Skip to main content

Using Decision Analysis to Model Cancer Surveillance

  • Chapter
  • First Online:
Patient Surveillance After Cancer Treatment

Part of the book series: Current Clinical Oncology ((CCO))

  • 242 Accesses

Abstract

Cancer management includes surveillance of patients after treatment. Such programs become increasingly important since chances of survival after cancer treatment and, thus, disease-free survival rates are continuing to increase. Surveillance programs are also time-consuming and, in addition, a very expensive component of clinical activity since frequent testing is often involved. The choice of a surveillance program is complex and should ideally consider aspects of survival, quality of life, the burden of surveillance tests, and financial costs. As for all clinical decisions, the choice involves a condition of uncertainty. This uncertainty originates from relationships between diagnostic information and the presence of disease, uncertainty about the effects of early treatment, and ambiguity in clinical information [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Weinstein M, Fineberg H. Clinical decision analysis. Philadelphia: Saunders; 1980.

    Google Scholar 

  2. Brada M. Is there a need to follow-up cancer patients? Eur J Cancer. 1995;31A:655–7.

    Article  PubMed  CAS  Google Scholar 

  3. Dewar JA, Kerr GR. Value of routine follow up of women treated for early carcinoma of the breast. Br Med J (Clin Res Ed). 1985;291:1464–7.

    Article  CAS  Google Scholar 

  4. Roselli Del Turco M, Palli D, Cariddi A, Ciatto S, Pacini P, Distante V. The efficacy of intensive follow-up testing in breast cancer cases. Ann Oncol. 1995;6 Suppl 2:37–9.

    Article  PubMed  Google Scholar 

  5. Rustin GJS, van der Burg MEL, Griffin CL, et al. Early versus delayed treatment of relapsed ovarian cancer (MRC OV05/EORTC 55955): a randomised trial. Lancet. 2010;376:1155–63.

    Article  PubMed  Google Scholar 

  6. Joseph E, Hyacinthe M, Lyman GH, et al. Evaluation of an intensive strategy for follow-up and surveillance of primary breast cancer. Ann Surg Oncol. 1998;5:522–8.

    Article  PubMed  CAS  Google Scholar 

  7. Warde P, Specht L, Horwich A, et al. Prognostic factors for relapse in stage I seminoma managed by surveillance: a pooled analysis. J Clin Oncol. 2002;20:4448–52.

    Article  PubMed  Google Scholar 

  8. Steyerberg EW. Clinical prediction models, a practical approach to development, validation, and updating. New York, NY: Springer; 2009.

    Google Scholar 

  9. Borie F, Combescure C, Daures JP, Tretarre B, Millat B. Cost-effectiveness of two follow-up strategies for curative resection of colorectal cancer: comparative study using a Markov model. World J Surg. 2004;28:563–9.

    PubMed  Google Scholar 

  10. Kievit J, van de Velde CJ. Utility and cost of carcinoembryonic antigen monitoring in colon cancer follow-up evaluation. A Markov analysis. Cancer. 1990;65:2580–2.

    Article  PubMed  CAS  Google Scholar 

  11. Michel P, Merle V, Chiron A, et al. Postoperative management of stage II/III colon cancer: a decision analysis. Gastroenterology. 1999;117:784–93.

    Article  PubMed  CAS  Google Scholar 

  12. Park KC, Schwimmer J, Shepherd JE, et al. Decision analysis for the cost-effective management of recurrent colorectal cancer. Ann Surg. 2001;233:310–9.

    Article  PubMed  CAS  Google Scholar 

  13. Park SM, Kim SY, Earle CC, Jeong SY, Yun YH. What is the most cost-effective strategy to screen for second primary colorectal cancers in male cancer survivors in Korea? World J Gastroenterol. 2009;15:3153–60.

    Article  PubMed  Google Scholar 

  14. Hassan C, Pickhardt PJ, Zullo A, et al. Cost-effectiveness of early colonoscopy surveillance after cancer resection. Dig Liver Dis. 2009;41:881–5.

    Article  PubMed  CAS  Google Scholar 

  15. de Bekker-Grob EW, van der Aa MNM, Zwarthoff EC, et al. Non-muscle invasive bladder cancer surveillance in which cystoscopy is partly replaced by microsatellite analysis on urine: a cost-effective alternative? (CEFUB-trial). BJU Int. 2009;104:41–7.

    Article  PubMed  Google Scholar 

  16. Lachaine J, Valiquette L, Crott R. Economic evaluation of NMP22 in the management of bladder cancer. Can J Urol. 2000;7:974–80.

    PubMed  CAS  Google Scholar 

  17. Lotan Y, Roehrborn CG. Cost-effectiveness of a modified care protocol substituting bladder tumor markers for cystoscopy for the followup of patients with transitional cell carcinoma of the bladder: a decision analytical approach. J Urol. 2002;167:75–9.

    Article  PubMed  Google Scholar 

  18. Nam RK, Redelmeier DA, Spiess PE, Sampson HA, Fradet Y, Jewett MA. Comparison of molecular and conventional strategies for followup of superficial bladder cancer using decision analysis. J Urol. 2000;163:752–7.

    Article  PubMed  CAS  Google Scholar 

  19. Munro AJ, Warde PR. The use of a Markov process to simulate and assess follow-up policies for patients with malignant disease: surveillance for stage I nonseminomatous tumors of the testis. Med Decis Making. 1991;11:131–9.

    Article  PubMed  CAS  Google Scholar 

  20. Spermon JR, Hoffmann AL, Horenblas S, Verbeek AL, Witjes JA, Kiemeney LA. The efficacy of different follow-up strategies in clinical stage I non-seminomatous germ cell cancer: a Markov simulation study. Eur Urol. 2005;48:258–67; discussion 67–8.

    Google Scholar 

  21. Stiggelbout AM, Kiebert GM, de Haes JC, et al. Surveillance versus adjuvant chemotherapy in stage I non-seminomatous testicular cancer: a decision analysis. Eur J Cancer. 1996;32A:2267–74.

    Article  PubMed  CAS  Google Scholar 

  22. Hayman JA, Hillner BE, Harris JR, Weeks JC. Cost-effectiveness of routine radiation therapy following conservative surgery for early-stage breast cancer. J Clin Oncol. 1998;16:1022–9.

    PubMed  CAS  Google Scholar 

  23. Jacobs HJ, van Dijck JA, de Kleijn EM, Kiemeney LA, Verbeek AL. Routine follow-up examinations in breast cancer patients have minimal impact on life expectancy: a simulation study. Ann Oncol. 2001;12:1107–13.

    Article  PubMed  CAS  Google Scholar 

  24. Lee JH, Glick HA, Hayman JA, Solin LJ. Decision-analytic model and cost-effectiveness evaluation of postmastectomy radiation therapy in high-risk premenopausal breast cancer patients. J Clin Oncol. 2002;20:2713–25.

    Article  PubMed  Google Scholar 

  25. Das P, Ng AK, Earle CC, Mauch PM, Kuntz KM. Computed tomography screening for lung cancer in Hodgkin’s lymphoma survivors: decision analysis and cost-effectiveness analysis. Ann Oncol. 2006;17:785–93.

    Article  PubMed  CAS  Google Scholar 

  26. Guadagnolo BA, Punglia RS, Kuntz KM, Mauch PM, Ng AK. Cost-effectiveness analysis of computerized tomography in the routine follow-up of patients after primary treatment for Hodgkin’s disease. J Clin Oncol. 2006;24:4116–22.

    Article  PubMed  Google Scholar 

  27. Hengge UR, Wallerand A, Stutzki A, Kockel N. Cost-effectiveness of reduced follow-up in malignant melanoma. J Dtsch Dermatol Ges. 2007;5:898–907.

    Article  PubMed  Google Scholar 

  28. Krug B, Crott R, Roch I, et al. Cost-effectiveness analysis of FDG PET-CT in the management of pulmonary metastases from malignant melanoma. Acta Oncol. 2010;49:192–200.

    Article  PubMed  Google Scholar 

  29. Kent MS, Korn P, Port JL, Lee PC, Altorki NK, Korst RJ. Cost effectiveness of chest computed tomography after lung cancer resection: a decision analysis model. Ann Thorac Surg. 2005;80:1215–22; discussion 1222–3.

    Google Scholar 

  30. van Loon J, Grutters JP, Wanders R, et al. 18FDG-PET-CT in the follow-up of non-small cell lung cancer patients after radical radiotherapy with or without chemotherapy: an economic evaluation. Eur J Cancer. 2010;46:110–9.

    Article  PubMed  Google Scholar 

  31. Ritoe SC, de Vegt F, Scheike IM, et al. Effect of routine follow-up after treatment for laryngeal cancer on life expectancy and mortality: results of a Markov model analysis. Cancer. 2007;109:239–47.

    Article  PubMed  Google Scholar 

  32. Hopkins ML, Coyle D, Le T, Fung MF, Wells G. Cancer antigen 125 in ovarian cancer surveillance: a decision analysis model. Curr Oncol. 2007;14:167–72.

    Article  PubMed  CAS  Google Scholar 

  33. Habbema JD, Bossuyt PM, Dippel DW, Marshall S, Hilden J. Analysing clinical decision analyses. Stat Med. 1990;9:1229–42.

    Article  PubMed  CAS  Google Scholar 

  34. Hunink M, Glasziou P. Decision making in health and medicine: integrating evidence and values. Cambridge, UK: Cambridge University Press; 2001.

    Google Scholar 

  35. Elkin EB, Vickers AJ, Kattan MW. Primer: using decision analysis to improve clinical decision making in urology. Nat Clin Pract Urol. 2006;3:439–48.

    Article  PubMed  Google Scholar 

  36. Torrance GW. Utility approach to measuring health-related quality of life. J Chronic Dis. 1987;40:593–603.

    Article  PubMed  CAS  Google Scholar 

  37. Ware Jr JE, Sherbourne CD. The MOS 36-item short-form health survey (SF-36). I. Conceptual framework and item selection. Med Care. 1992;30:473–83.

    Article  PubMed  Google Scholar 

  38. EuroQol-a new facility for the measurement of health-related quality of life. The EuroQol Group. Health Policy. 1990;16:199–208.

    Google Scholar 

  39. Feeny D, Furlong W, Boyle M, Torrance GW. Multi-attribute health status classification systems. Health utilities index. Pharmacoeconomics. 1995;7:490–502.

    Article  PubMed  CAS  Google Scholar 

  40. Gold M, Siegel J, Russell L, Weinstein M. Cost-effectiveness in health and medicine. New York, NY: Oxford University Press; 1996.

    Google Scholar 

  41. Pauker SG, Kassirer JP. Therapeutic decision making: a cost-benefit analysis. N Engl J Med. 1975;293:229–34.

    Article  PubMed  CAS  Google Scholar 

  42. Sonnenberg FA, Beck JR. Markov models in medical decision making: a practical guide. Med Decis Making. 1993;13:322–38.

    Article  PubMed  CAS  Google Scholar 

  43. Beck JR, Pauker SG. The Markov process in medical prognosis. Med Decis Making. 1983;3:419–58.

    Article  PubMed  CAS  Google Scholar 

  44. Aebi S, Castiglione M, Group EGW. Newly and relapsed epithelial ovarian carcinoma: ESMO clinical recommendations for diagnosis, treatment and follow-up. Ann Oncol. 2009;20 Suppl 4:21–3.

    PubMed  Google Scholar 

  45. Iagaru AH, Mittra ES, McDougall IR, Quon A, Gambhir SS. 18F-FDG PET/CT evaluation of patients with ovarian carcinoma. Nucl Med Commun. 2008;29:1046–51.

    Article  PubMed  Google Scholar 

  46. Greuter MJ, Jansen-van der Weide MC, Jacobi CE, et al. The validation of a simulation model incorporating radiation risk for mammography breast cancer screening in women with a hereditary-increased breast cancer risk. Eur J Cancer. 2010;46:495–504.

    Article  PubMed  Google Scholar 

  47. Heintz AP, Odicino F, Maisonneuve P, et al. Carcinoma of the ovary. FIGO 6th annual report on the results of treatment in gynecological cancer. Int J Gynaecol Obstet. 2006;95 Suppl 1:S161–92.

    Article  PubMed  Google Scholar 

  48. Rustin GJ, Nelstrop AE, Tuxen MK, Lambert HE. Defining progression of ovarian carcinoma during follow-up according to CA 125: a North Thames ovary group study. Ann Oncol. 1996;7:361–4.

    Article  PubMed  CAS  Google Scholar 

  49. Health Council of the Netherlands. Follow-up in oncology. Identify objectives, substantiate actions. The Hague: Health Council of the Netherlands; 2007.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ewout W. Steyerberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Humana Press

About this chapter

Cite this chapter

van Kessel, K.E.M., Geurts, S.M.E., Verbeek, A.L.M., Steyerberg, E.W. (2013). Using Decision Analysis to Model Cancer Surveillance. In: Johnson, F., et al. Patient Surveillance After Cancer Treatment. Current Clinical Oncology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-969-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-969-7_3

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60327-968-0

  • Online ISBN: 978-1-60327-969-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics