Skip to main content

Cerebral Small Vessel Disease, Hypertension, and Cognitive Function

  • Chapter
  • First Online:
  • 2302 Accesses

Part of the book series: Clinical Hypertension and Vascular Diseases ((CHVD))

Abstract

Vascular cognitive impairment (VCI) is a heterogeneous condition arising from a variety of neurovascular pathology, including large vessel ischemic infarction, hemorrhage, and the combination of cerebrovascular and Alzheimer’s pathology (1). However, VCI is primarily associated with subcortical gray and white matter pathology arising from small vessel disease. Hypertension is a major factor in the development of small vessel disease. In this chapter, we will focus on linkages between hypertension, small vessel disease, cognitive decline, and dementia.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. O’Brien J. Vascular cognitive impairment. Am J Geriatr Psychiatry. 2006;14:724–33.

    Article  PubMed  Google Scholar 

  2. Bouras C, Kövari E, Herrmann F, et al. Stereologic analysis of microvascular morphology in the elderly: alzheimer disease pathology and cognitive status. J Neuropathol Exp Neurol. 2006;65:235–44.

    PubMed  Google Scholar 

  3. Wardlaw J. What causes lacunar stroke? J Neurol Neurosurg Psychiatry. 2005;76:617–9.

    Article  CAS  PubMed  Google Scholar 

  4. Palatini P, Julius S. The role of cardiac autonomic function in hypertension and cardiovascular disease. Curr Hypertens Rep. 2009;11(3):199–205.

    Article  PubMed  Google Scholar 

  5. Brun A. Pathology and pathophysiology of cerebrovascular dementia: pure subgroups of obstructive and hypoperfusive etiology. Dementia. 1994;5:145–7.

    CAS  PubMed  Google Scholar 

  6. Garcia J, Lassen N, Weiller C, et al. Ischemic stroke and incomplete infarction. Stroke. 1996;27:761–5.

    CAS  PubMed  Google Scholar 

  7. Englund E. Neuropathology of white matter lesions in vascular cognitive impairment. Cerebrovasc Dis. 2002;Suppl 2:11–5.

    Article  Google Scholar 

  8. Jellinger K. The enigma of vascular cognitive disorder and vascular dementia. Acta Neuropathol. 2007;446:348–88.

    Google Scholar 

  9. Chui H. Subcortical ischemic vascular dementia. Neurol Clin. 2007;25:717–40.

    Article  PubMed  Google Scholar 

  10. Roman G, Tatemichi TK, Erkinijutti T, et al. Vascular dementia: diagnostic criteria for research studies. Report of the NINDSD-AIREN International Workshop. Neurology. 1993;43:250–60.

    CAS  PubMed  Google Scholar 

  11. Pantoni L, Garcia JH. The significance of cerebral white matter abnormalities 100 years after Binswanger’s report. A review. Stroke. 1995;26:1293–301.

    CAS  PubMed  Google Scholar 

  12. deLeeuw F, de Groot, J, Oudkerk M, et al. Hyptertension and cerebral white matter lesions in a prospective cohort study. Brain. 2002;125:765–72.

    Article  Google Scholar 

  13. Longstreth W, et al. Clinical correlates of white matter findings on cranial magnetic resonance imaging of 3301 elderly people: the cardiovascular health study. Stroke. 1996;27:1274–82.

    PubMed  Google Scholar 

  14. Skoog I, Lithell H, Hansson L, et al. Effect of baseline cognitive function and antihypertensive treatment on cognitive and cardiovascular outcomes: study on cognition and prognosis in the elderly (SCOPE). Am J Hypertens. 2005;18:1052–9.

    Article  CAS  PubMed  Google Scholar 

  15. DeGroot J, de Leeuw F, Oudkerk M, et al. Periventricular cerebral white matter lesions predict rate of cognitive decline. Ann Neurol. 2002;52:335–41.

    Article  Google Scholar 

  16. Birns J, Kalra L. Cognitive function and hypertension. J Hum Hypertens. 2009;23:86–96.

    Article  CAS  PubMed  Google Scholar 

  17. Gouw A, Van der Flier W, van Straaten E, et al. Simple versus complex assessment of white matter hyperintensities in relation to physical performance and cognition: the LADIS study. J Neurol. 2006;253:1189–96.

    Article  CAS  PubMed  Google Scholar 

  18. Nyenhuis D, Gorelick PB, Geenen EJ, et al. The pattern of neuropsychological deficits in vascular cognitive impairment-no dementia (Vascular CIND). Clin Neuropsychol. 2004;18:41–9.

    Article  PubMed  Google Scholar 

  19. Cherubini A, Lowenthal D, Paran E, et al. Hypertension and cognitive function in the elderly. Am J Psychother 2007;14:533–54.

    Google Scholar 

  20. Reed B, Mungas DM, Kramer JH, et al. Profiles of neuropsychological impairment in autopsy-defined Alzheimer’s disease and cerebrovascular disease. Brain. 2007;130:731–9.

    Article  PubMed  Google Scholar 

  21. Selden N, Gitelman DR, Salamon-Murayama N, et al. Trajectories of cholinergic pathways within the cerebral hemispheres of the human brain. Brain. 1998;121:2249–57.

    Article  PubMed  Google Scholar 

  22. Oosterman J, Vogels R, van Harten B, et al. The role of white matter hyperintensities and medial temporal lobe atrophy in age-related executive dysfunctioning. Brain Cogn. 2008;68:128–33.

    Article  PubMed  Google Scholar 

  23. Prins N, van Dijk EJ, den Heijer T, et al. Cerebral white matter lesions and the risk of dementia. Arch Neurol. 2004;61:1531–4.

    Article  PubMed  Google Scholar 

  24. Debette S, Bombois E, Bruandet A, et al. Subcortical hyperintensities are associated with cognitive decline in patients with mild cognitive impairment. Stroke. 2007;38:2924–30.

    Article  PubMed  Google Scholar 

  25. Bombois S, Debette S, Delbeuck X, et al. Prevalence of subcortical vascular lesions and association with executive function in mild cognitive impairment subtypes. Stroke. 2007;38:2595–7.

    Article  PubMed  Google Scholar 

  26. Prins N, van Dijk EJ, de Heijer T, et al. Cerebral small-vessel disease and decline in information processing speed, executive function and memory. Brain. 2005;128:2034–41.

    Article  PubMed  Google Scholar 

  27. DeCarli C, Fletcher E, Ramey V, et al. Anatomical mapping of white matter hyperintensities (WMH): exploring the relationships between periventricular WMH, deep WMH, and total WMH burden. Stroke. 2005;36:50–5.

    Article  PubMed  Google Scholar 

  28. Au R, et al. Association of white matter hyperintensity volume with decreased cognitive functioning. The framingham heart study. Arch Neurol. 2006;63:246–50.

    Article  PubMed  Google Scholar 

  29. Libon D, et al. Linking MRI hyperintensities with patterns of neuropsychological impairment. Evidence of a threshold effect. Stroke. 2008;39:806–13.

    Article  PubMed  Google Scholar 

  30. Wright C, et al. White matter hyperintensities and subclinical infarction. Associations with psychomotor speed and cognitive flexibility. Stroke. 2008;39:800–5.

    Article  PubMed  Google Scholar 

  31. Dai W, Lopez O, Carmichael O, et al. Abnormal regional blood flow in cognitively normal elderly subjects with hypertension. Stroke. 2008;39:349–54.

    Article  PubMed  Google Scholar 

  32. Cummings J. Frontal subcortical circuits and human behavior. Arch Neurol. 1993;50:873–80.

    CAS  PubMed  Google Scholar 

  33. Su C, Chen HM, Kwan AL, et al. Neuropsychological impairment after hemorrhagic stroke in basal ganglia. Arch Clin Neuropsychol. 2007;22:465–74.

    Article  PubMed  Google Scholar 

  34. Ring H, Serra-Mestres J. Neuropsychiatry of the basal ganglia. J Neurol Neurosurg Psychiatry. 2001;72:12–21.

    Article  Google Scholar 

  35. Ho B, Andreasen N, Nopoulos P, et al. Progressive structural brains abnormalities and their relationship to clinical outcome. A longitudinal magnetic resonance imaging study in early schizophrenia. Arch Gen Psychiatry. 2003;60:585–594.

    Article  PubMed  Google Scholar 

  36. Bodkin J, Cohen B, Salomon M, et al. Treatment of negative symptoms in schizophrenia and schizoaffective disorders by selegiline augmentation of antipsychotic medication: a pilot study examining the role of dopamine. J Nerv Ment Dis. 1996;184:295–301.

    Article  CAS  PubMed  Google Scholar 

  37. Ongur D, Price J. The organization of networks within the orbital frontal and medial prefrontal cortex in rats, monkeys and humans. Cerebral Cortex. 2000;10:206–219.

    Article  CAS  PubMed  Google Scholar 

  38. Duffy J, Campbell J. The regional prefrontal syndromes: a theoretical and clinical overview. J Neuropsychiatry Clin Neurosci. 1994;6:379–387.

    CAS  PubMed  Google Scholar 

  39. Carmichael S, Price J. Limbic connections of the orbital and medial prefrontal cortex in macaque monkeys. J Comp Neurol. 1995;363:615–641.

    Article  CAS  PubMed  Google Scholar 

  40. Burruss J, Hurley R, Taber K, et al. Functional neuroanatomy of the frontal lobe circuits. Radiology. 2000;214:227–230.

    CAS  PubMed  Google Scholar 

  41. Graybiel A. The basal ganglia and cognitive pattern generators. Schizophr Bull. 1997;23(3):459–469.

    CAS  PubMed  Google Scholar 

  42. Postle B, D’Esposito M. Dissociation of human caudate nucleus activity in spatial and nonspatial working memory: an event-related fMRI study. Cogn Brain Res. 1999;8:107–115.

    Article  CAS  Google Scholar 

  43. Lewis S, Cools R, Robbins T, et al. Using executive heterogeneity to explore the nature of working memory deficits in Parkinson’s disease. Neuropsychologia. 2003;41:645–654.

    Article  PubMed  Google Scholar 

  44. Cohen J, Forman S, Braver T, et al. Activation of the prefrontal cortex in a nonspatial working memory task with functional MRI. Hum Brain Mapp. 1994;1:293–304.

    Article  Google Scholar 

  45. Schroeder U, Kuehler A, Haslinger B, et al. Subthalamic nucleus stimulation affects striato-anterior cingulate cortex in a response conflict task: a PET study. Brain. 2002;125:1995–2004.

    Article  CAS  PubMed  Google Scholar 

  46. Seidenberg M, Hermann B, Pulsipher D, et al. Thalamic atrophy and cognition in unilateral temporal lobe epilepsy. J Int Neuropsychol Soc. 2008;14(3):384–393.

    Article  PubMed  Google Scholar 

  47. Rees G. Visual attention: the thalamus at the centre? Curr Biol. 2009;19(5):213–4.

    Article  Google Scholar 

  48. De Witte L, Verhoeven J, Engelborghs S, et al. Crossed aphasia and visuo-spatial neglect following a right thalamic stroke: a case study and review of the literature. Behav Neurol. 2008;19:177–94.

    PubMed  Google Scholar 

  49. Stuss D, Gubermann A, Nelson R, et al. The neuropsychology of paramedian thalamic infarction. Brain Cogn. 1988;8:348–78.

    Article  CAS  PubMed  Google Scholar 

  50. Carrera E, Bogousslavsky J. The thalamus and behavior: effects of anatomically distinct strokes. Neurology. 2006;66:1817–23.

    Article  PubMed  Google Scholar 

  51. Carrera E, Michel P, Bogousslavsky J. Anteromedian, central, and posterolateral infarcts of the thalamus: three variant types. Stroke. 2004;35:2826–31.

    Article  PubMed  Google Scholar 

  52. Chen Y, Chen X, Mok V, et al. Poststroke depression in patients with small subcortical infarcts. Clin Neurol Neurosurg. 2009;111:256–60.

    Article  PubMed  Google Scholar 

  53. Lyness J, Caine E, Cox C, et al. Cerebrovascular risk factors and later-life major depression. Testing a small-vessel brain disease model. Am J Geriatr Psychiatry. 1998;6:5–13.

    CAS  PubMed  Google Scholar 

  54. Luijendijk H, Stricker B, Hofman A, et al. Cerebrovascular risk factors and incident depression in community-dwelling elderly. Acta Psychiatr Scand. 2008;118:139–48.

    Article  CAS  PubMed  Google Scholar 

  55. O’Brien J, Firbank M, Krishnan M, et al. LADIS Group., White matter hyperintensities rather than lacunar infarcts are associated with depressive symptoms in older people: the LADIS study. Am J Geriatric Psychiatry. 2006;14:834–41.

    Article  Google Scholar 

  56. Levy M, Cummings J, Fairbanks L, et al. Apathy is not depression. J Neuropsychiatry Clin Neurosci. 1998;10:314–9.

    CAS  PubMed  Google Scholar 

  57. NHANES. www.cdc.gov/nchs/fastats/hyprtens.htm. Accessed February 2009

  58. Dufouil C, de Kersaint-Gilly A, Besancon V, et al. Longitudinal study of blood pressure and white matter hyperintensities: the EVA-MRI cohort. Neurology. 2001;56:921–6.

    CAS  PubMed  Google Scholar 

  59. Qiu C, Winblad B, Fratiglioni L. The age-dependent relation of blood pressure to cognitive function and dementia. Lancet Neurol. 2005;4:487–99.

    Article  PubMed  Google Scholar 

  60. Stewart R, Richards M, Brayne C, et al. Vascular risk and cognitive impairment in an older, British, African-Caribbean population. J Am Geriatr Soc. 2001;48:263–9.

    Article  Google Scholar 

  61. Harrington F, Saxby B, McKeith I, et al. Cognitive performance in hypertensive and normotensive older subjects. Hypertension. 2000;36:1079–82.

    CAS  PubMed  Google Scholar 

  62. Budge M, de Jager C, Hogervorst E, et al. Oxford project to investigate memory and ageing (OPTIMA). Total plasma homocysteine, age, systolic blood pressure, and cognitive performance in older people. J Am Geriatr Soc. 2002;50:2014–18.

    Article  PubMed  Google Scholar 

  63. Andre-Petersson L, Hagberg B, Janzon L, et al. A comparison of cognitive ability in normotensive and hypertensive 68-year-old men; Results from population study ‘men born in 1914,’ in Malmo, Sweden. Exp Ageing Res. 2001;27:319–40.

    Article  CAS  Google Scholar 

  64. Paran E, Anson O, Reuveni H. Blood pressure and cognitive functioning among independent elderly. Am J Hypertens. 2003;16(10):818–26.

    Article  PubMed  Google Scholar 

  65. Morris M, Scherr P, Hebert L, et al. Association between blood pressure and cognitive function in a biracial community population of older persons. Neuroepidemiology. 2002;21:123–30.

    Article  PubMed  Google Scholar 

  66. Waldstein S, Giggey PP, Thayer JF, et al. Nonlinear relations of blood pressure to cognitive function. The baltimore longitudinal aging study. Hypertension. 2005;45:374–9.

    Article  CAS  PubMed  Google Scholar 

  67. Scherr P, Hebert LE, Smith LA, et al. Relation of blood pressure to cognitive function in the elderly. Am J Epidemiol. 1991;134:1303–15.

    CAS  PubMed  Google Scholar 

  68. Elias M, Robbins M, Schultz N Jr, et al. Is blood pressure an important variable in research on aging and neuropsychological test performance? J Gerontol. 1990;45:128–35.

    Google Scholar 

  69. Van Boxtel M, Gaillard C, Houx PJ, et al. Can the blood pressure predict task performance in a healthy population. J Hypertens. 1997;15:1069–76.

    Article  PubMed  Google Scholar 

  70. Kuo H, Sorond F, Iloputaife I, et al. Effect of blood pressure on cognitive functions in elderly persons. J Gerontol A Biol Sci Med Sci. 2004;59:1191–94.

    PubMed  Google Scholar 

  71. Cerhan J, Folsom A, Mortimer J, et al. Correlates of cognitive function in middle-aged adults. Atherosclerosis risk in communities (ARIC) study investigators. Gerontology. 1998;44:94–105.

    Article  Google Scholar 

  72. Izquierdo-Porrera A, Waldstein S. Cardiovascular risk factors and cognitive function in African Americans. J Gerontol B Psychol Scie Soc Sci. 2002;57:P377–80.

    Google Scholar 

  73. Farmer M, White L, Abbott R, et al. Blood pressure and cognitive performance. The framingham study. Am J Epidemiol. 1987;126(6):1103–14.

    CAS  PubMed  Google Scholar 

  74. Desmond D, Tatemichi T, Paik M, et al. Risk factors for cerebrovascular disease as correlates of cognitive function in a stroke-free cohort. Arch Neurol. 1993;50:162–6.

    CAS  PubMed  Google Scholar 

  75. Swan G, Carmelli D, Larue A. Systolic blood pressure tracking over 25 to 30 years and cognitive performance in older adults. Stroke. 1998;29:2334–40.

    CAS  PubMed  Google Scholar 

  76. Kilander L, Nyman H, Boberg M, et al. Hypertension is related to cognitive impairment: a 20-year follow-up of 999 men. Hypertension. 1998;31:780–6.

    CAS  PubMed  Google Scholar 

  77. Knopman D, Boland L, Mosley T, et al. Cardiovascular risk factors and cognitive decline in middle-aged adults. Neurology. 2001;56:42–8.

    CAS  PubMed  Google Scholar 

  78. Peila R, White LR, Masaki K, et al. Reducing the risk of dementia: efficacy of long-term treatment of hypertension. Stroke. 2006;37:1165–71.

    Article  PubMed  Google Scholar 

  79. Murray M, Lane KA, Gao S, et al. Preservation of cognitive function with antihypertensive medications: a longitudinal analysis of a community-based sample of African-Americans. Arch Intern Med. 2002;162:2090–6.

    Article  PubMed  Google Scholar 

  80. Forette F, Seux M, Staessen J, et al. The prevention of dementia with antihypertensive treatment: new evidence from the systolic hypertension in Europe (Syst-Eur) study. Arch Intern Med. 2002;162:2046–52.

    Article  PubMed  Google Scholar 

  81. Tzurio C, Anderson C, Chapman N, et al. Effects of blood pressure lowering with perindopril and indapamide therapy on dementia and cognitive decline in patients with cerebrovascular disease. Arch Inter Med. 2003;163:1069–75.

    Article  Google Scholar 

  82. Dufouil C, et al. Effects of blood pressure lowering on cerebral white matter hyperintensities in patients with stroke. The progress (Perindopril Protection Against Recurrent Stroke Study) magnetic resonance imaging substudy. Circulation. 2005;112:1644–50.

    Article  PubMed  Google Scholar 

  83. Di Bari M, Pahor M, Franse L, et al. Dementia and disability outcomes in large hypertension trials: lessons learned from the systolic hypertension in the elderly program (SHEP) trial. Am J of Epidemiology. 2001;153:72–8.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth K. Geary PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Geary, E.K., Nyenhuis, D.L. (2011). Cerebral Small Vessel Disease, Hypertension, and Cognitive Function. In: Aiyagari, V., Gorelick, P. (eds) Hypertension and Stroke. Clinical Hypertension and Vascular Diseases. Humana Press. https://doi.org/10.1007/978-1-60761-010-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-010-6_13

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-009-0

  • Online ISBN: 978-1-60761-010-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics