Skip to main content

Tumor Stem Cells and Malignant Cells, One and the Same

  • Chapter
  • First Online:
Book cover Stem Cells and Cancer

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

  • 923 Accesses

Abstract

Cancer is a proliferative, invasive, and metastatic disease often caused by repeated tissue insults resulting in accumulation of genetic abnormalities that rarely produce malignant cells. The survival of mouse L1210 leukemia was determined for inoculations of 1 cell up to 106 cells. The survival times varied in a log-linear manner with the inoculum cell number from 19 days with 1 cell to 7 days with 106 cells implanted. In preclinical tumor models or in patients, tumor nodules of 108–109 cells are advanced cancer. Malignant cells frequently secrete growth modulatory substances that regulate their growth and alter growth of normal cells. Whether the metastatic malignant cell is the same or significantly different from the primary lesion malignant cell remains a topic of active investigation. Reaching a detectable lesion takes 10 years. Genetic instability produces variants in the primary tumor and metastases that are more heterogeneous than the early disease. The argument that cancer arises only from the tissue stem cell populations and that cancer stem cells comprise perhaps 1 in 100,000 or 1 in 10,000 cells within the tumor leads to the notion that agents that selectively kill cancer stem cells will not decrease the tumor mass. The cells that initiate, sustain, and populate cancers are malignant cells. Cancer stem cell notion is useful if it leads to important research questions and to better therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

REFERENCES

  1. Till JE, McCulloch EA. Early repair processes in marrow cells irradiated and proliferating in vivo. Radiat Res 1963; 18: 96–105.

    Article  PubMed  CAS  Google Scholar 

  2. McCulloch EA, Till JE. Perspectives on the properties of stem cells. Nature Med 2005; 11: 10276–8.

    Google Scholar 

  3. Law LW, Dunn TB, Boyle PJ, Miller JH. Observations on the effect of a folic acid antagonist on transplantable lymphoid leukemias in mice. J Natl Cancer Inst 1949; 10: 179–92.

    PubMed  CAS  Google Scholar 

  4. Dawe CJ, Potter M. Morphologic and bioloigc progression of a lymphoid neoplasm of the mouse in vivo and in vitro. Amer J Pathol 1957; 33: 603.

    Google Scholar 

  5. Waud WR. Murine L1210 and P388 leukemias. In: Anticancer Drug Development Guide: Preclinical Screening, Clinical Trials and Approval. BA Teicher Ed. Humana Press Inc, Totowa, NJ 1997; pp59–74.

    Google Scholar 

  6. Goldin A, Serpick AA, Mantel NA. A commentary, experimental screening procedures and clinical predictability value. Cancer Chemother Rep 1966; 50: 173–218.

    PubMed  CAS  Google Scholar 

  7. Goldin A, Vendetti JM, Muggia FM, Rozencweig M, DeVita VT. New animal models in cancer chemotherapy. In: Fox BW (ed.) Advances in Medical Oncology, Research and Education, Vol 5. Basis for Cancer Therapy I. New York: Pergamon. 1979; 113–22.

    Google Scholar 

  8. Skipper HE, Schabel FM, Wilcox WS, Laster WR, Trader MW, Thompson SA. Experimental evaluation of potential anticancer agents. XVIII. Effects of therapy on viability and rate of proliferation of leukemia cells in various anatomic sites. Cancer Chemother Reps 1965; 47: 41–65.

    CAS  Google Scholar 

  9. Schabel FM Jr, Griswold DP Jr, Laster WR Jr, Corbett TH, Lloyd HH. Quantitative evaluation of anticancer agent activity in experimental animals. Pharmacol Ther (A) 1977; 1: 411–435.

    CAS  Google Scholar 

  10. Schabel FM Jr, Griswold DP Jr, Corbett TH, Laster WR Jr. Increasing the therapeutic response rates to anticancer drugs by applying the basic principles of pharmacology. Cancer 1984; 54(6 suppl): 1160–7.

    Article  PubMed  CAS  Google Scholar 

  11. De Vita VT Jr, Young RC, Canellos GP. Combination versus single agent chemostherapy: a review of the basis for selection of drug treatment of cancer. Cancer 1975; 35: 98–110.

    Article  Google Scholar 

  12. Skipper HE, Schabel FM Jr. Tumor stem cell heterogeneity: implications with respect to classification of cancers by chemotherapeutic effect. Cancer Treat Reps 1984; 68: 43–61.

    CAS  Google Scholar 

  13. Martin DS, Balis ME, Fisher B, Frei E, Freireich EJ, Heppner GH, Holland JF, Houghton JA, Houghton PJ, Johnson RK, Mittelman A, Rustum Y, Sawyer RC, Schmid FA, Stolfi RL, Young CW. Role of murine tumor models in cancer treatment research. Cancer Res 1986; 46: 2189–92.

    PubMed  CAS  Google Scholar 

  14. Nicolson GL. Tumor cell instability, diversification and progression to the metastatic phenotype: from oncogene to oncofetal expression. Cancer Res 1987; 47: 1473–87.

    PubMed  CAS  Google Scholar 

  15. Foulds L. Neoplastic Development. New York: Academic Press, 1975.

    Google Scholar 

  16. Nowell PC. The clonal evolution of tumor cell populations. Science 1976; 194: 23–8.

    Article  PubMed  CAS  Google Scholar 

  17. Nowell PC. Mechanisms of tumor progression. Cancer Res 1986; 46: 2203–7.

    PubMed  CAS  Google Scholar 

  18. Heppner GH, Miller BE, Miller FR. Tumor subpopulation interactions in neoplasms. Biochim Biophys Acta 1984; 695: 215–26.

    Google Scholar 

  19. Miller FR. Intratumor immunologic heterogeneity. Cancer Metastasis Rev 1982; 1: 319–34.

    Article  PubMed  CAS  Google Scholar 

  20. Miller FR. Tumor subpopulations intereactions in metastasis. Invasion Metastasis 1983; 3: 234–42.

    PubMed  CAS  Google Scholar 

  21. Walsh JH, Karnes WE, Cuttitta F, Walker A. Autocrine growth factors and solid tumor malignancy. West J Med 1991; 155: 152–63.

    PubMed  CAS  Google Scholar 

  22. Ebbesen P. Cancer and normal ageing. Mech Ageing Develop 1984; 25: 269–83.

    Article  CAS  Google Scholar 

  23. Pecora AL. Impact of stem cell dose on hematopoietic recovery in autologous blood stem cell recipients. Bone Marrow Transplant 1999; 23 (suppl 2): S7–S12.

    Article  PubMed  Google Scholar 

  24. Huang X, Cho S, Spangrude GJ. Hematopoietic stem cells: generation and self-renewal. Cell Death Differentiation 2007; 14: 1851–9.

    Article  CAS  Google Scholar 

  25. Moore KA, Lemischka IR. Stem cells and their niches. Science 2006; 311: 1880–5.

    Article  PubMed  CAS  Google Scholar 

  26. Bradford GB, Williams B, Rossi R, Bertoncello I. Quierscence, cycling and turnover in the primitive hematopoietic stem cell compartment. Exp Hematol 1997; 25: 445–53.

    PubMed  CAS  Google Scholar 

  27. Cheshier SH, Morrison SJ, Liao X, Weissman IL. In vivo proliferation and cell cycle kinetics of long-term self-renewing hematopoietic stem cells. Proc Natl Acad Sci USA 1999; 96: 3120–5.

    Article  PubMed  CAS  Google Scholar 

  28. Drexler HG, Matsuo Y, MacLeod AF. Continuous hematopoietic cell lines as model systems for leukemia-lymphoma research. Leukemia Res 2000; 24: 881–911.

    Article  CAS  Google Scholar 

  29. Pulvertaft RJV. Cytology of Burkitt’s tumor (African lymphoma). Lancet 1964; i: 238–40.

    Article  Google Scholar 

  30. Drexler HG, Zaborski M, Quentmeier H. Cytokine response profiles of human myeloid factor-dependent human leukemia cell lines. Leukemia 1997; 11: 701–8.

    Article  PubMed  CAS  Google Scholar 

  31. Dexler HG (editor). The Leukemia-lymphoma Cll Lines Factsbook. San Diego, CA: Academic Press, 2000.

    Google Scholar 

  32. Drexler HG, Fombonne S, Matsuo Y, Hu ZB, Hamaguchi H, Uphoff CC .P53 alterations in human leukemia-lymphoma cell lines: in vitro artifact or prerequisite for cell immortalization ? Leukemia 2000; 14: 198–206.

    Article  PubMed  CAS  Google Scholar 

  33. Krause DS, Fackler MJ, Civin CI, Stratford May W. CD34: structure, biology and clinical utility. Blood 1996; 87: 1–13.

    PubMed  CAS  Google Scholar 

  34. Berardi AC, Wang A, Levine JD, Lopez P, Scadden DT. Functional isolation and characterization of human hematopoietic stem cells. Science 1995: 267: 104–8.

    Article  PubMed  CAS  Google Scholar 

  35. Furness SGB, McNagny K. Beyond mere markers: functions for CD34 family of sialomucins in hematopoiesis. Immunol Res 2006; 34: 13–32.

    Article  PubMed  CAS  Google Scholar 

  36. Pecora AL, Preti RA, Gleim GW, Jennis A, Zahos K, Cantwell S, Doria L, Isaacs R, Gillio AP, Michelis MA, Brochstein JA. CD34+CD33− cells influence days to engraftment and transfusion requirements in autologous blood stem cell recipients. J Clin Oncol 1998; 16: 2093–104.

    PubMed  CAS  Google Scholar 

  37. Hope KJ, Jin L, Dick JE. Acute myeloid leukemia originates from a hierarchy of leukemia stem cell classes that differ in self-renewal capacity. Nature Immunol 2004; 5: 738–43.

    Article  CAS  Google Scholar 

  38. Ghossein RA, Bhattacharya S, Rosai J. Molecular detection of micrometastases and circulating tumor cells in solid tumors. Clin Cancer Res 1999; 5: 1950–60.

    PubMed  CAS  Google Scholar 

  39. Ashworth TR. A case of cancer in which cells similar to those in the tumors were seen in the blood after death. Australian Med J 1869; 14: 146.

    Google Scholar 

  40. Christopherson W. Cancer cells in the peripheral blood: a second look. Acta Cytol 1965; 9: 169–74.

    PubMed  CAS  Google Scholar 

  41. Moss TJ, Sanders DG. Detection of neuroblastoma cells in blood. J Clin Oncol 1990; 8: 736–40.

    PubMed  CAS  Google Scholar 

  42. Pelkey TJ, Frierson HF, Bruns DE. Molecular and immunological detection of circulating tumor cells and micrometaseses from solid tumors. Clin Chem 1996; 42: 1369–81.

    PubMed  CAS  Google Scholar 

  43. Campana D, Pui CH. Detection of minimal residual disease in acute leukemias: methodological advances and clinical significance. Blood 1995; 85: 1416–34.

    PubMed  CAS  Google Scholar 

  44. Scheel C, Onder T, Karnoub A, Weinberg RA. Adaptation versus selection: the origins of metastatic behavior. Cancer Res 2007; 67: 11476–80.

    Article  PubMed  CAS  Google Scholar 

  45. Talmadge JE. Clonal selection of metastasis within the life history of a tumor. Cancer Res 2007; 67: 11471–5.

    Article  PubMed  CAS  Google Scholar 

  46. Gray JW. Evidence emerges for early metstasis and parallel evolution of primary and meststatic tumors. Cancer Cell 2003; 4: 4–6.

    Article  PubMed  CAS  Google Scholar 

  47. Schmidt-Kittler O, Ragg T, Daskalakis A, Granzow M, Ahr A, Blankenstein TJ, Kaufmann M, Diebold J, Arnholdt H, Mullor P, Bischoff J, Harich D, Schlimok G, Riethmuller G, Eils R, Klein CA. From latent disseminated cells to overt metastasis: genetic analysis of systemic breast cancer progression. Proc Natl Acad Sci USA 2003; 100: 7737–42.

    Article  PubMed  CAS  Google Scholar 

  48. Weigelt B, Glas AM, Wessels LF, Witteveen AT, Peterse JL, Van’t Veer LJ. Gene expression profiles of primary breast tumors maintained in distant metastases. Proc Natl Acad Sci USA 2003; 100: 15901–5.

    Article  PubMed  CAS  Google Scholar 

  49. Gatenby RA, Gillies RJ. A microenvironmental model of carcinogenesis. Nature 2008; 8: 56–61.

    CAS  Google Scholar 

  50. Rudland PS. Stem cells and the development of mammary cancers in experimental rats and in humans. Cancer Mestastasis Rev 1987; 6: 55–83.

    Article  CAS  Google Scholar 

  51. Barrandon Y, Green H. Three clonal types of keratinocyte with different capacities for multiplication. Proc Natl Acad Sci USA 1987; 84: 2302–6.

    Article  PubMed  CAS  Google Scholar 

  52. Locke M, Heywood M, Fawell S, Mackenzie IC. Retention of intrinsic stem cell hierarchies in carcinoma-derived cell lines. Cancer Res 2005; 65: 8944–50.

    Article  PubMed  CAS  Google Scholar 

  53. Fuchs E. Skin stem cells: rising to the surface. J Cell Biol 2008; 180: 273–84.

    Article  PubMed  CAS  Google Scholar 

  54. Teicher BA. Malignant cells, directors of the malignant process: role of transforming growth factor-beta. Cancer Metastasis Rev 20: 133–143, 2001.

    Article  PubMed  CAS  Google Scholar 

  55. Pinkas J, Teicher BA. TGF-b in cancer and as a therapeutic target. Biochem Pharmacol 72: 523–529, 2006.

    Article  PubMed  CAS  Google Scholar 

  56. Teicher BA. Transforming growth factor-b and the immune response to malignant disease. Clin Cancer Res 2007; 13: 6247–51.

    Article  PubMed  CAS  Google Scholar 

  57. Guasch G, Schober M, Pasolli HA, Conn EB, Polak L, Fuchs E. Loss of TGFb signaling destabilizes homeostasis and promotes squamous cell carcinomas in stratified epithelia. Cancer Cell 2007; 12: 313–27.

    Article  PubMed  CAS  Google Scholar 

  58. Wicha MS, Liu S, Dontu G. Cancer stem cells: an old idea – a paradigm shift. Cancer Res 2006; 66: 1883–90.

    Article  PubMed  CAS  Google Scholar 

  59. Kelly PN, Dakic A, Adams JM, Nutt SL, Strasser A. Tumor growth need not be driven by rare cancer stem cells. Science 2007; 317: 337.

    Article  PubMed  CAS  Google Scholar 

  60. Adams JM, Kelly PN, Dakic A, Nutt SL, Strasser A. Response to comment on: “Tumor growth need not be driven by rare cancer stem cells”. Science 2007; 318: 1722d.

    Article  Google Scholar 

  61. Hill RP, Perris R, “Destemming” cancer stem cells. J Natl Cancer Inst 2007; 99: 1435–40.

    Article  PubMed  CAS  Google Scholar 

  62. Hill RP. Identifying cancer stem cells in solid tumors: case not proven. Cancer Res 2006; 66: 1891–6.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beverly A. Teicher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Teicher, B.A. (2009). Tumor Stem Cells and Malignant Cells, One and the Same. In: Teicher, B., Bagley, R. (eds) Stem Cells and Cancer. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1007/978-1-60327-933-8_2

Download citation

Publish with us

Policies and ethics