromal cells. Exp Hematol, 27, 834–844.

    PubMed  CAS  Google Scholar 

  • De Angelis, L., Berghella, L., Coletta, M., Lattanzi, L., Zanchi, M., Cusella-De Angelis, M.G., Ponzetto, C. & Cossu, G. (1999) Skeletal myogenic progenitors originating from embryonic dorsal aorta coexpress endothelial and myogenic markers and contribute to postnatal muscle growth and regeneration. J Cell Biol, 147, 869–878.

    PubMed  Google Scholar 

  • Denker, A.E., Haas, A.R., Nicoll, S.B. & Tuan, R.S. (1999) Chondrogenic differentiation of murine C3H10T1/2 multipotential mesenchymal cells: I. Stimulation by bone morphogenetic protein-2 in high-density micromass cultures. Differentiation, 64, 67–76.

    PubMed  CAS  Google Scholar 

  • Galotto, M., Berisso, G., Delfino, L., Podesta, M., Ottaggio, L., Dallorso, S., Dufour, C., Ferrara, G.B., Abbondandolo, A., Dini, G., Bacigalupo, A., Cancedda, R. & Quarto, R. (1999) Stromal damage as consequence of high-dose chemo/radiotherapy in bone marrow transplant recipients. Exp Hematol, 27, 1460–1466.

    PubMed  CAS  Google Scholar 

  • Gurevitch, O., Prigozhina, T.B., Pugatsch, T. & Slavin, S. (1999) Transplantation of allogeneic or xenogeneic bone marrow within the donor stromal microenvironment. Transplantation, 68, 1362–1368.

    PubMed  CAS  Google Scholar 

  • Horwitz, E.M., Prockop, D.J., Fitzpatrick, L.A., Koo, W.W., Gordon, P.L., Neel, M., Sussman, M., Orchard, P., Marx, J.C., Pyeritz, R.E. & Brenner, M.K. (1999) Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta. Nat Med, 5, 309–313.

    PubMed  CAS  Google Scholar 

  • Koc, O.N., Peters, C., Aubourg, P., Raghavan, S., Dyhouse, S., DeGasperi, R., Kolodny, E.H., Yoseph, Y.B., Gerson, S.L., Lazarus, H.M., Caplan, A.I., Watkins, P.A. & Krivit, W. (1999) Bone marrow-derived mesenchymal stem cells remain host-derived despite successful hematopoietic engraftment after allogeneic transplantation in patients with lysosomal and peroxisomal storage diseases. Exp Hematol, 27, 1675–1681.

    PubMed  CAS  Google Scholar 

  • Mbalaviele, G., Jaiswal, N., Meng, A., Cheng, L., Van Den Bos, C. & Thiede, M. (1999) Human mesenchymal stem cells promote human osteoclast differentiation from CD34+ bone marrow hematopoietic progenitors. Endocrinology, 140, 3736–3743.

    PubMed  CAS  Google Scholar 

  • Pittenger, M.F., Mackay, A.M., Beck, S.C., Jaiswal, R.K., Douglas, R., Mosca, J.D., Moorman, M.A., Simonetti, D.W., Craig, S. & Marshak, D.R. (1999) Multilineage potential of adult human mesenchymal stem cells. Science, 284, 143–147.

    PubMed  CAS  Google Scholar 

  • Remy-Martin, J.P., Marandin, A., Challier, B., Bernard, G., Deschaseaux, M., Herve, P., Wei, Y., Tsuji, T., Auerbach, R., Dennis, J.E., Moore, K.A., Greenberger, J.S. & Charbord, P. (1999) Vascular smooth muscle differentiation of murine stroma: a sequential model. Exp Hematol, 27, 1782–1795.

    PubMed  CAS  Google Scholar 

  • Almeida-Porada, G., Porada, C.D., Tran, N. & Zanjani, E.D. (2000) Cotransplantation of human stromal cell progenitors into preimmune fetal sheep results in early appearance of human donor cells in circulation and boosts cell levels in bone marrow at later time points after transplantation. Blood, 95, 3620–3627.

    PubMed  CAS  Google Scholar 

  • Banfi, A., Muraglia, A., Dozin, B., Mastrogiacomo, M., Cancedda, R. & Quarto, R. (2000) Proliferation kinetics and differentiation potential of ex vivo expanded human bone marrow stromal cells: Implications for their use in cell therapy. Exp Hematol, 28, 707–715.

    PubMed  CAS  Google Scholar 

  • Charbord, P., Remy-Martin, J.P., Tamayo, E., Bernard, G., Keating, A. & Peault, B. (2000) Analysis of the microenvironment necessary for engraftment: role of the vascular smooth muscle-like stromal cells. J Hematother Stem Cell Res, 9, 935–943.

    PubMed  CAS  Google Scholar 

  • Cheng, L., Qasba, P., Vanguri, P. & Thiede, M.A. (2000) Human mesenchymal stem cells support megakaryocyte and pro-platelet formation from CD34(+) hematopoietic progenitor cells. J Cell Physiol, 184, 58–69.

    PubMed  CAS  Google Scholar 

  • Colter, D.C., Class, R., DiGirolamo, C.M. & Prockop, D.J. (2000) Rapid expansion of recycling stem cells in cultures of plastic-adherent cells from human bone marrow. Proc Natl Acad Sci USA, 97, 3213–3218.

    PubMed  CAS  Google Scholar 

  • Devine, S.M. & Hoffman, R. (2000) Role of mesenchymal stem cells in hematopoietic stem cell transplantation. Curr Opin Hematol, 7, 358–363.

    PubMed  CAS  Google Scholar 

  • Erices, A., Conget, P. & Minguell, J.J. (2000) Mesenchymal progenitor cells in human umbilical cord blood. Br J Haematol, 109, 235–242.

    PubMed  CAS  Google Scholar 

  • Goan, S.R., Junghahn, I., Wissler, M., Becker, M., Aumann, J., Just, U., Martiny-Baron, G., Fichtner, I. & Henschler, R. (2000) Donor stromal cells from human blood engraft in NOD/SCID mice. Blood, 96, 3971–3978.

    PubMed  CAS  Google Scholar 

  • Huss, R., Lange, C., Weissinger, E.M., Kolb, H.J. & Thalmeier, K. (2000) Evidence of peripheral blood-derived, plastic-adherent CD34(-/low) hematopoietic stem cell clones with mesenchymal stem cell characteristics. Stem Cells, 18, 252–260.

    PubMed  CAS  Google Scholar 

  • Itskovitz-Eldor, J., Schuldiner, M., Karsenti, D., Eden, A., Yanuka, O., Amit, M., Soreq, H. & Benvenisty, N. (2000) Differentiation of human embryonic stem cells into embryoid bodies compromising the three embryonic germ layers. Mol Med, 6, 88–95.

    PubMed  CAS  Google Scholar 

  • Jaiswal, R.K., Jaiswal, N., Bruder, S.P., Mbalaviele, G., Marshak, D.R. & Pittenger, M.F. (2000) Adult human mesenchymal stem cell differentiation to the osteogenic or adipogenic lineage is regulated by mitogen-activated protein kinase. J Biol Chem, 275, 9645–9652.

    PubMed  CAS  Google Scholar 

  • Koc, O.N., Gerson, S.L., Cooper, B.W., Dyhouse, S.M., Haynesworth, S.E., Caplan, A.I. & Lazarus, H.M. (2000) Rapid hematopoietic recovery after coinfusion of autologous-blood stem cells and culture-expanded marrow mesenchymal stem cells in advanced breast cancer patients receiving high-dose chemotherapy. J Clin Oncol, 18, 307–316.

    PubMed  CAS  Google Scholar 

  • Li, Y., Hisha, H., Inaba, M., Lian, Z., Yu, C., Kawamura, M., Yamamoto, Y., Nishio, N., Toki, J., Fan, H. & Ikehara, S. (2000) Evidence for migration of donor bone marrow stromal cells into recipient thymus after bone marrow transplantation plus bone grafts: a role of stromal cells in positive selection. Exp Hematol, 28, 950–960.

    PubMed  CAS  Google Scholar 

  • Liechty, K.W., MacKenzie, T.C., Shaaban, A.F., Radu, A., Moseley, A.M., Deans, R., Marshak, D.R. & Flake, A.W. (2000) Human mesenchymal stem cells engraft and demonstrate site-specific differentiation after in utero transplantation in sheep. Nat Med, 6, 1282–1286.

    PubMed  CAS  Google Scholar 

  • Majumdar, M.K., Thiede, M.A., Haynesworth, S.E., Bruder, S.P. & Gerson, S.L. (2000) Human marrow-derived mesenchymal stem cells (MSCs) express hematopoietic cytokines and support long-term hematopoiesis when differentiated toward stromal and osteogenic lineages. J Hematother Stem Cell Res, 9, 841–848.

    PubMed  CAS  Google Scholar 

  • Muraglia, A., Cancedda, R. & Quarto, R. (2000) Clonal mesenchymal progenitors from human bone marrow differentiate in vitro according to a hierarchical model. J Cell Sci, 113 (Pt 7), 1161–1166.

    PubMed  CAS  Google Scholar 

  • Reubinoff, B.E., Pera, M.F., Fong, C.Y., Trounson, A. & Bongso, A. (2000) Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nat Biotechnol, 18, 399–404.

    PubMed  CAS  Google Scholar 

  • Bartholomew, A., Patil, S., Mackay, A., Nelson, M., Buyaner, D., Hardy, W., Mosca, J., Sturgeon, C., Siatskas, M., Mahmud, N., Ferrer, K., Deans, R., Moseley, A., Hoffman, R. & Devine, S.M. (2001) Baboon mesenchymal stem cells can be genetically modified to secrete human erythropoietin in vivo. Hum Gene Ther, 12, 1527–1541.

    PubMed  CAS  Google Scholar 

  • Campagnoli, C., Roberts, I.A., Kumar, S., Bennett, P.R., Bellantuono, I. & Fisk, N.M. (2001) Identification of mesenchymal stem/progenitor cells in human first-trimester fetal blood, liver, and bone marrow. Blood, 98, 2396–2402.

    PubMed  CAS  Google Scholar 

  • Devine, S.M., Bartholomew, A.M., Mahmud, N., Nelson, M., Patil, S., Hardy, W., Sturgeon, C., Hewett, T., Chung, T., Stock, W., Sher, D., Weissman, S., Ferrer, K., Mosca, J., Deans, R., Moseley, A. & Hoffman, R. (2001) Mesenchymal stem cells are capable of homing to the bone marrow of non-human primates following systemic infusion. Exp Hematol, 29, 244–255.

    PubMed  CAS  Google Scholar 

  • Fujiwara, T., Dunn, N.R. & Hogan, B.L. (2001) Bone morphogenetic protein 4 in the extraembryonic mesoderm is required for allantois development and the localization and survival of primordial germ cells in the mouse. Proc Natl Acad Sci USA, 98, 13739–13744.

    PubMed  CAS  Google Scholar 

  • Guenechea, G., Gan, O.I., Dorrell, C. & Dick, J.E. (2001) Distinct classes of human stem cells that differ in proliferative and self-renewal potential. Nat Immunol, 2, 75–82.

    PubMed  CAS  Google Scholar 

  • Kehat, I., Kenyagin-Karsenti, D., Snir, M., Segev, H., Amit, M., Gepstein, A., Livne, E., Binah, O., Itskovitz-Eldor, J. & Gepstein, L. (2001) Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. J Clin Invest, 108, 407–414.

    PubMed  CAS  Google Scholar 

  • Kuznetsov, S.A., Mankani, M.H., Gronthos, S., Satomura, K., Bianco, P. & Robey, P.G. (2001) Circulating skeletal stem cells. J Cell Biol, 153, 1133–1140.

    PubMed  CAS  Google Scholar 

  • Reyes, M., Lund, T., Lenvik, T., Aguiar, D., Koodie, L. & Verfaillie, C.M. (2001) Purification and ex vivo expansion of postnatal human marrow mesodermal progenitor cells. Blood, 98, 2615–2625.

    PubMed  CAS  Google Scholar 

  • Spinella-Jaegle, S., Rawadi, G., Kawai, S., Gallea, S., Faucheu, C., Mollat, P., Courtois, B., Bergaud, B., Ramez, V., Blanchet, A.M., Adelmant, G., Baron, R. & Roman-Roman, S. (2001) Sonic hedgehog increases the commitment of pluripotent mesenchymal cells into the osteoblastic lineage and abolishes adipocytic differentiation. J Cell Sci, 114, 2085–2094.

    PubMed  CAS  Google Scholar 

  • Toma, J.G., Akhavan, M., Fernandes, K.J., Barnabe-Heider, F., Sadikot, A., Kaplan, D.R. & Miller, F.D. (2001) Isolation of multipotent adult stem cells from the dermis of mammalian skin. Nat Cell Biol, 3, 778–784.

    PubMed  CAS  Google Scholar 

  • Tsutsumi, S., Shimazu, A., Miyazaki, K., Pan, H., Koike, C., Yoshida, E., Takagishi, K. & Kato, Y. (2001) Retention of multilineage differentiation potential of mesenchymal cells during proliferation in response to FGF. Biochem Biophys Res Commun, 288, 413–419.

    PubMed  CAS  Google Scholar 

  • Young, H.E., Steele, T.A., Bray, R.A., Hudson, J., Floyd, J.A., Hawkins, K., Thomas, K., Austin, T., Edwards, C., Cuzzourt, J., Duenzl, M., Lucas, P.A. & Black, A.C., Jr. (2001) Human reserve pluripotent mesenchymal stem cells are present in the connective tissues of skeletal muscle and dermis derived from fetal, adult, and geriatric donors. Anat Rec, 264, 51–62.

    PubMed  CAS  Google Scholar 

  • Zuk, P.A., Zhu, M., Mizuno, H., Huang, J., Futrell, J.W., Katz, A.J., Benhaim, P., Lorenz, H.P. & Hedrick, M.H. (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng, 7, 211–228.

    PubMed  CAS  Google Scholar 

  • Beqaj, S., Jakkaraju, S., Mattingly, R.R., Pan, D. & Schuger, L. (2002) High RhoA activity maintains the undifferentiated mesenchymal cell phenotype, whereas RhoA down-regulation by laminin-2 induces smooth muscle myogenesis. J Cell Biol, 156, 893–903.

    PubMed  CAS  Google Scholar 

  • Charbord, P., Oostendorp, R., Pang, W., Herault, O., Noel, F., Tsuji, T., Dzierzak, E. & Peault, B. (2002) Comparative study of stromal cell lines derived from embryonic, fetal, and postnatal mouse blood-forming tissues. Exp Hematol, 30, 1202–1210.

    PubMed  CAS  Google Scholar 

  • Di Nicola, M., Carlo-Stella, C., Magni, M., Milanesi, M., Longoni, P.D., Matteucci, P., Grisanti, S. & Gianni, A.M. (2002) Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood, 99, 3838–3843.

    PubMed  Google Scholar 

  • Goldstein, R.S., Drukker, M., Reubinoff, B.E. & Benvenisty, N. (2002) Integration and differentiation of human embryonic stem cells transplanted to the chick embryo. Dev Dyn, 225, 80–86.

    PubMed  CAS  Google Scholar 

  • Jiang, Y., Jahagirdar, B.N., Reinhardt, R.L., Schwartz, R.E., Keene, C.D., Ortiz-Gonzalez, X.R., Reyes, M., Lenvik, T., Lund, T., Blackstad, M., Du, J., Aldrich, S., Lisberg, A., Low, W.C., Largaespada, D.A. & Verfaillie, C.M. (2002a) Pluripotency of mesenchymal stem cells derived from adult marrow. Nature, 418, 41–49.

    PubMed  CAS  Google Scholar 

  • Jiang, Y., Vaessen, B., Lenvik, T., Blackstad, M., Reyes, M. & Verfaillie, C.M. (2002b) Multipotent progenitor cells can be isolated from postnatal murine bone marrow, muscle, and brain. Exp Hematol, 30, 896–904.

    PubMed  CAS  Google Scholar 

  • Minasi, M.G., Riminucci, M., De Angelis, L., Borello, U., Berarducci, B., Innocenzi, A., Caprioli, A., Sirabella, D., Baiocchi, M., De Maria, R., Boratto, R., Jaffredo, T., Broccoli, V., Bianco, P. & Cossu, G. (2002) The meso-angioblast: a multipotent, self-renewing cell that originates from the dorsal aorta and differentiates into most mesodermal tissues. Development, 129, 2773–2783.

    PubMed  CAS  Google Scholar 

  • Noort, W.A., Kruisselbrink, A.B., in’t Anker, P.S., Kruger, M., van Bezooijen, R.L., de Paus, R.A., Heemskerk, M.H., Lowik, C.W., Falkenburg, J.H., Willemze, R. & Fibbe, W.E. (2002) Mesenchymal stem cells promote engraftment of human umbilical cord blood-derived CD34(+) cells in NOD/SCID mice. Exp Hematol, 30, 870–878.

    PubMed  Google Scholar 

  • Oostendorp, R.A., Harvey, K.N., Kusadasi, N., de Bruijn, M.F., Saris, C., Ploemacher, R.E., Medvinsky, A.L. & Dzierzak, E.A. (2002) Stromal cell lines from mouse aorta-gonads-mesonephros subregions are potent supporters of hematopoietic stem cell activity. Blood, 99,1183–1189.

    PubMed  CAS  Google Scholar 

  • Reyes, M., Dudek, A., Jahagirdar, B., Koodie, L., Marker, P.H. & Verfaillie, C.M. (2002) Origin of endothelial progenitors in human postnatal bone marrow. J Clin Invest, 109, 337–346.

    PubMed  CAS  Google Scholar 

  • Schwartz, R.E., Reyes, M., Koodie, L., Jiang, Y., Blackstad, M., Lund, T., Lenvik, T., Johnson, S., Hu, W.S. & Verfaillie, C.M. (2002) Multipotent adult progenitor cells from bone marrow differentiate into functional hepatocyte-like cells. J Clin Invest, 109, 1291–1302.

    PubMed  CAS  Google Scholar 

  • Shi, S., Gronthos, S., Chen, S., Reddi, A., Counter, C.M., Robey, P.G. & Wang, C.Y. (2002) Bone formation by human postnatal bone marrow stromal stem cells is enhanced by telomerase expression. Nat Biotechnol, 20, 587–591.

    PubMed  CAS  Google Scholar 

  • Baddoo, M., Hill, K., Wilkinson, R., Gaupp, D., Hughes, C., Kopen, G.C. & Phinney, D.G. (2003) Characterization of mesenchymal stem cells isolated from murine bone marrow by negative selection. J Cell Biochem, 89, 1235–1249.

    PubMed  CAS  Google Scholar 

  • Barbash, I.M., Chouraqui, P., Baron, J., Feinberg, M.S., Etzion, S., Tessone, A., Miller, L., Guetta, E., Zipori, D., Kedes, L.H., Kloner, R.A. & Leor, J. (2003) Systemic delivery of bone marrow-derived mesenchymal stem cells to the infarcted myocardium: feasibility, cell migration, and body distribution. Circulation, 108, 863–868.

    PubMed  Google Scholar 

  • Chambers, I., Colby, D., Robertson, M., Nichols, J., Lee, S., Tweedie, S. & Smith, A. (2003) Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell, 113, 643–655.

    PubMed  CAS  Google Scholar 

  • Cossu, G. & Bianco, P. (2003) Mesoangioblasts – vascular progenitors for extravascular mesodermal tissues. Curr Opin Genet Dev, 13, 537–542.

    PubMed  CAS  Google Scholar 

  • Deschaseaux, F., Gindraux, F., Saadi, R., Obert, L., Chalmers, D. & Herve, P. (2003) Direct selection of human bone marrow mesenchymal stem cells using an anti-CD49a antibody reveals their CD45med,low phenotype. Br J Haematol, 122, 506–517.

    PubMed  Google Scholar 

  • Djouad, F., Plence, P., Bony, C., Tropel, P., Apparailly, F., Sany, J., Noel, D. & Jorgensen, C. (2003) Immunosuppressive effect of mesenchymal stem cells favors tumor growth in allogeneic animals. Blood, 102, 3837–3844.

    PubMed  CAS  Google Scholar 

  • Gotherstrom, C., Ringden, O., Westgren, M., Tammik, C. & Le Blanc, K. (2003) Immunomodulatory effects of human foetal liver-derived mesenchymal stem cells. Bone Marrow Transplant, 32, 265–272.

    PubMed  CAS  Google Scholar 

  • Gregory, C.A., Singh, H., Perry, A.S. & Prockop, D.J. (2003) The Wnt signaling inhibitor dickkopf-1 is required for reentry into the cell cycle of human adult stem cells from bone marrow. J Biol Chem, 278, 28067–28078.

    PubMed  CAS  Google Scholar 

  • Gronthos, S., Zannettino, A.C., Hay, S.J., Shi, S., Graves, S.E., Kortesidis, A. & Simmons, P.J. (2003) Molecular and cellular characterisation of highly purified stromal stem cells derived from human bone marrow. J Cell Sci, 116, 1827–1835.

    PubMed  CAS  Google Scholar 

  • Hill, J.M., Dick, A.J., Raman, V.K., Thompson, R.B., Yu, Z.X., Hinds, K.A., Pessanha, B.S., Guttman, M.A., Varney, T.R., Martin, B.J., Dunbar, C.E., McVeigh, E.R. & Lederman, R.J. (2003) Serial cardiac magnetic resonance imaging of injected mesenchymal stem cells. Circulation, 108, 1009–1014.

    PubMed  Google Scholar 

  • Jiang, Y., Henderson, D., Blackstad, M., Chen, A., Miller, R.F. & Verfaillie, C.M. (2003) Neuroectodermal differentiation from mouse multipotent adult progenitor cells. Proc Natl Acad Sci USA, 100 (Suppl 1), 11854–11860.

    PubMed  CAS  Google Scholar 

  • Keene, C.D., Ortiz-Gonzalez, X.R., Jiang, Y., Largaespada, D.A., Verfaillie, C.M. & Low, W.C. (2003) Neural differentiation and incorporation of bone marrow-derived multipotent adult progenitor cells after single cell transplantation into blastocyst stage mouse embryos. Cell Transplant, 12, 201–213.

    PubMed  Google Scholar 

  • Krampera, M., Glennie, S., Dyson, J., Scott, D., Laylor, R., Simpson, E. & Dazzi, F. (2003) Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen-specific T cells to their cognate peptide. Blood, 101, 3722–3729.

    PubMed  CAS  Google Scholar 

  • O’Donoghue, K., Choolani, M., Chan, J., de la Fuente, J., Kumar, S., Campagnoli, C., Bennett, P.R., Roberts, I.A. & Fisk, N.M. (2003) Identification of fetal mesenchymal stem cells in maternal blood: implications for non-invasive prenatal diagnosis. Mol Hum Reprod, 9, 497–502.

    PubMed  Google Scholar 

  • Potian, J.A., Aviv, H., Ponzio, N.M., Harrison, J.S. & Rameshwar, P. (2003) Veto-like activity of mesenchymal stem cells: functional discrimination between cellular responses to alloantigens and recall antigens. J Immunol, 171, 3426–3434.

    PubMed  CAS  Google Scholar 

  • Rombouts, W.J. & Ploemacher, R.E. (2003) Primary murine MSC show highly efficient homing to the bone marrow but lose homing ability following culture. Leukemia, 17, 160–170.

    PubMed  CAS  Google Scholar 

  • Shi, X., Shi, W., Li, Q., Song, B., Wan, M., Bai, S. & Cao, X. (2003) A glucocorticoid-induced leucine-zipper protein, GILZ, inhibits adipogenesis of mesenchymal cells. EMBO Rep, 4, 374–380.

    PubMed  CAS  Google Scholar 

  • Stenderup, K., Justesen, J., Clausen, C. & Kassem, M. (2003) Aging is associated with decreased maximal life span and accelerated senescence of bone marrow stromal cells. Bone, 33, 919–926.

    PubMed  Google Scholar 

  • Wu, G.D., Nolta, J.A., Jin, Y.S., Barr, M.L., Yu, H., Starnes, V.A. & Cramer, D.V. (2003) Migration of mesenchymal stem cells to heart allografts during chronic rejection. Transplantation, 75, 679–685.

    PubMed  Google Scholar 

  • Allers, C., Sierralta, W.D., Neubauer, S., Rivera, F., Minguell, J.J. & Conget, P.A. (2004) Dynamic of distribution of human bone marrow-derived mesenchymal stem cells after transplantation into adult unconditioned mice. Transplantation, 78, 503–508.

    PubMed  Google Scholar 

  • Bensidhoum, M., Chapel, A., Francois, S., Demarquay, C., Mazurier, C., Fouillard, L., Bouchet, S., Bertho, J.M., Gourmelon, P., Aigueperse, J., Charbord, P., Gorin, N.C., Thierry, D. & Lopez, M. (2004) Homing of in vitro expanded Stro-1- or Stro-1+ human mesenchymal stem cells into the NOD/SCID mouse and their role in supporting human CD34 cell engraftment. Blood, 103, 3313–3319.

    PubMed  CAS  Google Scholar 

  • Chambers, I. & Smith, A. (2004) Self-renewal of teratocarcinoma and embryonic stem cells. Oncogene, 23, 7150–7160.

    PubMed  CAS  Google Scholar 

  • D’Ippolito, G., Diabira, S., Howard, G.A., Menei, P., Roos, B.A. & Schiller, P.C. (2004) Marrow-isolated adult multilineage inducible (MIAMI) cells, a unique population of postnatal young and old human cells with extensive expansion and differentiation potential. J Cell Sci, 117, 2971–2981. Epub 2004 Jun 2971.

    PubMed  Google Scholar 

  • Fernandes, K.J., McKenzie, I.A., Mill, P., Smith, K.M., Akhavan, M., Barnabe-Heider, F., Biernaskie, J., Junek, A., Kobayashi, N.R., Toma, J.G., Kaplan, D.R., Labosky, P.A., Rafuse, V., Hui, C.C. & Miller, F.D. (2004) A dermal niche for multipotent adult skin-derived precursor cells. Nat Cell Biol, 6, 1082–1093.

    PubMed  CAS  Google Scholar 

  • Ji, J.F., He, B.P., Dheen, S.T. & Tay, S.S. (2004) Interactions of chemokines and chemokine receptors mediate the migration of mesenchymal stem cells to the impaired site in the brain after hypoglossal nerve injury. Stem Cells, 22, 415–427.

    PubMed  CAS  Google Scholar 

  • Katakai, T., Hara, T., Lee, J.H., Gonda, H., Sugai, M. & Shimizu, A. (2004) A novel reticular stromal structure in lymph node cortex: an immuno-platform for interactions among dendritic cells, T cells and B cells. Int Immunol, 16, 1133–1142.

    PubMed  CAS  Google Scholar 

  • Kawase, Y., Yanagi, Y., Takato, T., Fujimoto, M. & Okochi, H. (2004) Characterization of multipotent adult stem cells from the skin: transforming growth factor-beta (TGF-beta) facilitates cell growth. Exp Cell Res, 295, 194–203.

    PubMed  CAS  Google Scholar 

  • Kogler, G., Sensken, S., Airey, J.A., Trapp, T., Muschen, M., Feldhahn, N., Liedtke, S., Sorg, R.V., Fischer, J., Rosenbaum, C., Greschat, S., Knipper, A., Bender, J., Degistirici, O., Gao, J., Caplan, A.I., Colletti, E.J., Almeida-Porada, G., Muller, H.W., Zanjani, E. & Wernet, P. (2004) A new human somatic stem cell from placental cord blood with intrinsic pluripotent differentiation potential. J Exp Med, 200, 123–135.

    PubMed  Google Scholar 

  • Le Blanc, K., Rasmusson, I., Sundberg, B., Gotherstrom, C., Hassan, M., Uzunel, M. & Ringden, O. (2004a) Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet, 363, 1439–1441.

    PubMed  Google Scholar 

  • Le Blanc, K., Rasmusson, I., Sundberg, B., Gotherstrom, C., Hassan, M., Uzunel, M. & Ringden, O. (2004b) Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet, 363, 1439–1441.

    PubMed  Google Scholar 

  • Lengner, C.J., Lepper, C., van Wijnen, A.J., Stein, J.L., Stein, G.S. & Lian, J.B. (2004) Primary mouse embryonic fibroblasts: a model of mesenchymal cartilage formation. J Cell Physiol, 200, 327–333.

    PubMed  CAS  Google Scholar 

  • Mahmud, N., Pang, W., Cobbs, C., Alur, P., Borneman, J., Dodds, R., Archambault, M., Devine, S., Turian, J., Bartholomew, A., Vanguri, P., Mackay, A., Young, R. & Hoffman, R. (2004) Studies of the route of administration and role of conditioning with radiation on unrelated allogeneic mismatched mesenchymal stem cell engraftment in a nonhuman primate model. Exp Hematol, 32, 494–501.

    PubMed  CAS  Google Scholar 

  • Niyibizi, C., Wang, S., Mi, Z. & Robbins, P.D. (2004a) Gene therapy approaches for osteogenesis imperfecta. Gene Ther, 11, 408–416.

    PubMed  CAS  Google Scholar 

  • Niyibizi, C., Wang, S., Mi, Z. & Robbins, P.D. (2004b) The fate of mesenchymal stem cells transplanted into immunocompetent neonatal mice: implications for skeletal gene therapy via stem cells. Mol Ther, 9, 955–963.

    PubMed  CAS  Google Scholar 

  • Noel, D., Gazit, D., Bouquet, C., Apparailly, F., Bony, C., Plence, P., Millet, V., Turgeman, G., Perricaudet, M., Sany, J. & Jorgensen, C. (2004) Short-term BMP-2 expression is sufficient for in vivo osteochondral differentiation of mesenchymal stem cells. Stem Cells, 22, 74–85.

    PubMed  CAS  Google Scholar 

  • O’Donoghue, K., Chan, J., de la Fuente, J., Kennea, N., Sandison, A., Anderson, J.R., Roberts, I.A. & Fisk, N.M. (2004) Microchimerism in female bone marrow and bone decades after fetal mesenchymal stem-cell trafficking in pregnancy. Lancet, 364, 179–182.

    PubMed  Google Scholar 

  • Peister, A., Mellad, J.A., Larson, B.L., Hall, B.M., Gibson, L.F. & Prockop, D.J. (2004) Adult stem cells from bone marrow (MSCs) isolated from different strains of inbred mice vary in surface epitopes, rates of proliferation, and differentiation potential. Blood, 103, 1662–1668.

    PubMed  CAS  Google Scholar 

  • Pochampally, R.R., Neville, B.T., Schwarz, E.J., Li, M.M. & Prockop, D.J. (2004a) Rat adult stem cells (marrow stromal cells) engraft and differentiate in chick embryos without evidence of cell fusion. Proc Natl Acad Sci USA, 101, 9282–9285.

    PubMed  CAS  Google Scholar 

  • Pochampally, R.R., Smith, J.R., Ylostalo, J. & Prockop, D.J. (2004b) Serum deprivation of human marrow stromal cells (hMSCs) selects for a subpopulation of early progenitor cells with enhanced expression of OCT-4 and other embryonic genes. Blood, 103, 1647–1652.

    PubMed  CAS  Google Scholar 

  • Prindull, G. & Zipori, D. (2004) Environmental guidance of normal and tumor cell plasticity: epithelial mesenchymal transitions as a paradigm. Blood, 8, 8.

    Google Scholar 

  • Sato, N., Meijer, L., Skaltsounis, L., Greengard, P. & Brivanlou, A.H. (2004) Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor. Nat Med, 10, 55–63. Epub 2003Dec 2021.

    PubMed  CAS  Google Scholar 

  • Smith, J.R., Pochampally, R., Perry, A., Hsu, S.C. & Prockop, D.J. (2004) Isolation of a highly clonogenic and multipotential subfraction of adult stem cells from bone marrow stroma. Stem Cells, 22, 823–831.

    PubMed  Google Scholar 

  • Suva, D., Garavaglia, G., Menetrey, J., Chapuis, B., Hoffmeyer, P., Bernheim, L. & Kindler, V. (2004) Non-hematopoietic human bone marrow contains long-lasting, pluripotential mesenchymal stem cells. J Cell Physiol, 198, 110–118.

    PubMed  CAS  Google Scholar 

  • Tsai, M.S., Lee, J.L., Chang, Y.J. & Hwang, S.M. (2004) Isolation of human multipotent mesenchymal stem cells from second-trimester amniotic fluid using a novel two-stage culture protocol. Hum Reprod, 19, 1450–1456. Epub 2004 Apr 1422.

    PubMed  Google Scholar 

  • Wynn, R.F., Hart, C.A., Corradi-Perini, C., O’Neill, L., Evans, C.A., Wraith, J.E., Fairbairn, L.J. & Bellantuono, I. (2004) A small proportion of mesenchymal stem cells strongly expresses functionally active CXCR4 receptor capable of promoting migration to bone marrow. Blood, 104, 2643–2645.

    PubMed  CAS  Google Scholar 

  • Akiyama, H., Kim, J.E., Nakashima, K., Balmes, G., Iwai, N., Deng, J.M., Zhang, Z., Martin, J.F., Behringer, R.R., Nakamura, T. & de Crombrugghe, B. (2005) Osteo-chondroprogenitor cells are derived from Sox9 expressing precursors. Proc Natl Acad Sci USA, 102, 14665–14670.

    PubMed  CAS  Google Scholar 

  • Bacigalupo, A., Valle, M., Podesta, M., Pitto, A., Zocchi, E., De Flora, A., Pozzi, S., Luchetti, S., Frassoni, F., Van Lint, M.T. & Piaggio, G. (2005) T-cell suppression mediated by mesenchymal stem cells is deficient in patients with severe aplastic anemia. Exp Hematol, 33,819–827.

    PubMed  CAS  Google Scholar 

  • Beyth, S., Borovsky, Z., Mevorach, D., Liebergall, M., Gazit, Z., Aslan, H., Galun, E. & Rachmilewitz, J. (2005) Human mesenchymal stem cells alter antigen-presenting cell maturation and induce T-cell unresponsiveness. Blood, 105, 2214–2219.

    PubMed  CAS  Google Scholar 

  • Boiani, M. & Scholer, H.R. (2005) Regulatory networks in embryo-derived pluripotent stem cells. Nat Rev Mol Cell Biol, 6, 872–884.

    PubMed  CAS  Google Scholar 

  • Boyer, L.A., Lee, T.I., Cole, M.F., Johnstone, S.E., Levine, S.S., Zucker, J.P., Guenther, M.G., Kumar, R.M., Murray, H.L., Jenner, R.G., Gifford, D.K., Melton, D.A., Jaenisch, R. & Young, R.A. (2005) Core transcriptional regulatory circuitry in human embryonic stem cells. Cell, 122, 947–956.

    PubMed  CAS  Google Scholar 

  • Eliopoulos, N., Stagg, J., Lejeune, L., Pommey, S. & Galipeau, J. (2005) Allogeneic marrow stromal cells are immune rejected by MHC class I- and class II-mismatched recipient mice. Blood, 106, 4057–4065.

    PubMed  CAS  Google Scholar 

  • Gregory, C.A., Perry, A.S., Reyes, E., Conley, A., Gunn, W.G. & Prockop, D.J. (2005) Dkk-1-derived synthetic peptides and lithium chloride for the control and recovery of adult stem cells from bone marrow. J Biol Chem, 280, 2309–2323.

    PubMed  CAS  Google Scholar 

  • Hay, E.D. (2005) The mesenchymal cell, its role in the embryo, and the remarkable signaling mechanisms that create it. Dev Dyn, 233, 706–720.

    PubMed  CAS  Google Scholar 

  • Hong, K.M., Burdick, M.D., Phillips, R.J., Heber, D. & Strieter, R.M. (2005) Characterization of human fibrocytes as circulating adipocyte progenitors and the formation of human adipose tissue in SCID mice. FASEB J, 19, 2029–2031.

    PubMed  CAS  Google Scholar 

  • Jiang, X.X., Zhang, Y., Liu, B., Zhang, S.X., Wu, Y., Yu, X.D. & Mao, N. (2005) Human mesenchymal stem cells inhibit differentiation and function of monocyte-derived dendritic cells. Blood, 105, 4120–4126.

    PubMed  CAS  Google Scholar 

  • Krampera, M., Pasini, A., Rigo, A., Scupoli, M.T., Tecchio, C., Malpeli, G., Scarpa, A., Dazzi, F., Pizzolo, G. & Vinante, F. (2005) HB-EGF/HER-1 signaling in bone marrow mesenchymal stem cells: inducing cell expansion and reversibly preventing multilineage differentiation. Blood, 106, 59–66.

    PubMed  CAS  Google Scholar 

  • Kratchmarova, I., Blagoev, B., Haack-Sorensen, M., Kassem, M. & Mann, M. (2005) Mechanism of divergent growth factor effects in mesenchymal stem cell differentiation. Science, 308,1472–1477.

    PubMed  CAS  Google Scholar 

  • Kues, W.A., Petersen, B., Mysegades, W., Carnwath, J.W. & Niemann, H. (2005) Isolation of murine and porcine fetal stem cells from somatic tissue. Biol Reprod, 72, 1020–1028.

    PubMed  CAS  Google Scholar 

  • Kumar, S., Mahendra, G. & Ponnazhagan, S. (2005) Determination of osteoprogenitor-specific promoter activity in mouse mesenchymal stem cells by recombinant adeno-associated virus transduction. Biochim Biophys Acta, 1731, 95–103.

    PubMed  CAS  Google Scholar 

  • Lauss, M., Stary, M., Tischler, J., Egger, G., Puz, S., Bader-Allmer, A., Seiser, C. & Weitzer, G. (2005) Single inner cell masses yield embryonic stem cell lines differing in lifr expression and their developmental potential. Biochem Biophys Res Commun, 331, 1577–1586.

    PubMed  CAS  Google Scholar 

  • Sordi, V., Malosio, M.L., Marchesi, F., Mercalli, A., Melzi, R., Giordano, T., Belmonte, N., Ferrari, G., Leone, B.E., Bertuzzi, F., Zerbini, G., Allavena, P., Bonifacio, E. & Piemonti, L. (2005) Bone marrow mesenchymal stem cells express a restricted set of functionally active chemokine receptors capable of promoting migration to pancreatic islets. Blood, 106, 419–427.

    PubMed  CAS  Google Scholar 

  • Vodyanik, M.A., Bork, J.A., Thomson, J.A. & Slukvin, I.I. (2005) Human embryonic stem cell-derived CD34+ cells: efficient production in the coculture with OP9 stromal cells and analysis of lymphohematopoietic potential. Blood, 105, 617–626.

    PubMed  CAS  Google Scholar 

  • Yoon, Y.S., Wecker, A., Heyd, L., Park, J.S., Tkebuchava, T., Kusano, K., Hanley, A., Scadova, H., Qin, G., Cha, D.H., Johnson, K.L., Aikawa, R., Asahara, T. & Losordo, D.W. (2005) Clonally expanded novel multipotent stem cells from human bone marrow regenerate myocardium after myocardial infarction. J Clin Invest, 115, 326–338.

    PubMed  CAS  Google Scholar 

  • Zappia, E., Casazza, S., Pedemonte, E., Benvenuto, F., Bonanni, I., Gerdoni, E., Giunti, D., Ceravolo, A., Cazzanti, F., Frassoni, F., Mancardi, G. & Uccelli, A. (2005) Mesenchymal stem cells ameliorate experimental autoimmune encephalomyelitis inducing T-cell anergy. Blood, 106, 1755–1761.

    PubMed  CAS  Google Scholar 

  • Zipori, D. (2005) The stem state: plasticity is essential, whereas self-renewal and hierarchy are optional. Stem Cells, 23, 719–726.

    PubMed  CAS  Google Scholar 

  • Zwaka, T.P. & Thomson, J.A. (2005) A germ cell origin of embryonic stem cells? Development, 132, 227–233.

    PubMed  CAS  Google Scholar 

  • Bajenoff, M., Egen, J.G., Koo, L.Y., Laugier, J.P., Brau, F., Glaichenhaus, N. & Germain, R.N. (2006) Stromal cell networks regulate lymphocyte entry, migration, and territoriality in lymph nodes. Immunity, 25, 989–1001.

    PubMed  CAS  Google Scholar 

  • Chan, J.L., Tang, K.C., Patel, A.P., Bonilla, L.M., Pierobon, N., Ponzio, N.M. & Rameshwar, P. (2006) Antigen-presenting property of mesenchymal stem cells occurs during a narrow window at low levels of interferon-gamma. Blood, 107, 4817–4824.

    PubMed  CAS  Google Scholar 

  • da Silva Meirelles, L., Chagastelles, P.C. & Nardi, N.B. (2006) Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J Cell Sci, 119, 2204–2213.

    PubMed  Google Scholar 

  • Deng, J., Petersen, B.E., Steindler, D.A., Jorgensen, M.L. & Laywell, E.D. (2006) Mesenchymal stem cells spontaneously express neural proteins in culture and are neurogenic after transplantation. Stem Cells, 24, 1054–1064.

    PubMed  CAS  Google Scholar 

  • Dyce, P.W., Wen, L. & Li, J. (2006) In vitro germline potential of stem cells derived from fetal porcine skin. Nat Cell Biol, 8, 384–390.

    PubMed  CAS  Google Scholar 

  • Eberhardt, M., Salmon, P., von Mach, M.A., Hengstler, J.G., Brulport, M., Linscheid, P., Seboek, D., Oberholzer, J., Barbero, A., Martin, I., Muller, B., Trono, D. & Zulewski, H. (2006) Multipotential nestin and Isl-1 positive mesenchymal stem cells isolated from human pancreatic islets. Biochem Biophys Res Commun, 345, 1167–1176.

    PubMed  CAS  Google Scholar 

  • Fiedler, J., Brill, C., Blum, W.F. & Brenner, R.E. (2006) IGF-I and IGF-II stimulate directed cell migration of bone-marrow-derived human mesenchymal progenitor cells. Biochem Biophys Res Commun, 345, 1177–1183.

    PubMed  CAS  Google Scholar 

  • Hermann, A., Liebau, S., Gastl, R., Fickert, S., Habisch, H.J., Fiedler, J., Schwarz, J., Brenner, R. & Storch, A. (2006) Comparative analysis of neuroectodermal differentiation capacity of human bone marrow stromal cells using various conversion protocols. J Neurosci Res, 83, 1502–1514.

    PubMed  CAS  Google Scholar 

  • Honczarenko, M., Le, Y., Swierkowski, M., Ghiran, I., Glodek, A.M. & Silberstein, L.E. (2006) Human bone marrow stromal cells express a distinct set of biologically functional chemokine receptors. Stem Cells, 24, 1030–1041.

    PubMed  CAS  Google Scholar 

  • Kafienah, W., Mistry, S., Williams, C. & Hollander, A.P. (2006) Nucleostemin is a marker of proliferating stromal stem cells in adult human bone marrow. Stem Cells, 24, 1113–1120.

    PubMed  Google Scholar 

  • Kern, S., Eichler, H., Stoeve, J., Kluter, H. & Bieback, K. (2006) Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells, 24, 1294–1301.

    PubMed  CAS  Google Scholar 

  • Kraus, K.H. & Kirker-Head, C. (2006) Mesenchymal stem cells and bone regeneration. Vet Surg, 35, 232–242.

    PubMed  Google Scholar 

  • Kucia, M., Reca, R., Campbell, F.R., Zuba-Surma, E., Majka, M., Ratajczak, J. & Ratajczak, M.Z. (2006) A population of very small embryonic-like (VSEL) CXCR4(+)SSEA-1(+)Oct-4+ stem cells identified in adult bone marrow. Leukemia, 20, 857–869.

    PubMed  CAS  Google Scholar 

  • Lee, R.H., Hsu, S.C., Munoz, J., Jung, J.S., Lee, N.R., Pochampally, R. & Prockop, D.J. (2006) A subset of human rapidly self-renewing marrow stromal cells preferentially engraft in mice. Blood, 107, 2153–2161.

    PubMed  CAS  Google Scholar 

  • Muguruma, Y., Yahata, T., Miyatake, H., Sato, T., Uno, T., Itoh, J., Kato, S., Ito, M., Hotta, T. & Ando, K. (2006) Reconstitution of the functional human hematopoietic microenvironment derived from human mesenchymal stem cells in the murine bone marrow compartment. Blood, 107, 1878–1887.

    PubMed  CAS  Google Scholar 

  • Nauta, A.J., Westerhuis, G., Kruisselbrink, A.B., Lurvink, E.G., Willemze, R. & Fibbe, W.E. (2006) Donor-derived mesenchymal stem cells are immunogenic in an allogeneic host and stimulate donor graft rejection in a nonmyeloablative setting. Blood, 108, 2114–2120.

    PubMed  CAS  Google Scholar 

  • Ogawa, M., LaRue, A.C. & Drake, C.J. (2006) Hematopoietic origin of fibroblasts/myofibroblasts: Its pathophysiologic implications. Blood, 108, 2893–2896.

    PubMed  CAS  Google Scholar 

  • Pevsner-Fischer, M., Morad, V., Cohen-Sfady, M., Rousso-Noori, L., Zanin-Zhorov, A., Cohen, S., Cohen, I.R. & Zipori, D. (2006) Toll-like receptors and their ligands control mesenchymal stem cell functions. Blood.

    Google Scholar 

  • Sampaolesi, M., Blot, S., D’Antona, G., Granger, N., Tonlorenzi, R., Innocenzi, A., Mognol, P., Thibaud, J.L., Galvez, B.G., Barthelemy, I., Perani, L., Mantero, S., Guttinger, M., Pansarasa, O., Rinaldi, C., Cusella De Angelis, M.G., Torrente, Y., Bordignon, C., Bottinelli, R. & Cossu, G. (2006) Mesoangioblast stem cells ameliorate muscle function in dystrophic dogs. Nature, 444, 574–579.

    PubMed  CAS  Google Scholar 

  • Sonoyama, W., Liu, Y., Fang, D., Yamaza, T., Seo, B.M., Zhang, C., Liu, H., Gronthos, S., Wang, C.Y., Shi, S. & Wang, S. (2006) Mesenchymal stem cell-mediated functional tooth regeneration in swine. PLoS ONE, 1, e79.

    PubMed  Google Scholar 

  • Stagg, J., Pommey, S., Eliopoulos, N. & Galipeau, J. (2006) Interferon-gamma-stimulated marrow stromal cells: a new type of nonhematopoietic antigen-presenting cell. Blood, 107, 2570–2577.

    PubMed  CAS  Google Scholar 

  • Sudres, M., Norol, F., Trenado, A., Gregoire, S., Charlotte, F., Levacher, B., Lataillade, J.J., Bourin, P., Holy, X., Vernant, J.P., Klatzmann, D. & Cohen, J.L. (2006) Bone marrow mesenchymal stem cells suppress lymphocyte proliferation in vitro but fail to prevent graft-versus-host disease in mice. J Immunol, 176, 7761–7767.

    PubMed  CAS  Google Scholar 

  • Tataria, M., Quarto, N., Longaker, M.T. & Sylvester, K.G. (2006) Absence of the p53 tumor suppressor gene promotes osteogenesis in mesenchymal stem cells. J Pediatr Surg, 41, 624–632; discussion 624–632.

    PubMed  Google Scholar 

  • Uccelli, A., Moretta, L. & Pistoia, V. (2006) Immunoregulatory function of mesenchymal stem cells. Eur J Immunol, 36, 2566–2573.

    PubMed  CAS  Google Scholar 

  • Wang, J., Rao, S., Chu, J., Shen, X., Levasseur, D.N., Theunissen, T.W. & Orkin, S.H. (2006) A protein interaction network for pluripotency of embryonic stem cells. Nature, 444, 364–368.

    PubMed  CAS  Google Scholar 

  • Anjos-Afonso, F. & Bonnet, D. (2007) Nonhematopoietic/endothelial SSEA-1+ cells define the most primitive progenitors in the adult murine bone marrow mesenchymal compartment. Blood, 109, 1298–1306.

    PubMed  CAS  Google Scholar 

  • Beltrami, A.P., Cesselli, D., Bergamin, N., Marcon, P., Rigo, S., Puppato, E., D’Aurizio, F., Verardo, R., Piazza, S., Pignatelli, A., Poz, A., Baccarani, U., Damiani, D., Fanin, R., Mariuzzi, L., Finato, N., Masolini, P., Burelli, S., Belluzzi, O., Schneider, C. & Beltrami, C.A. (2007) Multipotent cells can be generated in vitro from several adult human organs (heart, liver, and bone marrow). Blood, 110, 3438–3446.

    PubMed  CAS  Google Scholar 

  • Cai, J., Zhao, Y., Liu, Y., Ye, F., Song, Z., Qin, H., Meng, S., Chen, Y., Zhou, R., Song, X., Guo, Y., Ding, M. & Deng, H. (2007) Directed differentiation of human embryonic stem cells into functional hepatic cells. Hepatology, 45, 1229–1239.

    PubMed  CAS  Google Scholar 

  • Chabannes, D., Hill, M., Merieau, E., Rossignol, J., Brion, R., Soulillou, J.P., Anegon, I. & Cuturi, M.C. (2007) A role for heme oxygenase-1 in the immunosuppressive effect of adult rat and human mesenchymal stem cells. Blood, 110, 3691–3694.

    PubMed  CAS  Google Scholar 

  • De Coppi, P., Bartsch, G., Jr., Siddiqui, M.M., Xu, T., Santos, C.C., Perin, L., Mostoslavsky, G., Serre, A.C., Snyder, E.Y., Yoo, J.J., Furth, M.E., Soker, S. & Atala, A. (2007) Isolation of amniotic stem cell lines with potential for therapy. Nat Biotechnol, 25, 100–106.

    PubMed  Google Scholar 

  • Dellavalle, A., Sampaolesi, M., Tonlorenzi, R., Tagliafico, E., Sacchetti, B., Perani, L., Innocenzi, A., Galvez, B.G., Messina, G., Morosetti, R., Li, S., Belicchi, M., Peretti, G., Chamberlain, J.S., Wright, W.E., Torrente, Y., Ferrari, S., Bianco, P. & Cossu, G. (2007) Pericytes of human skeletal muscle are myogenic precursors distinct from satellite cells. Nat Cell Biol, 9, 255–267.

    PubMed  CAS  Google Scholar 

  • Ding, D.C., Shyu, W.C., Chiang, M.F., Lin, S.Z., Chang, Y.C., Wang, H.J., Su, C.Y. & Li, H. (2007) Enhancement of neuroplasticity through upregulation of beta1-integrin in human umbilical cord-derived stromal cell implanted stroke model. Neurobiol Dis, 27, 339–353.

    PubMed  CAS  Google Scholar 

  • Greco, S.J., Liu, K. & Rameshwar, P. (2007) Functional similarities among genes regulated by Oct4 in human mesenchymal and embryonic stem cells. Stem Cells, 25, 3143–3154.

    PubMed  CAS  Google Scholar 

  • Haniffa, M.A., Wang, X.N., Holtick, U., Rae, M., Isaacs, J.D., Dickinson, A.M., Hilkens, C.M. & Collin, M.P. (2007) Adult human fibroblasts are potent immunoregulatory cells and functionally equivalent to mesenchymal stem cells. J Immunol, 179, 1595–1604.

    PubMed  CAS  Google Scholar 

  • Hong, K.M., Belperio, J.A., Keane, M.P., Burdick, M.D. & Strieter, R.M. (2007) Differentiation of human circulating fibrocytes as mediated by transforming growth factor-beta and peroxisome proliferator-activated receptor gamma. J Biol Chem, 282, 22910–22920.

    PubMed  CAS  Google Scholar 

  • Hung, S.C., Pochampally, R.R., Hsu, S.C., Sanchez, C., Chen, S.C., Spees, J. & Prockop, D.J. (2007) Short-term exposure of multipotent stromal cells to low oxygen increases their expression of CX3CR1 and CXCR4 and their engraftment in vivo. PLoS ONE, 2, e416.

    PubMed  Google Scholar 

  • Kumar, S. & Ponnazhagan, S. (2007) Bone homing of mesenchymal stem cells by ectopic alpha 4 integrin expression. FASEB J, 21, 3917–3927.

    PubMed  CAS  Google Scholar 

  • Le Blanc, K., Samuelsson, H., Lonnies, L., Sundin, M. & Ringden, O. (2007) Generation of immunosuppressive mesenchymal stem cells in allogeneic human serum. Transplantation, 84, 1055–1059.

    PubMed  Google Scholar 

  • Lengner, C.J., Camargo, F.D., Hochedlinger, K., Welstead, G.G., Zaidi, S., Gokhale, S., Scholer, H.R., Tomilin, A. & Jaenisch, R. (2007) Oct4 expression is not required for mouse somatic stem cell self-renewal. Cell Stem Cell, 1, 403–415.

    PubMed  CAS  Google Scholar 

  • Li, H., Fan, X., Kovi, R.C., Jo, Y., Moquin, B., Konz, R., Stoicov, C., Kurt-Jones, E., Grossman, S.R., Lyle, S., Rogers, A.B., Montrose, M. & Houghton, J. (2007) Spontaneous expression of embryonic factors and p53 point mutations in aged mesenchymal stem cells: a model of age-related tumorigenesis in mice. Cancer Res, 67, 10889–10898.

    PubMed  CAS  Google Scholar 

  • Ookura, N., Fujimori, Y., Nishioka, K., Kai, S., Hara, H. & Ogawa, H. (2007) Adipocyte differentiation of human marrow mesenchymal stem cells reduces the supporting capacity for hematopoietic progenitors but not for severe combined immunodeficiency repopulating cells. Int J Mol Med, 19, 387–392.

    PubMed  CAS  Google Scholar 

  • Sacchetti, B., Funari, A., Michienzi, S., Di Cesare, S., Piersanti, S., Saggio, I., Tagliafico, E., Ferrari, S., Robey, P.G., Riminucci, M. & Bianco, P. (2007) Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell, 131, 324–336.

    PubMed  CAS  Google Scholar 

  • Serafini, M., Dylla, S.J., Oki, M., Heremans, Y., Tolar, J., Jiang, Y., Buckley, S.M., Pelacho, B., Burns, T.C., Frommer, S., Rossi, D.J., Bryder, D., Panoskaltsis-Mortari, A., O’Shaughnessy, M.J., Nelson-Holte, M., Fine, G.C., Weissman, I.L., Blazar, B.R. & Verfaillie, C.M. (2007) Hematopoietic reconstitution by multipotent adult progenitor cells: precursors to long-term hematopoietic stem cells. J Exp Med, 204, 129–139.

    PubMed  CAS  Google Scholar 

  • Sudo, K., Kanno, M., Miharada, K., Ogawa, S., Hiroyama, T., Saijo, K. & Nakamura, Y. (2007) Mesenchymal progenitors able to differentiate into osteogenic, chondrogenic, and/or adipogenic cells in vitro are present in most primary fibroblast-like cell populations. Stem Cells, 25, 1610–1617.

    PubMed  CAS  Google Scholar 

  • Takashima, Y., Era, T., Nakao, K., Kondo, S., Kasuga, M., Smith, A.G. & Nishikawa, S. (2007) Neuroepithelial cells supply an initial transient wave of MSC differentiation. Cell, 129, 1377–1388.

    PubMed  CAS  Google Scholar 

  • Tolar, J., Nauta, A.J., Osborn, M.J., Panoskaltsis Mortari, A., McElmurry, R.T., Bell, S., Xia, L., Zhou, N., Riddle, M., Schroeder, T.M., Westendorf, J.J., McIvor, R.S., Hogendoorn, P.C., Szuhai, K., Oseth, L., Hirsch, B., Yant, S.R., Kay, M.A., Peister, A., Prockop, D.J., Fibbe, W.E. & Blazar, B.R. (2007) Sarcoma derived from cultured mesenchymal stem cells. Stem Cells, 25, 371–379.

    PubMed  CAS  Google Scholar 

  • Valina, C., Pinkernell, K., Song, Y.H., Bai, X., Sadat, S., Campeau, R.J., Le Jemtel, T.H. & Alt, E. (2007) Intracoronary administration of autologous adipose tissue-derived stem cells improves left ventricular function, perfusion, and remodelling after acute myocardial infarction. Eur Heart J, 28, 2667–2677.

    PubMed  Google Scholar 

  • Yamamoto, N., Akamatsu, H., Hasegawa, S., Yamada, T., Nakata, S., Ohkuma, M., Miyachi, E., Marunouchi, T. & Matsunaga, K. (2007) Isolation of multipotent stem cells from mouse adipose tissue. J Dermatol Sci, 48, 43–52.

    PubMed  CAS  Google Scholar 

  • Zhu, J., Garrett, R., Jung, Y., Zhang, Y., Kim, N., Wang, J., Joe, G.J., Hexner, E., Choi, Y., Taichman, R.S. & Emerson, S.G. (2007) Osteoblasts support B-lymphocyte commitment and differentiation from hematopoietic stem cells. Blood, 109, 3706–3712.

    PubMed  CAS  Google Scholar 

  • Caplan, A.I. (2008) All MSCs are pericytes? Cell Stem Cell, 3, 229–230.

    PubMed  CAS  Google Scholar 

  • Carraro, G., Perin, L., Sedrakyan, S., Giuliani, S., Tiozzo, C., Lee, J., Turcatel, G., De Langhe, S.P., Driscoll, B., Bellusci, S., Minoo, P., Atala, A., De Filippo, R.E. & Warburton, D. (2008) Human amniotic fluid stem cells can integrate and differentiate into epithelial lung lineages. Stem Cells, 26, 2902–2911.

    PubMed  CAS  Google Scholar 

  • Chamberlain, G., Wright, K., Rot, A., Ashton, B. & Middleton, J. (2008) Murine mesenchymal stem cells exhibit a restricted repertoire of functional chemokine receptors: comparison with human. PLoS ONE, 3, e2934.

    PubMed  Google Scholar 

  • Chen, C.P., Lee, M.Y., Huang, J.P., Aplin, J.D., Wu, Y.H., Hu, C.S., Chen, P.C., Li, H., Hwang, S.M., Liu, S.H. & Yang, Y.C. (2008) Trafficking of multipotent mesenchymal stromal cells from maternal circulation through the placenta involves vascular endothelial growth factor receptor-1 and integrins. Stem Cells, 26, 550–561.

    PubMed  CAS  Google Scholar 

  • Cheng, Z., Ou, L., Zhou, X., Li, F., Jia, X., Zhang, Y., Liu, X., Li, Y., Ward, C.A., Melo, L.G. & Kong, D. (2008) Targeted migration of mesenchymal stem cells modified with CXCR4 gene to infarcted myocardium improves cardiac performance. Mol Ther, 16, 571–579.

    PubMed  CAS  Google Scholar 

  • Corcoran, K.E., Trzaska, K.A., Fernandes, H., Bryan, M., Taborga, M., Srinivas, V., Packman, K., Patel, P.S. & Rameshwar, P. (2008) Mesenchymal stem cells in early entry of breast cancer into bone marrow. PLoS ONE, 3, e2563.

    PubMed  Google Scholar 

  • Crisan, M., Yap, S., Casteilla, L., Chen, C.W., Corselli, M., Park, T.S., Andriolo, G., Sun, B., Zheng, B., Zhang, L., Norotte, C., Teng, P.N., Traas, J., Schugar, R., Deasy, B.M., Badylak, S., Buhring, H.J., Giacobino, J.P., Lazzari, L., Huard, J. & Peault, B. (2008) A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell, 3, 301–313.

    PubMed  CAS  Google Scholar 

  • da Silva Meirelles, L., Caplan, A.I. & Nardi, N.B. (2008) In search of the in vivo identity of mesenchymal stem cells. Stem Cells, 26, 2287–2299.

    PubMed  Google Scholar 

  • Dominici, M., Marino, R., Rasini, V., Spano, C., Paolucci, P., Conte, P., Hofmann, T.J. & Horwitz, E.M. (2008) Donor cell-derived osteopoiesis originates from a self-renewing stem cell with a limited regenerative contribution after transplantation. Blood, 111, 4386–4391.

    PubMed  CAS  Google Scholar 

  • Eliopoulos, N., Francois, M., Boivin, M.N., Martineau, D. & Galipeau, J. (2008) Neo-organoid of marrow mesenchymal stromal cells secreting interleukin-12 for breast cancer therapy. Cancer Res, 68, 4810–4818.

    PubMed  CAS  Google Scholar 

  • Harting, M., Jimenez, F., Pati, S., Baumgartner, J. & Cox, C., Jr. (2008) Immunophenotype characterization of rat mesenchymal stromal cells. Cytotherapy, 10, 243–253.

    PubMed  CAS  Google Scholar 

  • Hikita, S.T., Kosik, K.S., Clegg, D.O. & Bamdad, C. (2008) MUC1* mediates the growth of human pluripotent stem cells. PLoS ONE, 3, e3312.

    PubMed  Google Scholar 

  • Koh, S.H., Noh, M.Y., Cho, G.W., Kim, K.S. & Kim, S.H. (2008) Erythropoietin increases the motility of human bone marrow multipotent stromal cells (hBM-MSCs) and enhances the production of neurotrophic factors from hBM-MSCs. Stem Cells Dev.

    Google Scholar 

  • Kucia, M., Wysoczynski, M., Ratajczak, J. & Ratajczak, M.Z. (2008) Identification of very small embryonic like (VSEL) stem cells in bone marrow. Cell Tissue Res, 331, 125–134.

    PubMed  CAS  Google Scholar 

  • Lee, R.H., Seo, M.J., Pulin, A.A., Gregory, C.A., Ylostalo, J. & Prockop, D.J. (2008) The CD34-like protein PODXL and {alpha}6-integrin (CD49f) identify early progenitor MSCs with increased clonogenicity and migration to infarcted heart in mice. Blood.

    Google Scholar 

  • Majd, H., Wipff, P.J., Buscemi, L., Bueno, M., Vonwil, D., Quinn, T.M. & Hinz, B. (2008) A novel method of dynamic culture surface expansion improves mesenchymal stem cell proliferation and phenotype. Stem Cells.

    Google Scholar 

  • Molchadsky, A., Shats, I., Goldfinger, N., Pevsner-Fischer, M., Olson, M., Rinon, A., Tzahor, E., Lozano, G., Zipori, D., Sarig, R. & Rotter, V. (2008) p53 plays a role in mesenchymal differentiation programs, in a cell fate dependent manner. PLoS ONE, 3, e3707.

    PubMed  Google Scholar 

  • Morad, V., Pevsner-Fischer, M., Barnees, S., Samokovlisky, A., Rousso-Noori, L., Rosenfeld, R. & Zipori, D. (2008) The myelopoietic supportive capacity of mesenchymal stromal cells is uncoupled from multipotency and is influenced by lineage determination and interference with glycosylation. Stem Cells, 26, 2275–2286.

    PubMed  CAS  Google Scholar 

  • Nasef, A., Mazurier, C., Bouchet, S., Francois, S., Chapel, A., Thierry, D., Gorin, N.C. & Fouillard, L. (2008) Leukemia inhibitory factor: Role in human mesenchymal stem cells mediated immunosuppression. Cell Immunol, 253, 16–22.

    PubMed  CAS  Google Scholar 

  • Ng, F., Boucher, S., Koh, S., Sastry, K.S., Chase, L., Lakshmipathy, U., Choong, C., Yang, Z., Vemuri, M.C., Rao, M.S. & Tanavde, V. (2008) PDGF, TGF-beta, and FGF signaling is important for differentiation and growth of mesenchymal stem cells (MSCs): transcriptional profiling can identify markers and signaling pathways important in differentiation of MSCs into adipogenic, chondrogenic, and osteogenic lineages. Blood, 112, 295–307.

    PubMed  CAS  Google Scholar 

  • Ratajczak, M.Z., Zuba-Surma, E.K., Machalinski, B., Ratajczak, J. & Kucia, M. (2008) Very small embryonic-like (VSEL) stem cells: purification from adult organs, characterization, and biological significance. Stem Cell Rev, 4, 89–99.

    PubMed  Google Scholar 

  • Rosova, I., Dao, M., Capoccia, B., Link, D. & Nolta, J.A. (2008) Hypoxic preconditioning results in increased motility and improved therapeutic potential of human mesenchymal stem cells. Stem Cells, 26, 2173–2182.

    PubMed  CAS  Google Scholar 

  • Sackstein, R., Merzaban, J.S., Cain, D.W., Dagia, N.M., Spencer, J.A., Lin, C.P. & Wohlgemuth, R. (2008) Ex vivo glycan engineering of CD44 programs human multipotent mesenchymal stromal cell trafficking to bone. Nat Med, 14, 181–187.

    PubMed  CAS  Google Scholar 

  • Sasaki, M., Abe, R., Fujita, Y., Ando, S., Inokuma, D. & Shimizu, H. (2008) Mesenchymal stem cells are recruited into wounded skin and contribute to wound repair by transdifferentiation into multiple skin cell type. J Immunol, 180, 2581–2587.

    PubMed  CAS  Google Scholar 

  • Secchiero, P., Melloni, E., Corallini, F., Beltrami, A.P., Alviano, F., Milani, D., D’Aurizio, F., di Iasio, M.G., Cesselli, D., Bagnara, G.P. & Zauli, G. (2008) Tumor necrosis factor-related apoptosis-inducing ligand promotes migration of human bone marrow multipotent stromal cells. Stem Cells, 26, 2955–2963.

    PubMed  CAS  Google Scholar 

  • Tay, Y., Zhang, J., Thomson, A.M., Lim, B. & Rigoutsos, I. (2008) MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation. Nature, 455, 1124–1128.

    PubMed  CAS  Google Scholar 

  • Wagner, W., Horn, P., Castoldi, M., Diehlmann, A., Bork, S., Saffrich, R., Benes, V., Blake, J., Pfister, S., Eckstein, V. & Ho, A.D. (2008) Replicative senescence of mesenchymal stem cells: a continuous and organized process. PLoS ONE, 3, e2213.

    PubMed  Google Scholar 

  • Wang, X.Y., Lan, Y., He, W.Y., Zhang, L., Yao, H.Y., Hou, C.M., Tong, Y., Liu, Y.L., Yang, G., Liu, X.D., Yang, X., Liu, B. & Mao, N. (2008) Identification of mesenchymal stem cells in aorta-gonad-mesonephros and yolk sac of human embryos. Blood, 111, 2436–2443.

    PubMed  CAS  Google Scholar 

  • Xu, R.H., Sampsell-Barron, T.L., Gu, F., Root, S., Peck, R.M., Pan, G., Yu, J., Antosiewicz-Bourget, J., Tian, S., Stewart, R. & Thomson, J.A. (2008) NANOG is a direct target of TGFbeta/activin-mediated SMAD signaling in human ESCs. Cell Stem Cell, 3, 196–206.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dov Zipori .

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Zipori, D. (2009). Stem Cells with No Tissue Specificity. In: Biology of Stem Cells and the Molecular Basis of the Stem State. Stem Cell Biology and Regenerative Medicine. Humana Press. https://doi.org/10.1007/978-1-60761-130-1_3

Download citation

Publish with us

Policies and ethics