Skip to main content

Modeling Human Breast Cancer

The Use of Transgenic Mice

  • Chapter
  • First Online:
Book cover Breast Cancer in the Post-Genomic Era

Part of the book series: Current Clinical Oncology ((CCO))

  • 557 Accesses

Summary

The advances in genomic technologies have made it possible to examine the effects of altered gene expression in the context of specific cellular compartments within the whole organism. As such, transgenic mice have proven to be an invaluable tool to investigate genes involved in many human diseases, including genes implicated in the induction and progression of breast cancer. Human breast cancer is heterogeneous and no single mouse model recapitulates all aspects of the disease. In this regard, various mouse models are necessary to investigate specific characteristics of human breast cancer. In this chapter, we discuss various transgenic mouse strains that have been developed for the purpose of modeling breast cancer and will address their relevance to observations made in human breast tumors.

Breast cancer is the most commonly diagnosed form of cancer and it is estimated that one in eight women will develop breast cancer in her lifetime. Once initiated, cancer progresses as a result of an accumulation of genetic abnormalities within cells, the most frequently observed lesions of which can be divided into two categories: (a) DNA amplification and/or overexpression of genes responsible for the generation of proliferative and survival signals, and (b) loss of heterozygosity (LOH), in genes involved in preventing unrestrained cell growth.

Genetically modified animals generated by transgenic and gene-targeting knockout technology have contributed immensely to our understanding of gene function and regulation at the molecular level in the context of the whole organism. Since the first transgenic mouse model describing mammary tumors in 1984 (1), a wealth of transgenic mice for modeling breast cancer have been reported. Transgenic models encompassing a wide array of targets including growth factors, receptors, cell cycle regulators, oncogenes, and tumor suppressor genes have been generated for use in breast cancer research. In addition to conventional transgenic overexpression and germline knockouts, the advent of increasingly complex technology has allowed for the generation of more elaborate mouse models including conditional knockouts, conditional activating mutations, and inducible oncogenes or knockouts. Studies of the pathology of mammary carcinomas in genetically modified mice have demonstrated neoplasms that are morphologically similar to human breast cancer (2). While this chapter will describe a variety of genetically engineered mouse models of human breast cancer, it is by no means comprehensive and will not cover the entire spectrum of transgenic mouse models generated to date.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stewart TA, Pattengale PK, Leder P. Spontaneous mammary adenocarcinomas in transgenic mice that carry and express MMTV/myc fusion genes. Cell 1984;38(3):627–37.

    CAS  PubMed  Google Scholar 

  2. Cardiff RD, Anver MR, Gusterson BA, et al. The mammary pathology of genetically engineered mice: the consensus report and recommendations from the Annapolis meeting. Oncogene 2000;19(8):968–88.

    CAS  PubMed  Google Scholar 

  3. Du Z, Podsypanina K, Huang S, et al. Introduction of oncogenes into mammary glands in vivo with an avian retroviral vector initiates and promotes carcinogenesis in mouse models. Proc Natl Acad Sci U S A 2006;103(46):17396–401.

    CAS  PubMed  Google Scholar 

  4. Amundadottir LT, Merlino G, Dickson RB. Transgenic mouse models of breast cancer. Breast Cancer Res Treat 1996;39(1):119–35.

    CAS  PubMed  Google Scholar 

  5. Andrechek ER, Hardy WR, Siegel PM, Rudnicki MA, Cardiff RD, Muller WJ. Amplification of the neu/erbB-2 oncogene in a novel mouse model of mammary tumorigenesis. Proc Natl Acad Sci U S A 2000;97(7):3444–9.

    CAS  PubMed  Google Scholar 

  6. Rose-Hellekant TA, Arendt LM, Schroeder MD, Gilchrist K, Sandgren EP, Schuler LA. Prolactin induces ERα-positive and ERα-negative mammary cancer in transgenic mice. Oncogene 2003;22(30):4664–74.

    CAS  PubMed  Google Scholar 

  7. Todaro GJ, Fryling C, de Larco JE. Transforming growth factors produced by certain human tumor cells: polypeptides that interact with epidermal growth factor receptors. Proc Natl Acad Sci U S A 1980;77(9):5258–62.

    CAS  PubMed  Google Scholar 

  8. de Larco JE, Todaro GJ. Growth factors from murine sarcoma virus-transformed cells. Proc Natl Acad Sci U S A 1978;75(8):4001–5.

    CAS  PubMed  Google Scholar 

  9. Coffey RJJ, Derynck R, Wilcox JN, et al. Production and auto-induction of transforming growth factor-α in human keratinocytes. Nature 1987;328(6133):817–20.

    CAS  PubMed  Google Scholar 

  10. Derynck R. Transforming growth factor-α. Mol Reprod Dev 1990;27(1):3–9.

    CAS  PubMed  Google Scholar 

  11. Driman DK, Kobrin MS, Kudlow JE, Asa SL. Transforming growth factor-α in normal and neoplastic human endocrine tissues. Hum Pathol 1992;23(12):1360–5.

    CAS  PubMed  Google Scholar 

  12. Jhappan C, Stahle C, Harkins RN, Fausto N, Smith GH, Merlino GT. TGFα overexpression in transgenic mice induces liver neoplasia and abnormal development of the mammary gland and pancreas. Cell 1990;61(6):1137–46.

    CAS  PubMed  Google Scholar 

  13. Sandgren EP, Luetteke NC, Palmiter RD, Brinster RL, Lee DC. Overexpression of TGFα in transgenic mice: induction of epithelial hyperplasia, pancreatic metaplasia, and carcinoma of the breast. Cell 1990;61(6):1121–35.

    CAS  PubMed  Google Scholar 

  14. Matsui Y, Halter SA, Holt JT, Hogan BL, Coffey RJ. Development of mammary hyperplasia and neoplasia in MMTV-TGFα transgenic mice. Cell 1990;61(6):1147–55.

    CAS  PubMed  Google Scholar 

  15. Halter SA, Dempsey P, Matsui Y, et al. Distinctive patterns of hyperplasia in transgenic mice with mouse mammary tumor virus transforming growth factor-α: Characterization of mammary gland and skin proliferations. Am J Pathol 1992;140(5):1131–46.

    CAS  PubMed  Google Scholar 

  16. Sandgren EP, Schroeder JA, Qui TH, Palmiter RD, Brinster RL, Lee DC. Inhibition of mammary gland involution is associated with transforming growth factor a but not c-myc-induced mammary tumorigenesis in mice. Cancer Res 1995;55(17):3915–27.

    CAS  PubMed  Google Scholar 

  17. Klagsbrun M, Baird A. A dual receptor system is required for basic fibroblast growth factor activity. Cell 1991;67(2):229–31.

    CAS  PubMed  Google Scholar 

  18. Basilico C, Moscatelli D. The FGF family of growth factors and oncogenes. Adv Cancer Res 1992;59:115–65.

    CAS  PubMed  Google Scholar 

  19. Ornitz DM, Xu J, Colvin JS, et al. Receptor specificity of the fibroblast growth factor family. J Biol Chem 1996;271(25):15292–7.

    CAS  PubMed  Google Scholar 

  20. Peters G, Brookes S, Smith R, Dickson C. Tumorigenesis by mouse mammary tumor virus: evidence for a common region for provirus integration in mammary tumors. Cell 1983;33(2):369–77.

    CAS  PubMed  Google Scholar 

  21. Peters G, Brookes S, Smith R, Placzek M, Dickson C. The mouse homolog of the hst/k-FGF gene is adjacent to int-2 and is activated by proviral insertion in some virally induced mammary tumors. Proc Natl Acad Sci U S A 1989;86(15):5678–82.

    CAS  PubMed  Google Scholar 

  22. MacArthur CA, Shankar DB, Shackleford GM. Fgf-8, activated by proviral insertion, cooperates with the Wnt-1 transgene in murine mammary tumorigenesis. J Virol 1995;69(4):2501–7.

    CAS  PubMed  Google Scholar 

  23. Muller WJ, Lee FS, Dickson C, Peters G, Pattengale P, Leder P. The int-2 gene product acts as an epithelial growth factor in transgenic mice. EMBO J 1990;9(3):907–13.

    CAS  PubMed  Google Scholar 

  24. Ornitz DM, Moreadith RW, Leder P. Binary system for regulating transgene expression in mice: targeting int-2 gene expression with yeast GAL4/UAS control elements. Proc Natl Acad Sci U S A 1991;88(3):698–702.

    CAS  PubMed  Google Scholar 

  25. Stamp G, Fantl V, Poulsom R, et al. Nonuniform expression of a mouse mammary tumor virus-driven int-2/Fgf-3 transgene in pregnancy-responsive breast tumors. Cell Growth Differ 1992;3(12):929–38.

    CAS  PubMed  Google Scholar 

  26. Ngan ES, Ma ZQ, Chua SS, DeMayo FJ, Tsai SY. Inducible expression of FGF-3 in mouse mammary gland. Proc Natl Acad Sci U S A 2002;99(17):11187–92.

    CAS  PubMed  Google Scholar 

  27. Kitsberg DI, Leder A. Keratinocyte growth factor induces mammary and prostatic hyperplasia and mammary adenocarcinoma in transgenic mice. Oncogene 1996;13(12):2507–15.

    CAS  PubMed  Google Scholar 

  28. Daphna-Iken D, Shankar DB, Lawshe A, Ornitz DM, Shackleford GM, MacArthur CA. MMTV-Fgf8 transgenic mice develop mammary and salivary gland neoplasia and ovarian stromal hyperplasia. Oncogene 1998;17(21):2711–7.

    CAS  PubMed  Google Scholar 

  29. Dickson C, Spencer-Dene B, Dillon C, Fantl V. Tyrosine kinase signalling in breast cancer: fibroblast growth factors and their receptors. Breast Cancer Res 2000;2(3):191–6.

    CAS  PubMed  Google Scholar 

  30. Lammie GA, Peters G. Chromosome 11q13 abnormalities in breast cancer. Cancer Cells 1991;3(11):413–20.

    CAS  PubMed  Google Scholar 

  31. Marsh SK, Bansal GS, Zammit C, et al. Increased expression of fibroblast growth factor 8 in human breast cancer. Oncogene 1999;18(4):1053–60.

    CAS  PubMed  Google Scholar 

  32. Tanaka A, Furuya A, Yamasaki M, et al. High frequency of fibroblast growth factor (FGF) 8 expression in clinical prostate cancers and breast tissues, immunohistochemically demonstrated by a newly established neutralizing monoclonal antibody against FGF-8. Cancer Res 1998;58(10):2053–6.

    CAS  PubMed  Google Scholar 

  33. Penault-Llorca F, Bertucci F, Adelaide J, et al. Expression of FGF and FGF receptor genes in human breast cancer. Int J Cancer 1995;61(2):170–6.

    CAS  PubMed  Google Scholar 

  34. Theillet C, Adelaide J, Louason G, et al. FGFR1 and PLAT genes and DNA amplification at 8p12 in breast and ovarian cancers. Genes Chromosomes Cancer 1993;7(4):219–26.

    CAS  PubMed  Google Scholar 

  35. Adnane J, Gaudray P, Dionne CA, et al. BEK and FLG, two receptors to members of the FGF family, are amplified in subsets of human breast cancers. Oncogene 1991;6(4):659–63.

    CAS  PubMed  Google Scholar 

  36. Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL. Human breast cancer: correlation of relapse with amplification of the HER-2/neu oncogene. Science 1987;235(4785):177–82.

    CAS  PubMed  Google Scholar 

  37. Slamon DJ, Godolphin W, Jones LA, et al. Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science 1989;244(4905):707–12.

    CAS  PubMed  Google Scholar 

  38. Hynes NE, Stern DF. The biology of erbB-2/neu/Her-2 and its role in cancer. Biochim Biophys Acta 1994;1198(2-3):165–84.

    PubMed  Google Scholar 

  39. Mansour EG, Ravdin PM, Dressler L. Prognostic factors in early breast carcinoma. Cancer 1994;74(Suppl):381–400.

    CAS  PubMed  Google Scholar 

  40. Ravdin PM, Chamness GC. The c-erbB-2 proto-oncogene as a prognostic and predictive marker in breast cancer: a paradigm for the development of other macromolecular markers- A review. Gene 1995;159(1):19–27.

    CAS  PubMed  Google Scholar 

  41. Andrulis IL, Bull SB, Blackstein ME, et al. neu/erbB-2 amplification identifies a poor-prognosis group of women with node-negative breast cancer. Toronto Breast Cancer Study Group. J Clin Oncol 1998;16(4):1340–9.

    CAS  PubMed  Google Scholar 

  42. Shih C, Padhy LC, Murray M, Weinberg RA. Transforming genes of carcinomas and neuroblastomas introduced into mouse fibroblasts. Nature 1981;290(5803):261–4.

    CAS  PubMed  Google Scholar 

  43. Schechter AL, Stern DF, Vaidyanathan L, et al. The neu oncogene: an erb-B-related gene encoding a 185,000-Mr tumour antigen. Nature 1984;312(5994):513–6.

    CAS  PubMed  Google Scholar 

  44. Bargmann CI, Hung MC, Weinberg RA. The neu oncogene encodes an epidermal growth factor receptor-related protein. Nature 1986;319(6050):226–30.

    CAS  PubMed  Google Scholar 

  45. Bargmann CI, Hung MC, Weinberg RA. Multiple independent activations of the neu oncogene by a point mutation altering the transmembrane domain of p185. Cell 1986;45(5):649–57.

    CAS  PubMed  Google Scholar 

  46. Muller WJ, Sinn E, Pattengale PK, Wallace R, Leder P. Single-step induction of mammary adenocarcinoma in transgenic mice bearing the activated c-neu oncogene. Cell 1988;54(1):105–15.

    CAS  PubMed  Google Scholar 

  47. Bouchard L, Lamarre L, Tremblay PJ, Jolicoeur P. Stochastic appearance of mammary tumors in transgenic mice carrying the MMTV/c-neu oncogene. Cell 1989;57(6):931–6.

    CAS  PubMed  Google Scholar 

  48. Stocklin E, Botteri F, Groner B. An activated allele of the c-erbB-2 oncogene impairs kidney and lung function and causes early death of transgenic mice. J Cell Biol 1993;122(1):199–208.

    CAS  PubMed  Google Scholar 

  49. Guy CT, Cardiff RD, Muller WJ. Activated neu induces rapid tumor progression. J Biol Chem 1996;271(13):7673–8.

    CAS  PubMed  Google Scholar 

  50. Guy CT, Webster MA, Schaller M, Parsons TJ, Cardiff RD, Muller WJ. Expression of the neu protooncogene in the mammary epithelium of transgenic mice induces metastatic disease. Proc Natl Acad Sci U S A 1992;89(22):10578–82.

    CAS  PubMed  Google Scholar 

  51. Siegel PM, Dankort DL, Hardy WR, Muller WJ. Novel activating mutations in the neu proto-oncogene involved in the induction of mammary tumors. Mol Cell Biol 1994;14(11):7068–77.

    CAS  PubMed  Google Scholar 

  52. Siegel PM, Muller WJ. Mutations affecting conserved cysteine residues within the extracellular domain of Neu promote receptor dimerization and activation. Proc Natl Acad Sci U S A 1996;93(17):8878–83.

    CAS  PubMed  Google Scholar 

  53. Siegel PM, Ryan ED, Cardiff RD, Muller WJ. Elevated expression of activated forms of Neu/ErbB-2 and ErbB-3 are involved in the induction of mammary tumors in transgenic mice: Implications for human breast cancer. EMBO J 1999;18(8):2149–64.

    CAS  PubMed  Google Scholar 

  54. Kwong KY, Hung MC. A novel splice variant of HER2 with increased transformation activity. Mol Carcinog 1998;23(2):62–8.

    CAS  PubMed  Google Scholar 

  55. Sainsbury JR, Malcolm AJ, Appleton DR, Farndon JR, Harris AL. Presence of epidermal growth factor receptor as an indicator of poor prognosis in patients with breast cancer. J Clin Pathol 1985;38(11):1225–8.

    CAS  PubMed  Google Scholar 

  56. Harris AL, Nicholson S, Sainsbury JR, Farndon J, Wright C. Epidermal growth factor receptors in breast cancer: association with early relapse and death, poor response to hormones and interaction with neu. J Steroid Biochem 1989;34(1–6):123–31.

    CAS  PubMed  Google Scholar 

  57. Klijn JG, Berns PM, Schmitz PI, Foekens JA. The clinical significance of epidermal growth factor receptor (EGF-R) in human breast cancer: a review on 5232 patients. Endocr Rev 1992;13(1):3–17.

    CAS  PubMed  Google Scholar 

  58. Nieto Y, Nawaz F, Jones RB, Shpall EJ, Nawaz S. Prognostic significance of overexpression and phosphoryla(66)tion of epidermal growth factor receptor (EGFR) and the presence of truncated EGFRvIII in locoregionally advanced breast cancer. J Clin Oncol 2007;25(28):4405–13.

    PubMed  Google Scholar 

  59. Brandt R, Eisenbrandt R, Leenders F, et al. Mammary gland specific hEGF receptor transgene expression induces neoplasia and inhibits differentiation. Oncogene 2000;19(17):2129–37.

    CAS  PubMed  Google Scholar 

  60. Marozkina NV, Stiefel SM, Frierson Jr. HF, Parsons SJ. MMTV-EGF receptor transgene promotes preneoplastic conversion of multiple steroid hormone-responsive tissues. J Cell Biochem 2007;Epub Oct 24.

    Google Scholar 

  61. Stanley ER, Berg KL, Einstein DB, et al. Biology and action of colony-stimulating factor-1. Mol Reprod Dev 1997;46(1):4–10.

    CAS  PubMed  Google Scholar 

  62. Heisterkamp N, Groffen J, Stephenson JR. Isolation of v-fms and its human cellular homolog. Virology 1983;126(1):248–58.

    CAS  PubMed  Google Scholar 

  63. Slamon DJ, deKernion JB, Verma IM, Cline MJ. Expression of cellular oncogenes in human malignancies. Science 1984;224(4646):256–62.

    CAS  PubMed  Google Scholar 

  64. Horiguchi J, Sherman ML, Sampson-Johannes A, Weber BL, Kufe DW. CSF-1 and C-FMS gene expression in human carcinoma cell lines. Biochem Biophys Res Commun 1988;157(1):395–401.

    CAS  PubMed  Google Scholar 

  65. Ramakrishnan S, Xu FJ, Brandt SJ, Niedel JE, Bast Jr RC, Brown EL. Constitutive production of macrophage colony-stimulating factor by human ovarian and breast cancer cell lines. J Clin Invest 1989;83(3):921–6.

    CAS  PubMed  Google Scholar 

  66. Tang R, Beuvon F, Ojeda M, Mosseri V, Pouillart P, Scholl S. M-CSF (monocyte colony stimulating factor) and M-CSF receptor expression by breast tumour cells: M-CSF mediated recruitment of tumour infiltrating monocytes? J Cell Biochem 1992;50(4):350–6.

    CAS  PubMed  Google Scholar 

  67. Flick MB, Sapi E, Perrotta PL, et al. Recognition of activated CSF-1 receptor in breast carcinomas by a tyrosine 723 phosphospecific antibody. Oncogene 1997;14(21):2553–61.

    CAS  PubMed  Google Scholar 

  68. Tang RP, Kacinski B, Validire P, et al. Oncogene amplification correlates with dense lymphocyte infiltration in human breast cancers: a role for hematopoietic growth factor release by tumor cells? J Cell Biochem 1990;44(3):189–98.

    CAS  PubMed  Google Scholar 

  69. Scholl SM, Mosseri V, Tang R, et al. Expression of colony-stimulating factor-1 and its receptor (the protein product of c-fms) in invasive breast tumor cells. Induction of urokinase production via this pathway? Ann N Y Acad Sci 1993;698:131–5.

    CAS  PubMed  Google Scholar 

  70. Scholl SM, Crocker P, Tang R, Pouillart P, Pollard JW. Is colony-stimulating factor-1 a key mediator of breast cancer invasion and metastasis? Mol Carcinog 1993;7(4):207–11.

    PubMed  Google Scholar 

  71. Kirma N, Luthra R, Jones J, et al. Overexpression of the colony-stimulating factor (CSF-1) and/or its receptor c-fms in mammary glands of transgenic mice results in hyperplasia and tumor formation. Cancer Res 2004;64(12):4162–70.

    CAS  PubMed  Google Scholar 

  72. Lin EY, Li JF, Gnatovskiy L, et al. Macrophages regulate the angiogenic switch in a mouse model of breast cancer. Cancer Res 2006;66(23):11238–46.

    CAS  PubMed  Google Scholar 

  73. Wyckoff JB, Wang Y, Lin EY, et al. Direct visualization of macrophage-assisted tumor cell intravasation in mammary tumors. Cancer Res 2007;67(6):2649–56.

    CAS  PubMed  Google Scholar 

  74. Park M, Dean M, Cooper CS, et al. Mechanism of met oncogene activation. Cell 1986;45(6):895–904.

    CAS  PubMed  Google Scholar 

  75. Chan AM, King HW, Tempest PR, Deakin EA, Cooper CS, Brookes P. Primary structure of the met protein tyrosine kinase domain. Oncogene 1987;1(2):229–33.

    CAS  PubMed  Google Scholar 

  76. Park M, Dean M, Kaul K, Braun MJ, Gonda MA, Vande Woude GF. Sequence of MET protooncogene cDNA has features characteristic of the tyrosine kinase family of growth-factor receptors. Proc Natl Acad Sci U S A 1987;84(18):6379–83.

    CAS  PubMed  Google Scholar 

  77. Rodrigues GA, Park M. Autophosphorylation modulates the kinase activity and oncogenic potential of the Met receptor tyrosine kinase. Oncogene 1994;9(7):2019–27.

    CAS  PubMed  Google Scholar 

  78. Di Renzo MF, Narsimhan RP, Olivero M, et al. Expression of the Met/HGF receptor in normal and neoplastic human tissues. Oncogene 1991;6(11):1997–2003.

    CAS  PubMed  Google Scholar 

  79. Rong S, Jeffers M, Resau JH, Tsarfaty I, Oskarsson M, Vande Woude GF. Met expression and sarcoma tumorigenicity. Cancer Res 1993;53(22):5355–60.

    CAS  PubMed  Google Scholar 

  80. Jin L, Fuchs A, Schnitt SJ, et al. Expression of scatter factor and c-met receptor in benign and malignant breast tissues. Cancer 1997;79(4):749–60.

    CAS  PubMed  Google Scholar 

  81. Ghoussoub RA, Dillon DA, D’Aquila T, Rimm EB, Fearon ER, Rimm DL. Expression of c-met is a strong independent prognostic factor in breast carcinoma. Cancer 1998;82(8):1513–20.

    CAS  PubMed  Google Scholar 

  82. Camp RL, Rimm EB, Rimm DL. Met expression is associated with poor outcome in patients with axillary lymph node negative breast cancer. Cancer 1999;86(11):2259–65.

    CAS  PubMed  Google Scholar 

  83. Edakuni G, Sasatomi E, Satoh T, Tokunaga O, Miyazaki K. Expression of the hepatocyte growth factor/c-Met pathway is increased at the cancer front in breast carcinoma. Pathol Int 2001;51(3):172–8.

    CAS  PubMed  Google Scholar 

  84. Kang JY, Dolled-Filhart M, Ocal IT, et al. Tissue microarray analysis of hepatocyte growth factor/Met pathway components reveals a role for Met, matriptase, and hepatocyte growth factor activator inhibitor 1 in the progression of node-negative breast cancer. Cancer Res 2003;63(5):1101–5.

    CAS  PubMed  Google Scholar 

  85. Tolgay Ocal I, Dolled-Filhart M, D’Aquila TG, Camp RL, Rimm DL. Tissue microarray-based studies of patients with lymph node negative breast carcinoma show that met expression is associated with worse outcome but is not correlated with epidermal growth factor family receptors. Cancer 2003;97(8):1841–8.

    PubMed  Google Scholar 

  86. Liang TJ, Reid AE, Xavier R, Cardiff RD, Wang TC. Transgenic expression of trp-met oncogene leads to development of mammary hyperplasias and tumors. J Clin Invest 1996;97(12):2872–7.

    CAS  PubMed  Google Scholar 

  87. Jeffers M, Fiscella M, Webb CP, Anver M, Koochekpour S, Vande Woude GF. The mutationally activated Met receptor mediates motility and metastasis. Proc Natl Acad Sci U S A 1998;95(24):14417–22.

    CAS  PubMed  Google Scholar 

  88. Schmidt L, Duh FM, Chen F, et al. Germline and somatic mutations in the tyrosine kinase domain of the MET proto-oncogene in papillary renal carcinomas. Nat Genet 1997;16(1):68–73.

    CAS  PubMed  Google Scholar 

  89. Jeffers M, Schmidt L, Nakaigawa N, et al. Activating mutations for the met tyrosine kinase receptor in human cancer. Proc Natl Acad Sci U S A 1997;94(21):11445–50.

    CAS  PubMed  Google Scholar 

  90. Takayama H, LaRochelle WJ, Sharp R, et al. Diverse tumorigenesis associated with aberrant development in mice overexpressing hepatocyte growth factor/scatter factor. Proc Natl Acad Sci U S A 1997;94(2):701–6.

    CAS  PubMed  Google Scholar 

  91. Gallego MI, Bierie B, Hennighausen L. Targeted expression of HGF/SF in mouse mammary epithelium leads to metastatic adenosquamous carcinomas through the activation of multiple signal transduction pathways. Oncogene 2003;22(52):8498–508.

    CAS  PubMed  Google Scholar 

  92. Maggiora P, Marchio S, Stella MC, et al. Overexpression of the RON gene in human breast carcinoma. Oncogene 1998;16(22):2927–33.

    CAS  PubMed  Google Scholar 

  93. Lee WY, Chen HH, Chow NH, Su WC, Lin PW, Guo HR. Prognostic significance of co-expression of RON and MET receptors in node-negative breast cancer patients. Clin Cancer Res 2005;11(6):2222–8.

    CAS  PubMed  Google Scholar 

  94. Zinser GM, Leonis MA, Toney K, et al. Mammary-specific Ron receptor overexpression induces highly metastatic mammary tumors associated with β-catenin activation. Cancer Res 2006;66(24):11967–74.

    CAS  PubMed  Google Scholar 

  95. Nusse R, Varmus HE. Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome. Cell 1982;31(1):99–109.

    CAS  PubMed  Google Scholar 

  96. Tsukamoto AS, Grossschedl R, Guzman RC, Parslow T, Varmus HE. Expression of the int-1 gene in transgenic mice is associated with mammary gland hyperplasia and adenocarcinomas in male and female mice. Cell 1988;55(4):619–25.

    CAS  PubMed  Google Scholar 

  97. Guy CT, Cardiff RD, Muller WJ. Induction of mammary tumors by expression of polyomavirus middle T oncogene: A transgenic mouse model for metastatic disease. Mol Cell Biol 1992;12(3):954–61.

    CAS  PubMed  Google Scholar 

  98. Lin EY, Jones JG, Li P, et al. Progression to malignancy in the polyoma middle T oncoprotein mouse breast cancer models provides a reliable model for human diseases. Am J Pathol 2003;163(5):2113–26.

    PubMed  Google Scholar 

  99. Webster MA, Hutchinson JN, Rauh MJ, et al. Requirement for both Shc and phosphatidylinositol 3′ kinase signaling pathways in polyomavirus middle T-mediated mammary tumorigenesis. Mol Cell Biol 1998;18(4):2344–59.

    CAS  PubMed  Google Scholar 

  100. Xiong Y, Zhang H, Beach D. D type cyclins associate with multiple protein kinases and the DNA replication and repair factor PCNA. Cell 1992;71(3):505–14.

    CAS  PubMed  Google Scholar 

  101. Meyerson M, Harlow E. Identification of G1 kinase activity for cdk4, a novel cyclin D partner. Mol Cell Biol 1994;14(3):2077–86.

    CAS  PubMed  Google Scholar 

  102. Ormandy CJ, Musgrove EA, Hui R, Daly RJ, Sutherland RL. Cyclin D1, EMS1 and 11q13 amplification in breast cancer. Breast Cancer Res Treat 2003;78(3):323–35.

    CAS  PubMed  Google Scholar 

  103. Buckley MF, Sweeney KJ, Hamilton JA, et al. Expression and amplification of cyclin genes in human breast cancer. Oncogene 1993;8(8):2127–33.

    CAS  PubMed  Google Scholar 

  104. Keyomarsi K, Pardee AB. Redundant cyclin overexpression and gene amplification in breast cancer cells. Proc Natl Acad Sci U S A 1993;90(3):1112–6.

    CAS  PubMed  Google Scholar 

  105. Gillett C, Fantl V, Smith R, et al. Amplification and overexpression of cyclin D1 in breast cancer detected by immunohistochemical staining. Cancer Res 1994;54(7):1812–7.

    CAS  PubMed  Google Scholar 

  106. Alle KM, Henshall SM, Field AS, Sutherland RL. Cyclin D1 protein is overexpressed in hyperplasia and intraductal carcinoma of the breast. Clin Cancer Res 1998;4(4):847–54.

    CAS  PubMed  Google Scholar 

  107. Wang TC, Cardiff RD, Zukerberg L, Lees E, Arnold A, Schmidt EV. Mammary hyperplasia and carcinoma in MMTV-cyclin D1 transgenic mice. Nature 1994;369(6482):669–71.

    CAS  PubMed  Google Scholar 

  108. Bartkova J, Zemanova M, Bartek J. Abundance and subcellular localisation of cyclin D3 in human tumours. Int J Cancer 1996;65(3):323–7.

    CAS  PubMed  Google Scholar 

  109. Wong SC, Chan JK, Lee KC, Hsiao WL. Differential expression of p16/p21/p27 and cyclin D1/D3, and their relationships to cell proliferation, apoptosis, and tumour progression in invasive ductal carcinoma of the breast. J Pathol 2001;194(1):35–42.

    CAS  PubMed  Google Scholar 

  110. Pirkmaier A, Dow R, Ganiatsas S, et al. Alternative mammary oncogenic pathways are induced by D-type cyclins; MMTV-cyclin D3 transgenic mice develop squamous cell carcinoma. Oncogene 2003;22(28):4425–33.

    CAS  PubMed  Google Scholar 

  111. Vennstrom B, Sheiness D, Zabielski J, Bishop JM. Isolation and characterization of c-myc, a cellular homolog of the oncogene (v-myc) of avian myelocytomatosis virus strain 29. J Virol 1982;42(3):773–9.

    CAS  PubMed  Google Scholar 

  112. Escot C, Theillet C, Lidereau R, et al. Genetic alteration of the c-myc protooncogene (MYC) in human primary breast carcinomas. Proc Natl Acad Sci U S A 1986;83(13):4834–8.

    CAS  PubMed  Google Scholar 

  113. Ried T, Just KE, Holtgreve-Grez H, et al. Comparative genomic hybridization of formalin-fixed, paraffin-embedded breast tumors reveals different patterns of chromosomal gains and losses in fibroadenomas and diploid and aneuploid carcinomas. Cancer Res 1995;55(22):5415–23.

    CAS  PubMed  Google Scholar 

  114. Tirkkonen M, Tanner M, Karhu R, Kallioniemi A, Isola J, Kallioniemi OP. Molecular cytogenetics of primary breast cancer by CGH. Genes Chromosomes Cancer 1998;21(3):177–84.

    CAS  PubMed  Google Scholar 

  115. Janocko LE, Brown KA, Smith CA, et al. Distinctive patterns of Her-2/neu, c-myc, and cyclin D1 gene amplification by fluorescence in situ hybridization in primary human breast cancers. Cytometry 2001;46(3):136–49.

    CAS  PubMed  Google Scholar 

  116. Schoenenberger CA, Andres AC, Groner B, van der Valk M, LeMeur M, Gerlinger P. Targeted c-myc gene expression in mammary glands of transgenic mice induces mammary tumours with constitutive milk protein gene transcription. EMBO J 1988;7(1):169–75.

    CAS  PubMed  Google Scholar 

  117. D’Cruz CM, Gunther EJ, Boxer RB, et al. c-MYC induces mammary tumorigenesis by means of a preferred pathway involving spontaneous Kras2. Nat Med 2001;7(2):235–9.

    PubMed  Google Scholar 

  118. Sinn E, Muller W, Pattengale P, Tepler I, Wallace R, Leder P. Coexpression of MMTV/v-Ha-ras and MMTV/c-myc genes in transgenic mice: Synergistic action of oncogenes in vivo. Cell 1987;49(4):465–75.

    CAS  PubMed  Google Scholar 

  119. Amundadottir LT, Johnson MD, Merlino G, Smith GH, Dickson RB. Synergistic interaction of transforming growth factor α and c-myc in mouse mammary and salivary gland tumorigenesis. Cell Growth Differ 1995;6(6):737–48.

    CAS  PubMed  Google Scholar 

  120. Bearss DJ, Lee RJ, Trover DA, Pestell RG, Windle JJ. Differential effects of p21(WAF1/CIP1) deficiency on MMTV-ras and MMTV-myc mammary tumor properties. Cancer Res 2002;62(7):2077–84.

    CAS  PubMed  Google Scholar 

  121. Weaver ZA, McCormack SJ, Liyanage M, et al. A recurring pattern of chromosomal aberrations in mammary gland tumors of MMTV-cmyc transgenic mice. Genes Chromosomes Cancer 1999;25(3):251–60.

    CAS  PubMed  Google Scholar 

  122. Leder A, Pattengale PK, Kuo A, Stewart TA, Leder P. Consequences of widespread deregulation of the c-myc gene in transgenic mice: multiple neoplasms and normal development. Cell 1986;45(4):485–95.

    CAS  PubMed  Google Scholar 

  123. Cardiff RD, Sinn E, Muller W, Leder P. Transgenic oncogene mice. Tumor phenotype predicts genotype. Am J Pathol 1991;139(3):495–501.

    CAS  PubMed  Google Scholar 

  124. Bocchinfuso WP, Lindzey JK, Hewitt SC, et al. Induction of mammary gland development in estrogen receptor-α knockout mice. Endocrinology 2000;141(8):2982–94.

    CAS  PubMed  Google Scholar 

  125. Frech MS, Halama ED, Tilli MT, et al. Deregulated estrogen receptor α expression in mammary epithelial cells of transgenic mice results in the development of ductal carcinoma in situ. Cancer Res 2005;65(3):681–5.

    CAS  PubMed  Google Scholar 

  126. Krege JH, Hodgin JB, Couse JF, et al. Generation and reproductive phenotypes of mice lacking estrogen receptor β. Proc Natl Acad Sci U S A 1998;95(26):15677–82.

    CAS  PubMed  Google Scholar 

  127. Forster C, Makela S, Warri A, et al. Involvement of estrogen receptor β in terminal differentiation of mammary gland epithelium. Proc Natl Acad Sci U S A 2002;99(24):15578–83.

    CAS  PubMed  Google Scholar 

  128. Guan XY, Xu J, Anzick SL, Zhang H, Trent JM, Meltzer PS. Hybrid selection of transcribed sequences from microdissected DNA: isolation of genes with amplified region at 20q11-q13.2 in breast cancer. Cancer Res 1996;56(15):3446–50.

    CAS  PubMed  Google Scholar 

  129. Anzick SL, Kononen J, Walker RL, et al. AIB1, a steroid receptor coactivator amplified in breast and ovarian cancer. Science 1997;277(5328):965–8.

    CAS  PubMed  Google Scholar 

  130. Bautista S, Valles H, Walker RL, et al. In breast cancer, amplification of the steroid receptor coactivator gene AIB1 is correlated with estrogen and progesterone receptor positivity. Clin Cancer Res 1998;4(12):2925–9.

    CAS  PubMed  Google Scholar 

  131. Kurebayashi J, Otsuka T, Kunisue H, Tanaka K, Yamamoto S, Sonoo H. Expression levels of estrogen receptor-α, estrogen receptor-β, coactivators and corepressors in breast cancer. Clin Cancer Res 2000;6(2):512–8.

    CAS  PubMed  Google Scholar 

  132. Murphy LC, Simon SL, Parkes A, et al. Altered expression of estrogen receptor coregulators during human breast tumorigenesis. Cancer Res 2000;60(22):6266–71.

    CAS  PubMed  Google Scholar 

  133. Bouras T, Southey MC, Venter DJ. Overexpression of the steroid receptor coactivator AIB1 in breast cancer correlates with the absence of estrogen and progesterone receptors and positivity for p53 and HER2/neu. Cancer Res 2001;61(3):903–7.

    CAS  PubMed  Google Scholar 

  134. List HJ, Reiter R, Singh B, Wellstein A, Riegel AT. Expression of the nuclear coactivator AIB1 in normal and malignant breast tissue. Breast Cancer Res Treat 2001;68(1):21–8.

    CAS  PubMed  Google Scholar 

  135. Tikkanen MK, Carter DJ, Harris AM, et al. Endogenously expressed estrogen receptor and coactivator AIB1 interact in MCF-7 human breast cancer cells. Proc Natl Acad Sci U S A 2000;97(23):12536–40.

    CAS  PubMed  Google Scholar 

  136. List HJ, Lauritsen KJ, Reiter R, Powers C, Wellstein A, Riegel AT. Ribozyme targeting demonstrates that the nuclear receptor coactivator AIB1 is the rate-limiting factor for estrogen-dependent growth of human MCF-7 cancer cells. J Biol Chem 2001;276(26):23763–8.

    CAS  PubMed  Google Scholar 

  137. Xu J, Liao L, Ning G, Yoshida-Komiya H, Deng C, O’Malley BW. The steroid coactivator SRC-3 (p/CIP/RAC3/AIB1/ACTR/TRAM-1) is required for normal growth, puberty, female reproductive function, and mammary gland development. Proc Natl Acad Sci U S A 2000;97(12):6379–84.

    CAS  PubMed  Google Scholar 

  138. Torres-Arzavus MI, Font de Mora J, Yuan J, et al. High tumor incidence and activation of the PI3K/AKT pathway in transgenic mice define AIB1 as an oncogene. Cancer Cell 2004;6(3):263–74.

    Google Scholar 

  139. Avivar A, Garcia-Macias MC, Ascaso E, Herrera G, O’Connor JE, de Mora JF. Moderate overexpression of AIB1 triggers pre-neoplastic changes in mammary epithelium. FEBS Lett 2006;580(22):5222–6.

    CAS  PubMed  Google Scholar 

  140. Reiter R, Wellstein A, Riegel AT. An isoform of the coactivator AIB1 that increases hormone and growth factor sensitivity is overexpressed in breast cancer. J Biol Chem 2001;276(43):39736–41.

    CAS  PubMed  Google Scholar 

  141. Reiter R, Oh AS, Wellstein A, Riegel AT. Impact of the nuclear receptor coactivator AIB1 isoform AIB1-Δ3 on estrogenic ligands with different intrinsic activity. Oncogene 2004;23(2):403–9.

    CAS  PubMed  Google Scholar 

  142. Tilli MT, Reiter R, Oh AS, et al. Overexpression of an N-terminally truncated isoform of the nuclear receptor coactivator amplified in breast cancer 1 leads to altered proliferation of mammary epithelial cells in transgenic mice. Mol Endocrinol 2005;19(3):644–56.

    CAS  PubMed  Google Scholar 

  143. Gray DA, McGrath CM, Jones RF, Morris VL. A common mouse mammary tumor virus integration site in chemically induced precancerous mammary hyperplasias. Virology 1986;148(2):360–8.

    CAS  PubMed  Google Scholar 

  144. Durgam VR, Tekmal RR. The nature and expression of int-5, a novel MMTV integration locus gene in carcinogen-induced mammary tumors. Cancer Lett 1994;87(2):179–86.

    CAS  PubMed  Google Scholar 

  145. Santner SJ, Feil PD, Santen RJ. In situ estrogen production via the estrone sulfatase pathway in breast tumors: relative importance versus the aromatase pathway. J Clin Endocrinol Metab 1984;59(1):29–33.

    CAS  PubMed  Google Scholar 

  146. Santen RJ, Leszyczynski D, Tilson-Mallet N, et al. Enzymatic control of estrogen production in human breast cancer: relative significance of aromatase versus sulfatase pathways. Ann N Y Acad Sci 1986;464:126–37.

    CAS  PubMed  Google Scholar 

  147. Miller WR, Forrest AP. Oestradiol synthesis by a human breast carcinoma. Lancet 1974;2(7885):866–8.

    CAS  PubMed  Google Scholar 

  148. Reed MJ, Owen AM, Lai LC, et al. In situ oestrogen synthesis in normal and breast tumour tissues: effect of treatment with 4-hydroxyandrostenedione. Int J Cancer 1989;44(2):233–7.

    CAS  PubMed  Google Scholar 

  149. O’Neill JS, Elton RA, Miller WR. Aromatase activity in adipose tissue from breast quadrants: a link with tumour site. Br Med J (Clin Res Ed) 1988;296(6624):741–3.

    Google Scholar 

  150. Bulun SE, Sharda G, Rink J, Sharma S, Simpson ER. Distribution of aromatase P450 transcripts and adipose fibroblasts in the human breast. J Clin Endocrinol Metab 1996;81(3):1273–7.

    CAS  PubMed  Google Scholar 

  151. Lu O, Nakamura J, Savinov A, et al. Expression of aromatase protein and messenger ribonucleic acid in tumor epithelial cells and evidence of functional significance of locally produced estrogen in human breast cancers. Endocrinology 1996;137(7):3061–8.

    CAS  PubMed  Google Scholar 

  152. Miller WR. Aromatase activity in breast tissue. J Steroid Biochem Mol Biol 1991;39(5B):783–90.

    CAS  PubMed  Google Scholar 

  153. Tekmal RR, Ramachandra N, Gubba S, et al. Overexpression of int-5/aromatase in mammary glands of transgenic mice results in the induction of hyperplasia and nuclear abnormalities. Cancer Res 1996;56(14):3180–5.

    CAS  PubMed  Google Scholar 

  154. Kirma N, Gill K, Mandava U, Tekmal RR. Overexpression of aromatase leads to hyperplasia and changes in the expression of genes involved in apoptosis, cell cycle, growth, and tumor suppressor functions in the mammary glands of transgenic mice. Cancer Res 2001;61(5):1910–8.

    CAS  PubMed  Google Scholar 

  155. Tekmal RR, Kirma N, Gill K, Fowler K. Aromatase overexpression and breast hyperplasia, an in vivo model- continued overexpression of aromatase is sufficient to maintain hyperplasia without circulating estrogens, and aromatase inhibitors abrogate these preneoplastic changes in mammary glands. Endocr Relat Cancer 1999;6(2):307–14.

    CAS  PubMed  Google Scholar 

  156. Mandava U, Kirma N, Tekmal RR. Aromatase overexpression transgenic mice model: cell type specific expression and use of letrozole to abrogate mammary hyperplasia without affecting normal physiology. J Steroid Biochem Mol Biol 2001;79(1-5):27–34.

    CAS  PubMed  Google Scholar 

  157. Gusterson BA, Warburton MJ, Mitchell D, Ellison M, Neville AM, Rudland PS. Distribution of myoepithelial cells and basement membrane proteins in the normal breast and in benign and malignant breast diseases. Cancer Res 1982;42(11):4763–70.

    CAS  PubMed  Google Scholar 

  158. Rudland PS, Leinster SJ, Winstanley J, Green B, Atkinson M, Zakhour HD. Immunocytochemical identification of cell types in benign and malignant breast diseases: variations in cell markers accompany the malignant state. J Histochem Cytochem 1993;41(4):543–53.

    Google Scholar 

  159. Trask DK, Band V, Zajchowski DA, Yaswen P, Suh T, Sager R. Keratins as markers that distinguish normal and tumor-derived mammary epithelial cells. Proc Natl Acad Sci U S A 1990;87(6):2319–23.

    CAS  PubMed  Google Scholar 

  160. Moinfar F, Man YG, Arnould L, Bratthauer GL, Ratschek M, Tavassoli FA. Concurrent and independent genetic alterations in the stromal and epithelial cells of mammary carcinoma: implications for tumorigenesis. Cancer Res 2000;60(9):2562–6.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Dillon, R.L., Muller, W.J. (2009). Modeling Human Breast Cancer. In: Giordano, A., Normanno, N. (eds) Breast Cancer in the Post-Genomic Era. Current Clinical Oncology. Humana Press. https://doi.org/10.1007/978-1-60327-945-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-945-1_7

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-944-4

  • Online ISBN: 978-1-60327-945-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics