Skip to main content

Diagnostic Value II: Hematopoietic Malignancies

  • Chapter
Telomeres and Telomerase in Cancer

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

  • 1243 Accesses

Abstract

Telomerase activity has been suggested to play a critical role in hematopoietic stem cell (HSC) maintenance. The most primitive HSCs, long-term HSCs, present in specific niches where they can remain mitotically quiescent for long periods of time, exhibiting a low level of telomerase activity. Short-term HSCs undergo asymmetric cell divisions with upregulated telomerase activity. Leukemic stem cells (LSCs) have shortened telomeres with high telomerase activity, and the downstream rapidly cycling blasts have more shortened telomeres with higher telomerase activity. This indicates that telomerase activity, hTERT expression, or both are valuable for diagnostic and prognostic factor in treating leukemia patients. Telomere biology in chronic myeloid leukemia model also suggests that telomere length may be a good parameter to measure response to anticancer therapy. To prove the validity and efficacy of LSC-directed chemotherapy regimens, further study is required on the basis of telomere biology in normal and LSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Reya T, Morrison SJ, Clarke MF, et al. Stem cells, cancer, and cancer stem cells. Nature 2001;414:105–11.

    Article  CAS  PubMed  Google Scholar 

  2. Armanios M and Greider CW. Telomerase and Cancer stem cells. In: Cold Spring Harbor Symposia on Quantitative Biology, Vol. LXX. Cold Spring Harbor Laboratory Press, Wood-bury, NY, 2005:205–208.

    Google Scholar 

  3. Hiyama E and Hiyama K. Telomere and telomerase in stem cells. Br J Cancer 2007;96:1020–1024.

    Article  CAS  PubMed  Google Scholar 

  4. Wu AM, Till JE, Siminovitch, et al. A cytological study of the capacity for differentiation of normal hemopoietic colony-forming cells. J Cell Physiol 1967;69:177–184.

    Article  CAS  PubMed  Google Scholar 

  5. Martinez-Agosto JA, Mikkiola HK, Hartenstein V, et al. The hematopoietic stem cell and its niche: a comparative review. Genes Dev 2007;21:3044–3060.

    Article  CAS  PubMed  Google Scholar 

  6. Chumsri S, Matsui W, and Burger AM. Therapeutic implication of leukemic stem cell pathways. Clin Cancer Res 2007;13:6549–6553.

    Article  CAS  PubMed  Google Scholar 

  7. McCulloch E. Stem cells in normal and leukemic hemopoiesis (Henry Stratton Lecture, 1982). Blood 1983;62:1–3.

    CAS  PubMed  Google Scholar 

  8. Kamel-Reid S and Dick JE. Engraftment of immune-deficient mice with human hemato-poietic stem cells. Science 1988;242:2706–2709.

    Article  Google Scholar 

  9. Lapidot, Sirard C, Vormoor J, et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 1994;367:645–648.

    Article  Google Scholar 

  10. Hope KJ, Jin L, and Dick JE. Acute myeloid leukemia originate from a hierarchy of leukemic stem cell classes that differ in self-renewal capacity. Nat Immunol 2004;5:738–743.

    Article  CAS  PubMed  Google Scholar 

  11. Gal H, Amariglo N, Trakhtenbrot L, et al. Gene expression profiles of AML derived stem cells; similarity to hematopoietic stem cells. Leukemia 2006;20:2147–2154.

    Article  CAS  PubMed  Google Scholar 

  12. Rufer N, Dragowska W, Thornbury G, et al. Telomere length dynamics in human lymphocyte subpopulations measured by flow cytometry. Nat Biotechnol 1998;16:743–747.

    Article  CAS  PubMed  Google Scholar 

  13. Martens UM, Zijlmans JM, Poon SS, et al. Short telomeres on human chromosome 17p. Nat Genet 1998;18:76–80.

    CAS  PubMed  Google Scholar 

  14. Swiggers SJ, Kuijpers MA, de Cort MJ, et al. Critically short telomeres in acute myeloid leukemia with loss or gain of parts of chromosomes. Genes Chromosomes Cancer 2006;45:247–256.

    Article  CAS  PubMed  Google Scholar 

  15. Ho AD. Kinetics and symmetry of division of hematopoietic stem cells. Exp Hematol 2005;33:1–8.

    Article  CAS  PubMed  Google Scholar 

  16. Hiyama K, Hirai Y, Koizumi S, et al. Activation of telomerase in human lymphocytes and hematopoietic progenitor cells. J Immunol 1995;155:3711–3715.

    CAS  PubMed  Google Scholar 

  17. Counter CM, Gupta J, Harley CB, et al. Telomerase activity in normal leukocytes and in hematologic malignancies. Blood 1995;85:2315–2320.

    CAS  PubMed  Google Scholar 

  18. Chiu CP, Dragowska W, and Kim NW. Differential expression of telomerase activity in hematopoietic progenitors from adult human bone marrow. Stem Cells 1996;14:239–248.

    Article  CAS  PubMed  Google Scholar 

  19. Zhang W, Pietyszek MA, Kobayashi T, et al. Telomerase activity in human acute myeloge-nous leukemia: inhibition of telomerase activity by differentiation-inducing agents. Clin Cancer Res 1996;2:799–803.

    CAS  PubMed  Google Scholar 

  20. Xu D, Gruber A, Bjorkholm M, et al. Suppression of telomerase reverse transcriptase (hTERT) expression in differentiated HL-60 cells: regulatory mechanisms. Br J Cancer 1999;80:1156–1161.

    Article  CAS  PubMed  Google Scholar 

  21. Ohyashiki JH, Sashida G, Tauchi T, et al. Telomeres and telomerase in hematologic neoplasia. Oncogene 2002;21:680–687.

    Article  CAS  PubMed  Google Scholar 

  22. Sakabe H, Yahata N, Kimura T, et al. Human cord blood-derived primitive progenitors are enriched in CD34+ c-kit cells: correlation between long-term culture-initiating cells and telomerase expression. Leukemia 1998;12:728–734.

    Article  CAS  PubMed  Google Scholar 

  23. Yui J, Chiu CP, and Lansdorp PM. Telomerase activity in candidate stem cells from fetal liver and adult bone marrow. Blood 1998;91:3255–3262.

    CAS  PubMed  Google Scholar 

  24. Gammaitoni L, Weisel KC, Gunetti M, et al. Elevated telomerase activity and minimal telomere loss in cord blood long-term cultures with extensive stem cell replication. Blood 2004;103:4440–4448.

    Article  CAS  PubMed  Google Scholar 

  25. Järås M, Edqvist A, Rebetz J, et al. Human short-term repopulating cells have enhanced telomerase reverse transcriptase expression. Blood 2006;108:1084–1091.

    Article  PubMed  Google Scholar 

  26. Shay JW, Werbin H, and Wright WE. Telomeres and telomerase in human leukemias. Leukemia 1996;10:1255–1261.

    CAS  PubMed  Google Scholar 

  27. Vaziri H, Dragowska W, Allosopp RC, et al. Evidence for a mitotic clock in human hematopoietic stem cells: loss of telomeric DNA with age. Proc Natl Acad Sci USA 1994;91:9857–9860.

    Article  CAS  PubMed  Google Scholar 

  28. Iwama H, Ohyashiki K, Ohyashiki JH, et al. Telomeric length and telomerase activity vary with age in peripheral blood cells obtained from normal individuals. Hum Genet 1998;102:397–402.

    Article  CAS  PubMed  Google Scholar 

  29. Te Van Ziffle JA, Baerlocher GM, and Lansdorp PM. Telomere length in subpopulations of human hematopoietic cells. Stem Cells 2003;21:654–660.

    Article  Google Scholar 

  30. Norrback K-F, Dahlenborg K, Carlsson R, et al. Telomerase activation in normal B lymphocytes and non-Hodgkin's lymphomas. Blood 1996;88:222–229.

    CAS  PubMed  Google Scholar 

  31. Igarashi H and Sakaguchi N. Telomerase activity is induced by the stimulation to antigen receptor in human peripheral lymphocytes. Biochem Biophys Res Commun 1996;219: 649–655.

    Article  CAS  PubMed  Google Scholar 

  32. Igarashi H and Sakaguchi N. Telomerase activity is induced in human peripheral B lymphocytes by the stimulation to antigen receptor. Blood 1997;89:1299–1307.

    CAS  PubMed  Google Scholar 

  33. Weng N-P, Levine BL, June CH, et al. Regulated expression of telomerase activity in human T lymphocyte development and activation. J Exp Med 1996;183:2471–2479.

    Article  CAS  PubMed  Google Scholar 

  34. Pan C, Xue BH, Ellis TM, et al. Changes in telomerase activity and telomere length during human T lymphocyte senescence. Exp Cell Res 1997;231:346–353.

    Article  CAS  PubMed  Google Scholar 

  35. Norrback KF and Roos G. Telomeres and telomerase in normal and malignant haematopoietic cells. Eur J Cancer 1997;33:774–780.

    Article  CAS  PubMed  Google Scholar 

  36. Ribeiro RM, Mohri H, Ho DD, et al. In vivo dynamics of T cell activation, proliferation, and death in HIV-1 infection: why are CD4+ but not CD8+ T cells depleted? Proc Natl Acad Sci USA 2002;99:15572–15577.

    Article  CAS  PubMed  Google Scholar 

  37. Plunkett FJ, Soares MV, Annels N, et al. The flow cytometric analysis of telomere length in antigen-specific CD8+ T cells during acute Epstein–Barr virus infection. Blood 2001;97:700–707.

    Article  CAS  PubMed  Google Scholar 

  38. Notaro R, Cimmino A, Tabarini D, et al. In vivo telomere dynamics of human hematopoietic stem cells. Proc Natl Acad Sci USA 1997;94:13782–13785.

    Article  CAS  PubMed  Google Scholar 

  39. Wynn RF, Cross MA, Hatton C, et al. Accelerated telomere shortening in young recipients of allogeneic bone-marrow transplants. Lancet 1998;351:178–181.

    Article  CAS  PubMed  Google Scholar 

  40. Lee J, Kook H, Chung I, et al. Telomere length changes in patients undergoing hematopoietic stem cell transplantation. Bone Marrow Transplant 1999;24:411–415.

    Article  CAS  PubMed  Google Scholar 

  41. Akiyama M, Hoshi Y, Sakurai H, et al. Shortening of telomeres in recipients of both auto-logous and allogeneic hematopoietic stem cell transplantation. Bone Marrow Transplant 1998;21:167–171.

    Article  CAS  PubMed  Google Scholar 

  42. Rufer N, Brummendorf TH, Chpuis B, et al. Accelerated telomere shortening in hematologi-cal lineages is limited to the first year following stem cell transplantation. Blood 2001;97:575–577.

    Article  CAS  PubMed  Google Scholar 

  43. Rocci A, Ricca I, Dellacasa C, et al. Long-term lymphoma survivors following high-dose chemotherapy and autograft: evidence of permanent telomere shortening in myeloid cells, associated with marked reduction of bone marrow hematopoietic stem cell reservoir. Exp Hematol 2007;35:673–681.

    Article  CAS  PubMed  Google Scholar 

  44. Bhatia R, Van Heijzen K, Palmer A, et al. Longitudinal assessment of hematopoietic abnormalities after autologous hematopoietic cell transplantation for lymphoma. J Clin Oncol 2005;23:699–711.

    Article  Google Scholar 

  45. Widmann T, Kneer H, König J, et al. Sustained telomere erosion due to increased stem cell turnover during triple autologous hematopoietic stem cell transplantation. Exp Hematol 2008;36:104–110.

    Article  CAS  PubMed  Google Scholar 

  46. Lahav M, Uziel O, Kestenbaum MF, et al. Nonmyeloablative conditioning does not prevent telomere shortening after allogeneic stem cell transplantation. Transplantation 2005;80: 969–976.

    Article  PubMed  Google Scholar 

  47. Sashida G, Ohyashiki JH, Kubota N, et al. Marked telomere fluctuation of leukocytes during graft-versus-host disease in allogeneic stem cell transplantation. Int J Mol Med 2005;16:883–888.

    CAS  PubMed  Google Scholar 

  48. Pipes BL, Tsang T, Peng SX, et al. Telomere length changes after umbilical cord blood transplant. Transfusion 2006;46:1038–1043.

    Article  CAS  PubMed  Google Scholar 

  49. Allsopp RC, Morin GB, Homer JW, et al. Effect of TERT over-expression on the long-term transplantation capacity of hematopoetic stem cells. Nat Med 2003;9:369–371.

    Article  CAS  PubMed  Google Scholar 

  50. Röth A, Baerlocher GM, et al. Telomere loss, senescence, and genetic instability in CD4+ T lymphocytes overexpressing hTERT. Blood 2005;106:43–50.

    Article  PubMed  Google Scholar 

  51. Greaves M. Is telomerase activity in cancer due to selection of stem cells and differentiation arrest? Trends Genet 1996;12:127–128.

    Article  CAS  PubMed  Google Scholar 

  52. Shay JW and Wright WE. The reactivation of telomerase activity in cancer progression. Trends Genet 1996;12:129–131.

    Article  CAS  PubMed  Google Scholar 

  53. Drummond MW, Balabanov S, Holyoake TL, et al. Concise review: telomere biology in normal and leukemic hematopoietic stem cells. Stem Cells 2007;25:1853–1861.

    Article  CAS  PubMed  Google Scholar 

  54. Drummond M, Hoare SF, Monaqhan A, et al. Dysregulated expression of the major telomerase components in leukaemic stem cells. Leukemia 2005;19:381–389.

    Article  CAS  PubMed  Google Scholar 

  55. Ohyashiki K, Ohyashiki JH, Iwama H, et al. Telomerase activity and cytogenetic changes in chronic myeloid leukemia with disease progression. Leukemia 1997;11:190–194.

    Article  CAS  PubMed  Google Scholar 

  56. Iwama H, Ohyashiki K, Ohyashiki JH, et al. The relationship between telomere length and therapy-associated cytogenetic responses in patients with chronic myeloid leukemia. Cancer 1997;79:1552–1560.

    Article  CAS  PubMed  Google Scholar 

  57. Ohyashiki K, Iwama H, Tauchi T, et al. Telomere dynamics and genetic instability in disease progression of chronic myeloid leukemia. Leuk Lymphoma 2000;40:49–56.

    Article  CAS  PubMed  Google Scholar 

  58. Boultwood J, Peniket A, and Watkins F. Telomere length shortening in chronic myelogenous leukemia is associated with reduced time to accelerated phase. Blood 2000;96(1):358–361.

    CAS  PubMed  Google Scholar 

  59. Brummendorf TH, Holyake TL, Rufer N, et al. Prognostic implications of differences in telomere length between normal and malignant cells from patients with chronic myeloid leukemia measured by flow cytometry. Blood 2000;95:1883–1890.

    CAS  PubMed  Google Scholar 

  60. Brümmendorf TH, Ersöz I, Hartmann U, et al. Telomere length in peripheral blood granu-locytes reflects response to treatment with imatinib in patients with chronic myeloid leukemia. Blood 2003;101:375–376.

    Article  PubMed  Google Scholar 

  61. Ohyashiki JH, Ohyashiki K, Iwama H, et al. Telomere length and hTERT expression in patients with acute myeloid leukemia correlates with chromosomal abnormalities. Clin Cancer Res 1997,3:619–625.

    CAS  PubMed  Google Scholar 

  62. Xu D, Gruber A, Peterson C, et al. Telomerase activity and the expression of telomerase components in acute myelogenous leukaemia. Br J Haematol 1998;102:1367–1375.

    Article  CAS  PubMed  Google Scholar 

  63. Engelhardt M, Mackebzie K, Drullinsky P, et al. Telomerase activity and telomere length in acute and chronic leukemia, pre- and post-ex vivo culture. Cancer Res 2000;60:610–617.

    CAS  PubMed  Google Scholar 

  64. Hartmann U and Brummendorf TH. Telomere length and hTERT expression in patients with acute myeloid leukemia correlates with chromosomal abnormalities. Haematologica 2005;90:307–316.

    CAS  PubMed  Google Scholar 

  65. Ohyashiki JH, Hisatomi H, Nagao K, et al. Quantitative relationship between functionally active telomerase and major telomerase components (hTERT and hTR) in acute leukaemia cells. Br J Cancer 2005;92:1942–1947.

    Article  CAS  PubMed  Google Scholar 

  66. Ohyashiki JH, Hayashi S, Yahata N, et al. Impaired telomere regulation mechanism by TRF1 (telomere-binding protein), but not TRF2 expression, in acute leukemia cells. Int J Oncol 2001;18:593–598.

    CAS  PubMed  Google Scholar 

  67. Ohyashiki JH, Ohyashiki K, Fujimura T, et al. Telomere shortening associated with disease evolution patterns in myelodysplastic syndromes. Cancer Res 1994;54:3557–3560.

    CAS  PubMed  Google Scholar 

  68. Greenberg P, Cox C, LeBeau MM, et al. International scoring system for evaluating prognosis in myelodysplastic syndromes. Blood 1997;89:2079–2088.

    CAS  PubMed  Google Scholar 

  69. Ohyashiki JH, Iwama H, Yahata N, et al. Telomere stability is frequently impaired in high-risk groups of patients with myelodysplastic syndromes. Clin Cancer Res 1999;5:1155–1160.

    CAS  PubMed  Google Scholar 

  70. Li B, Yang J, Andrews C, et al. Telomerase activity in preleukemia and acute myelogenous leukemia. Leuk Lymphoma 2000;36:579–587.

    Article  PubMed  Google Scholar 

  71. Ohyashiki K, Iwama H, Yahata N, et al. Telomere dynamics in myelodysplastic syndromes and acute leukemic transformation. Leuk Lymphoma 2001;42:291–299.

    Article  CAS  PubMed  Google Scholar 

  72. Brümmendorf TH, Maciejewski JP, Mak J, et al. Telomere length in leukocyte subpopula-tions of patients with aplastic anemia. Blood 2001;97:895–900.

    Article  PubMed  Google Scholar 

  73. Sashida G, Ohyashiki JH, Nakajima A, et al. Telomere dynamics in myelodysplastic syndrome determined by telomere measurement of marrow metaphases. Clin Cancer Res 2003;9:1489–1496.

    CAS  PubMed  Google Scholar 

  74. Shimamura A. Inherited bone marrow failure syndromes: molecular features. Hematol Am Soc Hematol Educ Program 2006;63–71.

    Google Scholar 

  75. MIM 127550 — Dyskeratosis congenital, autosomal dominant (http://www.ncbi.nlm.nih.gov/ entrez/dispomim.cgi?ID=127550).

  76. Yamaguchi H, Baerlocher GM, Lansdorp PM, et al. Mutations of the human telomerase RNA gene (TERC) in aplastic anemia and myelodysplastic syndrome. Blood 2003;102:916–918.

    Article  CAS  PubMed  Google Scholar 

  77. Yamaguchi H, Calado RT, Ly H, et al. Mutations in TERT, the gene for telomerase reverse transcriptase, in aplastic anemia. N Engl J Med 2005;352:1413–1424.

    Article  CAS  PubMed  Google Scholar 

  78. Ohyashiki K, Shay JW, and Ohyashiki JH. Lack of mutations of the human telomerase RNA gene (hTERC) in myelodysplastic syndrome. Haematologica 2005;90:691.

    PubMed  Google Scholar 

  79. Field JJ, Mason PJ, An P, et al. Low frequency of telomerase RNA mutations among children with aplastic anemia or myelodysplastic syndrome. J Pediatr Hematol Oncol 2006;28:450–453.

    Article  CAS  PubMed  Google Scholar 

  80. Takeuchi J, Ly H, Yamaguchi H, et al. Identification and functional characterization of novel telomerase variant alleles in Japanese patients with bone-marrow failure syndromes. Blood Cells Mol Dis 2008;40:185–191.

    Article  CAS  PubMed  Google Scholar 

  81. Rossi DJ, Bryder D, Seita J, et al. Deficiencies in DNA damage repair limit the function of haematopoietic stem cells with age. Nature 2007;447:725–729.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are indebted to Prof. J. Patrick Barron of the International Medical Communications Center of Tokyo Medical University for his review of this manuscript.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media, LLC

About this chapter

Cite this chapter

Junko, H.O., Kazuma, O. (2009). Diagnostic Value II: Hematopoietic Malignancies. In: Hiyama, K. (eds) Telomeres and Telomerase in Cancer. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1007/978-1-60327-879-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-879-9_9

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-306-0

  • Online ISBN: 978-1-60327-879-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics