Skip to main content

Production of Uniparental Embryonic Stem Cell Lines

  • Chapter
  • First Online:
Trends in Stem Cell Biology and Technology

Abstract

Embryonic stem cells, or induced pluripotent cells derived from somatic cells, can yield differentiated progeny with potential applicability for tissue repair. This chapter describes the generation of embryonic stem cells from gamete-derived uniparental embryos. These embryonic stem cells can be patient-derived and potentially histocompatible with the gamete donor. The production of uniparental embryos followed by derivation of embryonic stem cells can be accomplished without producing fertilized zygotes, an advantage that avoids some ethical issues. We describe methods for the generation of uniparental embryonic stem cells from mouse uniparental embryos. We also address evaluation of the integrity of the lines generated, an essential criterion in interpreting differentiation assays in vivo and in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shufaro Y, Reubinoff BE. Therapeutic applications of embryonic stem cells. Best Pract Res Clin Obstet Gynaecol 2004;18:909–27.

    Article  PubMed  Google Scholar 

  2. Keller G. Embryonic stem cell differentiation: emergence of a new era in biology and medicine. Genes Dev 2005;19:1129–55.

    Article  PubMed  CAS  Google Scholar 

  3. Zeng X, Rao MS. Human embryonic stem cells: long term stability, absence of senescence and a potential cell source for neural replacement. Neuroscience 2007;145:1348–58.

    Article  PubMed  CAS  Google Scholar 

  4. Kaufman DS, Thomson JA. Human ES cells—haematopoiesis and transplantation strategies. J Anat 2002;200:243–8.

    Article  PubMed  CAS  Google Scholar 

  5. Boyd AS, Higashi Y, Wood KJ. Transplanting stem cells: potential targets for immune attack. Modulating the immune response against embryonic stem cell transplantation. Adv Drug Deliv Rev 2005;57:1944–69.

    Article  PubMed  CAS  Google Scholar 

  6. Drukker M. Immunogenicity of human embryonic stem cells: can we achieve tolerance?. Springer Semin Immunopathol 2004;26:201–13.

    Article  PubMed  Google Scholar 

  7. Taylor CJ, Bolton EM, Pocock S, Sharples LD, Pedersen RA, Bradley JA. Banking on human embryonic stem cells: estimating the number of donor cell lines needed for HLA matching. Lancet 2005;366:2019–25.

    Article  PubMed  Google Scholar 

  8. Cibelli JB, Grant KA, Chapman KB, et alet al. Parthenogenetic stem cells in nonhuman primates. Science 2002;295:819.

    Article  PubMed  CAS  Google Scholar 

  9. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006;126:663–76.

    Article  PubMed  CAS  Google Scholar 

  10. Barton SC, Surani MA, Norris ML. Role of paternal and maternal genomes in mouse development. Nature 1984;311:374–6.

    Article  PubMed  CAS  Google Scholar 

  11. McGrath J, Solter D. Completion of mouse embryogenesis requires both the maternal and paternal genomes. Cell 1984;37:179–83.

    Article  PubMed  CAS  Google Scholar 

  12. Mann JR, Gadi I, Harbison ML, Abbondanzo SJ, Stewart CL. Androgenetic mouse embryonic stem cells are pluripotent and cause skeletal defects in chimeras: implications for genetic imprinting. Cell 1990;62:251–60.

    Article  PubMed  CAS  Google Scholar 

  13. Robertson EJ, Kaufman MH, Bradley A, Evans MJ. Isolation, properties, and karyotype analysis of pluripotential (EK) cell lines from normal and parthenogenetic embryos. In: Silver LM, Martin GR, Strickland S, editors. Teratocarcinomal Stem Cells Cold Spring Harbor Conferences on Cell Proliferation, 1983, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1983:647–63.

    Google Scholar 

  14. McLaughlin KJ, Kochanowski H, Solter D, Schwarzkopf G, Szabo PE, Mann JR. Roles of the imprinted gene Igf2 and paternal duplication of distal chromosome 7 in the perinatal abnormalities of androgenetic mouse chimeras. Development 1997;124:4897–904.

    PubMed  CAS  Google Scholar 

  15. Kim K, Lerou P, Yabuuchi A, et alet al. Histocompatible embryonic stem cells by parthenogenesis. Science 2007;315:482–6.

    Article  PubMed  CAS  Google Scholar 

  16. Marchant J. Human eggs supply ‘ethical’ stem cells. Nature 2006;441:1038.

    Article  PubMed  CAS  Google Scholar 

  17. Revazova ES, Turovets NA, Kochetkova OD, et alet al. Patient-specific stem cell lines derived from human parthenogenetic blastocysts. Cloning Stem Cells 2007;9:432–49.

    Article  PubMed  CAS  Google Scholar 

  18. Lin G, OuYang Q, Zhou X, et alet al. A highly homozygous and parthenogenetic human embryonic stem cell line derived from a one-pronuclear oocyte following in vitro fertilization procedure. Cell Res 2007;17:999–1007.

    Article  PubMed  CAS  Google Scholar 

  19. Mai Q, Yu Y, Li T, et alet al. Derivation of human embryonic stem cell lines from parthenogenetic blastocysts. Cell Res 2007;17:1008–19.

    Article  PubMed  CAS  Google Scholar 

  20. Revazova ES, Turovets NA, Kochetkova OD, et alet al. HLA homozygous stem cell lines derived from human parthenogenetic blastocysts. Cloning Stem Cells 2008;10:11–24.

    Article  PubMed  CAS  Google Scholar 

  21. Mutter GL. Role of imprinting in abnormal human development. Mutat Res 1997;396:141–7.

    Article  PubMed  CAS  Google Scholar 

  22. Daley GQ, Ahrlund Richter L, Auerbach JM, et alet al. Ethics. The ISSCR guidelines for human embryonic stem cell research. Science 2007;315:603–4.

    Article  PubMed  CAS  Google Scholar 

  23. Hipp J, Atala A. Tissue engineering, stem cells, cloning, and parthenogenesis: new paradigms for therapy. J Exp Clin Assist Reprod 2004;1:3.

    Article  PubMed  Google Scholar 

  24. Jaenisch R. Human cloning—the science and ethics of nuclear transplantation. N Engl J Med 2004;351:2787–91.

    Article  PubMed  CAS  Google Scholar 

  25. McGrath J, Solter D. Nuclear transplantation in the mouse embryo by microsurgery and cell fusion. Science 1983;220:1300–2.

    Article  PubMed  CAS  Google Scholar 

  26. Surani MA, Barton SC. Development of gynogenetic eggs in the mouse: implications for parthenogenetic embryos. Science 1983;222:1034–6.

    Article  PubMed  CAS  Google Scholar 

  27. Kono T, Obata Y, Wu Q, et alet al. Birth of parthenogenetic mice that can develop to adulthood. Nature 2004;428:860–4.

    Article  PubMed  CAS  Google Scholar 

  28. Kawahara M, Wu Q, Takahashi N, et alet al. High-frequency generation of viable mice from engineered bi-maternal embryos. Nat Biotechnol 2007;25:1045–50.

    Article  PubMed  CAS  Google Scholar 

  29. Lagutina I, Lazzari G, Duchi R, Galli C. Developmental potential of bovine androgenetic and parthenogenetic embryos: a comparative study. Biol Reprod 2004;70:400–5.

    Article  PubMed  CAS  Google Scholar 

  30. Kono T, Sotomaru Y, Sato Y, Nakahara T. Development of androgenetic mouse embryos produced by in vitro fertilization of enucleated oocytes. Mol Reprod Dev 1993;34:43–6.

    Article  PubMed  CAS  Google Scholar 

  31. Kaufman MH, Barton SC, Surani MA. Normal postimplantation development of mouse parthenogenetic embryos to the forelimb bud stage. Nature 1977;265:53–5.

    Article  PubMed  CAS  Google Scholar 

  32. Bartolomei MS, Tilghman SM. Genomic imprinting in mammals. Annu Rev Genet 1997;31:493–525.

    Article  PubMed  CAS  Google Scholar 

  33. Barton SC, Ferguson-Smith AC, Fundele R, Surani MA. Influence of paternally imprinted genes on development. Development 1991;113:679–87.

    PubMed  CAS  Google Scholar 

  34. Fundele RH, Norris ML, Barton SC, et alet al. Temporal and spatial selection against parthenogenetic cells during development of fetal chimeras. Development 1990;108:203–11.

    PubMed  CAS  Google Scholar 

  35. Fundele R, Barton SC, Christ B, Krause R, Surani MA. Distribution of androgenetic cells in fetal mouse chimeras. Roux’s Arch Dev Biol 1995;204:484–93.

    Article  Google Scholar 

  36. Nagy A, Sass M, Markkula M. Systematic non-uniform distribution of parthenogenetic cells in adult mouse chimaeras. Development 1989;106:321–4.

    PubMed  CAS  Google Scholar 

  37. Paldi A, Nagy A, Markkula M, Barna I, Dezso L. Postnatal development of parthenogenetic in equilibrium with fertilized mouse aggregation chimeras. Development 1989;105:115–8.

    PubMed  CAS  Google Scholar 

  38. Fundele R, Norris ML, Barton SC, Reik W, Surani MA. Systematic elimination of parthenogenetic cells in mouse chimeras. Development 1989;106:29–35.

    PubMed  CAS  Google Scholar 

  39. Mann JR, Stewart CL. Development to term of mouse androgenetic aggregation chimeras. Development 1991;113:1325–33.

    PubMed  CAS  Google Scholar 

  40. Hernandez L, Kozlov S, Piras G, Stewart CL. Paternal and maternal genomes confer opposite effects on proliferation, cell-cycle length, senescence, and tumor formation. Proc Natl Acad Sci U S A 2003;100:13344–9.

    Article  PubMed  CAS  Google Scholar 

  41. Jagerbauer EM, Fraser A, Herbst EW, Kothary R, Fundele R. Parthenogenetic stem cells in postnatal mouse chimeras. Development 1992;116:95–102.

    PubMed  CAS  Google Scholar 

  42. Eggenschwiler J, Ludwig T, Fisher P, Leighton PA, Tilghman SM, Efstratiadis A. Mouse mutant embryos overexpressing IGF-II exhibit phenotypic features of the Beckwith–Wiedemann and Simpson–Golabi–Behmel syndromes. Genes Dev 1997;11:3128–42.

    Article  PubMed  CAS  Google Scholar 

  43. Narasimha M, Barton SC, Surani MA. The role of the paternal genome in the development of the mouse germ line. Curr Biol 1997;7:881–4.

    Article  PubMed  CAS  Google Scholar 

  44. Burns JL, Jackson DA, Hassan AB. A view through the clouds of imprinting. FASEB J 2001;15:1694–703.

    Article  PubMed  CAS  Google Scholar 

  45. Eckardt S, Leu NA, Bradley HL, Kato H, Bunting KD, Mclaughlin KJ. Hematopoietic reconstitution with androgenetic and gynogenetic stem cells. Genes Dev 2007;21:409–19.

    Article  PubMed  CAS  Google Scholar 

  46. Kyba M, Perlingeiro RC, Daley GQ. HoxB4 confers definitive lymphoid–myeloid engraftment potential on embryonic stem cell and yolk sac hematopoietic progenitors. Cell 2002;109:29–37.

    Article  PubMed  CAS  Google Scholar 

  47. Rideout WM, Hochedlinger K, Kyba M, Daley GQ, Jaenisch R. Correction of a genetic defect by nuclear transplantation and combined cell and gene therapy. Cell 2002;109:17–27.

    Article  PubMed  CAS  Google Scholar 

  48. Mann JR. Properties of androgenetic and parthenogenetic mouse embryonic stem cell lines; are genetic imprints conserved.? Semin Dev Biol 1992;3:77–85.

    Google Scholar 

  49. Allen ND, Barton SC, Hilton K, Norris ML, Surani MA. A functional analysis of imprinting in parthenogenetic embryonic stem cells. Development 1994;120:1473–82.

    PubMed  CAS  Google Scholar 

  50. Szabo P, Mann JR. Expression and methylation of imprinted genes during in vitro differentiation of mouse parthenogenetic and androgenetic embryonic stem cell lines. Development 1994;120:1651–60.

    PubMed  CAS  Google Scholar 

  51. Dean W, Bowden L, Aitchison A, et alet al. Altered imprinted gene methylation and expression in completely ES cell-derived mouse fetuses: association with aberrant phenotypes. Development 1998;125:2273–82.

    PubMed  CAS  Google Scholar 

  52. Humpherys D, Eggan K, Akutsu H, et alet al. Epigenetic instability in ES cells and cloned mice. Science 2001;293:95–7.

    Article  PubMed  CAS  Google Scholar 

  53. Sturm KS, Berger CN, Zhou SX, Dunwoodie SL, Tan S, Tam PP. Unrestricted lineage differentiation of parthenogenetic ES cells. Dev Genes Evol 1997;206:377–88.

    Article  Google Scholar 

  54. Jiang H, Sun B, Wang W, et alet al. Activation of paternally expressed imprinted genes in newly derived germline-competent mouse parthenogenetic embryonic stem cell lines. Cell Res 2007;17:792–803.

    Article  PubMed  CAS  Google Scholar 

  55. Horii T, Kimura M, Morita S, Nagao Y, Hatada I. Loss of genomic imprinting in mouse parthenogenetic embryonic stem cells. Stem Cells 2008;26:79–88.

    Article  PubMed  CAS  Google Scholar 

  56. Nagy A, Gertsenstein M, Vintersten K, Behringer R. Manipulating the Mouse Embryo, Third ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 2003.

    Google Scholar 

  57. Wassarman PM, DePamphilis ML, editors. Guide to Techniques in Mouse Development, Academic Press, Inc., San Diego, CA, 1993.

    Google Scholar 

  58. Mann JR. Deriving and propagating mouse embryonic stem cell lines for studying genomic imprinting. Methods Mol Biol 2001;181:21–39.

    PubMed  CAS  Google Scholar 

  59. Okabe M, Ikawa M, Kominami K, Nakanishi T, Nishimune Y. ‘Green mice’ as a source of ubiquitous green cells. FEBS Lett 1997;407:313–9.

    Article  PubMed  CAS  Google Scholar 

  60. McLaughlin KJ. Production of tetraploid embryos by electrofusion. Methods Enzymol 1993;225:919–30.

    Article  PubMed  CAS  Google Scholar 

  61. Abbondanzo SJ, Gadi I, Stewart CL. Derivation of embryonic stem cell lines. Methods Enzymol 1993;225:803–23.

    Article  PubMed  CAS  Google Scholar 

  62. Kim K, Ng K, Rugg-Gunn PJ, et alet al. Recombination signatures distinguish embryonic stem cells derived by parthenogenesis and somatic cell nuclear transfer. Cell Stem Cell 2007;1(3):346–52.

    Article  PubMed  CAS  Google Scholar 

  63. Stewart CL. Production of chimeras between embryonic stem cells and embryos. Methods Enzymol 1993;225:823–55.

    Article  PubMed  CAS  Google Scholar 

  64. Mann JR. Surgical techniques in production of transgenic mice. Methods Enzymol 1993;225:782–93.

    Article  PubMed  CAS  Google Scholar 

  65. Nagy A, Rossant J.Production of completely ES cell derived fetuses. In: Joyner AL, editor. Gene Targeting, First ed., IRL, Oxford;1993:147–78.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. John McLaughlin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Eckardt, S., McLaughlin, K.J. (2009). Production of Uniparental Embryonic Stem Cell Lines. In: Baharvand, H. (eds) Trends in Stem Cell Biology and Technology. Humana Press. https://doi.org/10.1007/978-1-60327-905-5_2

Download citation

Publish with us

Policies and ethics