Skip to main content

Mouse Model: Telomeres and Telomerase in Stem Cell and Cancer

  • Chapter
Telomeres and Telomerase in Cancer

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

  • 1280 Accesses

Abstract

Ageing is characterized by declines of adult stem cell function and regenerative reserves. The telomere has been regarded as a mitotic clock that controls cellular ageing. Telomeres are nucleoprotein complexes that consist of simple DNA repeats and associated binding proteins. In the absence of telomerase activity, telomere shortening occurs with each round of cell division. Critically short telomeres (dysfunctional telomeres) can be detected as DNA double strand breaks, thus activating DNA damage pathway and lead to cell cycle arrest, or, in some cases, apoptosis. Independent lines of evidence indicate that telomere dysfunction induces both cell intrinsic checkpoint and cell extrinsic checkpoint leading to an age-associated stem cell dysfunction. Genetically modified mice lacking telomerase activity proved an invaluable model for probing the in vivo consequences of replicative senescence and telomere-based stem cell ageing. Disturbing genes that regulate DNA damage checkpoints in response to telomere dysfunction partially rescued the degenerative phenotypes and ageing of adult stem cells, but in some cases increased tumorigenesis. Emerging evidence indicates that fine-tuning DNA damage checkpoints in response to telomere dysfunction could improve adult stem cell function, and meanwhile keep the tumor suppression mechanisms intact. Therefore, understanding the in vivo function of genes regulating telomere dysfunction during ageing could have important implication for regenerative medicine and cancer therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Blackburn EH. Telomeres. Trends Biochem Sci 1991;16:378–81.

    Article  CAS  PubMed  Google Scholar 

  2. Blackburn EH. Switching and signaling at the telomere. Cell 2001;106:661–73.

    Article  CAS  PubMed  Google Scholar 

  3. Griffith JD, Comeau L, Rosenfield S, et al. Mammalian telomeres end in a large duplex loop. Cell 1999;97:503–14.

    Article  CAS  PubMed  Google Scholar 

  4. Zijlmans JM, Martens UM, Poon SS, et al. Telomeres in the mouse have large interchromosomal variations in the number of T2AG3 repeats. Proc Natl Acad Sci USA 1997;94:7423–8.

    Article  CAS  PubMed  Google Scholar 

  5. Harley CB, Futcher AB, Greider CW. Telomeres shorten during ageing of human fibroblasts. Nature 1990;345:458–60.

    Article  CAS  PubMed  Google Scholar 

  6. Shay JW, Wright WE. Hayflick, his limit, and cellular ageing. Nat Rev Mol Cell Biol 2000;1:72–6.

    Article  CAS  PubMed  Google Scholar 

  7. Sfeir AJ, Chai W, Shay JW, Wright WE. Telomere-end processing the terminal nucleotides of human chromosomes. Mol Cell 2005;18:131–8.

    Article  CAS  PubMed  Google Scholar 

  8. von Zglinicki T. Oxidative stress shortens telomeres. Trends Biochem Sci 2002;27:339–44.

    Article  Google Scholar 

  9. Chiu CP, Harley CB. Replicative senescence and cell immortality: the role of telomeres and telomerase. Proc Soc Exp Biol Med 1997;214:99–106.

    CAS  PubMed  Google Scholar 

  10. d'Adda di Fagagna F, Reaper PM, Clay-Farrace L, et al. A DNA damage checkpoint response in telomere-initiated senescence. Nature 2003;426:194–8.

    Article  PubMed  CAS  Google Scholar 

  11. Chin L, Artandi SE, Shen Q, et al. p53 deficiency rescues the adverse effects of telomere loss and cooperates with telomere dysfunction to accelerate carcinogenesis. Cell 1999;97:527–38.

    Article  CAS  PubMed  Google Scholar 

  12. Herbig U, Jobling WA, Chen BP, Chen DJ, Sedivy JM. Telomere shortening triggers senescence of human cells through a pathway involving ATM, p53, and p21(CIP1), but not p16(INK4a). Mol Cell 2004;14:501–13.

    Article  CAS  PubMed  Google Scholar 

  13. Greider CW. Telomere length regulation. Annu Rev Biochem 1996;65:337–65.

    Article  CAS  PubMed  Google Scholar 

  14. Meyerson M, Counter CM, Eaton EN, et al. hEST2, the putative human telomerase catalytic subunit gene, is up-regulated in tumor cells and during immortalization. Cell 1997;90:785–95.

    Article  CAS  PubMed  Google Scholar 

  15. Lingner J, Hughes TR, Shevchenko A, Mann M, Lundblad V, Cech TR. Reverse transcrip-tase motifs in the catalytic subunit of telomerase. Science 1997;276:561–7.

    Article  CAS  PubMed  Google Scholar 

  16. Kim NW, Piatyszek MA, Prowse KR, et al. Specific association of human telomerase activity with immortal cells and cancer. Science 1994;266:2011–5.

    Article  CAS  PubMed  Google Scholar 

  17. Bodnar AG, Ouellette M, Frolkis M, et al. Extension of life-span by introduction of telomerase into normal human cells. Science 1998;279:349–52.

    Article  CAS  PubMed  Google Scholar 

  18. Ju Z, Rudolph KL. Telomeres and telomerase in cancer stem cells. Eur J Cancer 2006;42:1197–203.

    Article  CAS  Google Scholar 

  19. Zimmermann S, Martens UM. Telomere dynamics in hematopoietic stem cells. Curr Mol Med 2005;5:179–85.

    Article  CAS  PubMed  Google Scholar 

  20. Martens UM, Brass V, Engelhardt M, et al. Measurement of telomere length in haematopoietic cells using in situ hybridization techniques. Biochem Soc Trans 2000;28:245–50.

    CAS  PubMed  Google Scholar 

  21. Vaziri H, Dragowska W, Allsopp RC, Thomas TE, Harley CB, Lansdorp PM. Evidence for a mitotic clock in human hematopoietic stem cells: loss of telomeric DNA with age. Proc Natl Acad Sci USA 1994;91:9857–60.

    Article  CAS  PubMed  Google Scholar 

  22. Van Zant G, Liang Y. The role of stem cells in aging. Exp Hematol 2003;31:659–72.

    Article  PubMed  CAS  Google Scholar 

  23. Lee HW, Blasco MA, Gottlieb GJ, Horner JW, 2nd, Greider CW, DePinho RA. Essential role of mouse telomerase in highly proliferative organs. Nature 1998;392:569–74.

    Article  CAS  PubMed  Google Scholar 

  24. Ju Z, Rudolph L. Telomere dysfunction and stem cell ageing. Biochimie 2007;90:24–32.

    Article  PubMed  CAS  Google Scholar 

  25. Counter CM, Gupta J, Harley CB, Leber B, Bacchetti S. Telomerase activity in normal leukocytes and in hematologic malignancies. Blood 1995;85:2315–20.

    CAS  PubMed  Google Scholar 

  26. Allsopp RC, Morin GB, DePinho R, Harley CB, Weissman IL. Telomerase is required to slow telomere shortening and extend replicative lifespan of HSCs during serial transplantation. Blood 2003;102:517–20.

    Article  CAS  PubMed  Google Scholar 

  27. Allsopp RC, Morin GB, Horner JW, DePinho R, Harley CB, Weissman IL. Effect of TERT over-expression on the long-term transplantation capacity of hematopoietic stem cells. Nat Med 2003;9:369–71.

    Article  CAS  PubMed  Google Scholar 

  28. Flores I, Cayuela ML, Blasco MA. Effects of telomerase and telomere length on epidermal stem cell behavior. Science 2005;309:1253–6.

    Article  CAS  PubMed  Google Scholar 

  29. Lechel A, Satyanarayana A, Ju Z, et al. The cellular level of telomere dysfunction determines induction of senescence or apoptosis in vivo. EMBO Rep 2005;6:275–81.

    Article  CAS  PubMed  Google Scholar 

  30. Aladjem MI, Spike BT, Rodewald LW, et al. ES cells do not activate p53-dependent stress responses and undergo p53-independent apoptosis in response to DNA damage. Curr Biol 1998;8:145–55.

    Article  CAS  PubMed  Google Scholar 

  31. Hong Y, Stambrook PJ. Restoration of an absent G1 arrest and protection from apoptosis in embryonic stem cells after ionizing radiation. Proc Natl Acad Sci USA 2004;101:14443-–8.

    Article  CAS  PubMed  Google Scholar 

  32. Morrison SJ, Prowse KR, Ho P, Weissman IL. Telomerase activity in hematopoietic cells is associated with self-renewal potential. Immunity 1996;5:207–16.

    Article  CAS  PubMed  Google Scholar 

  33. Zimmermann S, Voss M, Kaiser S, Kapp U, Waller CF, Martens UM. Lack of telomerase activity in human mesenchymal stem cells. Leukemia 2003;17:1146–9.

    Article  CAS  PubMed  Google Scholar 

  34. Rossi DJ, Bryder D, Seita J, Nussenzweig A, Hoeijmakers J, Weissman IL. Deficiencies in DNA damage repair limit the function of haematopoietic stem cells with age. Nature 2007;447:725–9.

    Article  CAS  PubMed  Google Scholar 

  35. Rudolph KL, Millard M, Bosenberg MW, DePinho RA. Telomere dysfunction and evolution of intestinal carcinoma in mice and humans. Nat Genet 2001;28:155–9.

    Article  CAS  PubMed  Google Scholar 

  36. Wright WE, Shay JW. The two-stage mechanism controlling cellular senescence and immortalization. Exp Gerontol 1992;27:383–9.

    Article  CAS  PubMed  Google Scholar 

  37. Lapidot T, Sirard C, Vormoor J, et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 1994;367:645–8.

    Article  CAS  PubMed  Google Scholar 

  38. Singh SK, Clarke ID, Terasaki M, et al. Identification of a cancer stem cell in human brain tumors. Cancer Res 2003;63:5821–8.

    CAS  PubMed  Google Scholar 

  39. Al-Hajj M, Clarke MF. Self-renewal and solid tumor stem cells. Oncogene 2004;23:7274– 82.

    Article  CAS  PubMed  Google Scholar 

  40. O'Brien CA, Pollett A, Gallinger S, Dick JE. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 2007;445(7123):106–10.

    Article  PubMed  CAS  Google Scholar 

  41. Ricci-Vitiani L, Lombardi DG, Pilozzi E, Biffoni M, Todaro M, Peschle C, De Maria R. Identification and expansion of human colon-cancer-initiating cells. Nature 2007;445 (7123):111–5.

    Article  CAS  PubMed  Google Scholar 

  42. Blasco MA, Lee HW, Hande MP, et al. Telomere shortening and tumor formation by mouse cells lacking telomerase RNA. Cell 1997;91:25–34.

    Article  CAS  PubMed  Google Scholar 

  43. Rudolph KL, Chang S, Lee HW, et al. Longevity, stress response, and cancer in aging telomerase-deficient mice. Cell 1999;96:701–12.

    Article  CAS  PubMed  Google Scholar 

  44. Herrera E, Samper E, Martin-Caballero J, Flores JM, Lee HW, Blasco MA. Disease states associated with telomerase deficiency appear earlier in mice with short telomeres. EMBO J 1999;18:2950–60.

    Article  CAS  PubMed  Google Scholar 

  45. Herrera E, Samper E, Blasco MA. Telomere shortening in mTR−/−,; embryos is associated with failure to close the neural tube. EMBO J 1999;18:1172–81.

    Article  CAS  PubMed  Google Scholar 

  46. Leri A, Franco S, Zacheo A, et al. Ablation of telomerase and telomere loss leads to cardiac dilatation and heart failure associated with p53 upregulation. EMBO J 2003;22:131–9.

    Article  CAS  PubMed  Google Scholar 

  47. Hemann MT, Strong MA, Hao LY, Greider CW. The shortest telomere, not average telomere length, is critical for cell viability and chromosome stability. Cell 2001;107:67–77.

    Article  CAS  PubMed  Google Scholar 

  48. Greenberg RA, Chin L, Femino A, et al. Short dysfunctional telomeres impair tumorigenesis in the INK4a(delta2/3) cancer-prone mouse. Cell 1999;97:515–25.

    Article  CAS  PubMed  Google Scholar 

  49. Farazi PA, Glickman J, Jiang S, Yu A, Rudolph KL, DePinho RA. Differential impact of telomere dysfunction on initiation and progression of hepatocellular carcinoma. Cancer Res 2003;63:5021–7.

    CAS  PubMed  Google Scholar 

  50. Artandi SE, Chang S, Lee SL, et al. Telomere dysfunction promotes non-reciprocal translocations and epithelial cancers in mice. Nature 2000;406:641–5.

    Article  CAS  PubMed  Google Scholar 

  51. Gonzalez-Suarez E, Samper E, Flores JM, Blasco MA. Telomerase-deficient mice with short telomeres are resistant to skin tumorigenesis. Nat Genet 2000;26:114–7.

    Article  CAS  PubMed  Google Scholar 

  52. Choudhury AR, Ju Z, Djojosubroto MW, et al. Cdkn1a deletion improves stem cell function and lifespan of mice with dysfunctional telomeres without accelerating cancer formation. Nat Genet 2007;39:99–105.

    Article  CAS  PubMed  Google Scholar 

  53. Harrison DE, Astle CM. Loss of stem cell repopulating ability upon transplantation. Effects of donor age, cell number, and transplantation procedure. J Exp Med 1982;156:1767–79.

    Article  CAS  PubMed  Google Scholar 

  54. Conboy IM, Conboy MJ, Wagers AJ, Girma ER, Weissman IL, Rando TA. Rejuvenation of aged progenitor cells by exposure to a young systemic environment. Nature 2005;433:760–4.

    Article  CAS  PubMed  Google Scholar 

  55. Ju Z, Jiang H, Jaworski M, et al. Telomere dysfunction induces environmental alterations limiting hematopoietic stem cell function and engraftment. Nat Med 2007;13:742–7.

    Article  CAS  PubMed  Google Scholar 

  56. Campisi J. Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors. Cell 2005;120:513–22.

    Article  CAS  PubMed  Google Scholar 

  57. Greenberg RA, Allsopp RC, Chin L, Morin GB, DePinho RA. Expression of mouse telomerase reverse transcriptase during development, differentiation and proliferation. Oncogene 1998;16:1723–30.

    Article  CAS  PubMed  Google Scholar 

  58. Hao LY, Armanios M, Strong MA, et al. Short telomeres, even in the presence of telomerase, limit tissue renewal capacity. Cell 2005;123:1121–31.

    Article  CAS  PubMed  Google Scholar 

  59. Yuan X, Ishibashi S, Hatakeyama S, et al. Presence of telomeric G-strand tails in the telomerase catalytic subunit TERT knockout mice. Genes Cells 1999;4:563–72.

    Article  CAS  PubMed  Google Scholar 

  60. Erdmann N, Liu Y, Harrington L. Distinct dosage requirements for the maintenance of long and short telomeres in mTert heterozygous mice. Proc Natl Acad Sci USA 2004;101:6080–5.

    Article  CAS  PubMed  Google Scholar 

  61. Artandi SE, Alson S, Tietze MK, et al. Constitutive telomerase expression promotes mammary carcinomas in aging mice. Proc Natl Acad Sci USA 2002;99:8191–6.

    Article  CAS  PubMed  Google Scholar 

  62. Sarin KY, Cheung P, Gilison D, et al. Conditional telomerase induction causes proliferation of hair follicle stem cells. Nature 2005;436:1048–52.

    Article  CAS  PubMed  Google Scholar 

  63. Gonzalez-Suarez E, Samper E, Ramirez A, et al. Increased epidermal tumors and increased skin wound healing in transgenic mice overexpressing the catalytic subunit of telomerase, mTERT, in basal keratinocytes. EMBO J 2001;20:2619–30.

    Article  CAS  PubMed  Google Scholar 

  64. Gonzalez-Suarez E, Geserick C, Flores JM, Blasco MA. Antagonistic effects of telomerase on cancer and aging in K5-mTert transgenic mice. Oncogene 2005;24:2256–70.

    Article  CAS  PubMed  Google Scholar 

  65. Canela A, Martin-Caballero J, Flores JM, Blasco MA. Constitutive expression of tert in thymocytes leads to increased incidence and dissemination of T-cell lymphoma in Lck-Tert mice. Mol Cell Biol 2004;24:4275–93.

    Article  CAS  PubMed  Google Scholar 

  66. McKinnon PJ. ATM and ataxia telangiectasia. EMBO Rep 2004;5:772–6.

    Article  CAS  PubMed  Google Scholar 

  67. Vaziri H, West MD, Allsopp RC, et al. ATM-dependent telomere loss in aging human diploid fibroblasts and DNA damage lead to the post-translational activation of p53 protein involving poly (ADP-ribose) polymerase. EMBO J 1997;16:6018–33.

    Article  CAS  PubMed  Google Scholar 

  68. Hande MP, Balajee AS, Tchirkov A, Wynshaw-Boris A, Lansdorp PM. Extra-chromosomal telomeric DNA in cells from Atm(7#x2014;/—) mice and patients with ataxia-telangiectasia. Hum Mol Genet 2001;10:519–28.

    Article  CAS  PubMed  Google Scholar 

  69. Greenwell PW, Kronmal SL, Porter SE, Gassenhuber J, Obermaier B, Petes TD. TEL1, a gene involved in controlling telomere length inS. cerevisiae, is homologous to the human ataxia telangiectasia gene. Cell 1995;82:823–9.

    Article  CAS  PubMed  Google Scholar 

  70. Naito T, Matsuura A, Ishikawa F. Circular chromosome formation in a fission yeast mutant defective in two ATM homologues. Nat Genet 1998;20:203–6.

    Article  CAS  PubMed  Google Scholar 

  71. Takai H, Smogorzewska A, de Lange T. DNA damage foci at dysfunctional telomeres. Curr Biol 2003;13:1549–56.

    Article  CAS  PubMed  Google Scholar 

  72. Wong KK, Maser RS, Bachoo RM, et al. Telomere dysfunction and Atm deficiency compromises organ homeostasis and accelerates ageing. Nature 2003;421:643–8.

    Article  CAS  PubMed  Google Scholar 

  73. Ito K, Hirao A, Arai F, et al. Regulation of oxidative stress by ATM is required for selfrenewal of haematopoietic stem cells. Nature 2004;431:997–1002.

    Article  CAS  PubMed  Google Scholar 

  74. Hara E, Tsurui H, Shinozaki A, Nakada S, Oda K. Cooperative effect of antisense-Rb and antisense-p53 oligomers on the extension of life span in human diploid fibroblasts, TIG-1. Biochem Biophys Res Commun 1991;179:528–34.

    Article  CAS  PubMed  Google Scholar 

  75. Bond JA, Wyllie FS, Wynford-Thomas D. Escape from senescence in human diploid fibroblasts induced directly by mutant p53. Oncogene 1994;9:1885–9.

    CAS  PubMed  Google Scholar 

  76. Cosme-Blanco W, Shen MF, Lazar AJ, et al. Telomere dysfunction suppresses spontaneous tumorigenesis in vivo by initiating p53-dependent cellular senescence. EMBO Rep 2007;8:497–503.

    Article  CAS  PubMed  Google Scholar 

  77. Tyner SD, Venkatachalam S, Choi J, et al. p53 mutant mice that display early ageingassociated phenotypes. Nature 2002;415:45–53.

    Article  CAS  PubMed  Google Scholar 

  78. Dumble M, Moore L, Chambers SM, et al. The impact of altered p53 dosage on hematopoietic stem cell dynamics during aging. Blood 2007;109:1736–42.

    Article  CAS  PubMed  Google Scholar 

  79. Garcia-Cao I, Garcia-Cao M, Martin-Caballero J, et al. “Super p53” mice exhibit enhanced DNA damage response, are tumor resistant and age normally. EMBO J 2002;21:6225–35.

    Article  CAS  PubMed  Google Scholar 

  80. Garcia-Cao I, Garcia-Cao M, Tomas-Loba A, et al. Increased p53 activity does not accelerate telomere-driven ageing. EMBO Rep 2006;7:546–52.

    CAS  PubMed  Google Scholar 

  81. el-Deiry WS, Tokino T, Velculescu VE, et al. WAF1, a potential mediator of p53 tumor suppression. Cell 1993;75:817–25.

    Article  CAS  PubMed  Google Scholar 

  82. Brown JP, Wei W, Sedivy JM. Bypass of senescence after disruption of p21CIP1/WAF1 gene in normal diploid human fibroblasts. Science 1997;277:831–4.

    Article  CAS  PubMed  Google Scholar 

  83. Cheng T, Rodrigues N, Shen H, et al. Hematopoietic stem cell quiescence maintained by p21cip1/waf1. Science 2000;287:1804–8.

    Article  CAS  PubMed  Google Scholar 

  84. Qiu J, Takagi Y, Harada J, et al. Regenerative response in ischemic brain restricted by p21cip1/waf1. J Exp Med 2004;199:937–45.

    Article  CAS  PubMed  Google Scholar 

  85. Ju Z, Choudhury AR, Rudolph KL. A dual role of p21 in stem cell aging. Ann N Y Acad Sci 2007;1100:333–44.

    Article  CAS  PubMed  Google Scholar 

  86. Krishnamurthy J, Torrice C, Ramsey MR, et al. Ink4a/Arf expression is a biomarker of aging. J Clin Invest 2004;114:1299–307.

    CAS  PubMed  Google Scholar 

  87. Alcorta DA, Xiong Y, Phelps D, Hannon G, Beach D, Barrett JC. Involvement of the cyclindependent kinase inhibitor p16 (INK4a) in replicative senescence of normal human fibroblasts. Proc Natl Acad Sci USA 1996;93:13742–7.

    Article  CAS  PubMed  Google Scholar 

  88. Janzen V, Forkert R, Fleming HE, et al. Stem-cell ageing modified by the cyclin-dependent kinase inhibitor p16INK4a. Nature 2006;443:421–6.

    CAS  PubMed  Google Scholar 

  89. Molofsky AV, Slutsky SG, Joseph NM, et al. Increasing p16INK4a expression decreases forebrain progenitors and neurogenesis during ageing. Nature 2006;443:448–52.

    Article  CAS  PubMed  Google Scholar 

  90. Krishnamurthy J, Ramsey MR, Ligon KL, et al. p16INK4a induces an age-dependent decline in islet regenerative potential. Nature 2006;443:453–7.

    Article  CAS  PubMed  Google Scholar 

  91. Smogorzewska A, de Lange T. Different telomere damage signaling pathways in human and mouse cells. EMBO J 2002;21:4338–48.

    Article  CAS  PubMed  Google Scholar 

  92. Khoo CM, Carrasco DR, Bosenberg MW, Paik JH, Depinho RA. Ink4a/Arf tumor suppressor does not modulate the degenerative conditions or tumor spectrum of the telomerase-deficient mouse. Proc Natl Acad Sci USA 2007;104:3931–6.

    Article  CAS  PubMed  Google Scholar 

  93. Khanna KK, Jackson SP. DNA double-strand breaks: signaling, repair and the cancer connection. Nat Genet 2001;27:247–54.

    Article  CAS  PubMed  Google Scholar 

  94. Espejel S, Martin M, Klatt P, Martin-Caballero J, Flores JM, Blasco MA. Shorter telomeres, accelerated ageing and increased lymphoma in DNA-PKcs-deficient mice. EMBO Rep 2004;5:503–9.

    Article  CAS  PubMed  Google Scholar 

  95. Nussenzweig A, Chen C, da Costa Soares V, et al. Requirement for Ku80 in growth and immunoglobulin V(D)J recombination. Nature 1996;382:551–5.

    Article  CAS  PubMed  Google Scholar 

  96. Bailey SM, Meyne J, Chen DJ, et al. DNA double-strand break repair proteins are required to cap the ends of mammalian chromosomes. Proc Natl Acad Sci USA 1999;96:14899–904.

    Article  CAS  PubMed  Google Scholar 

  97. Espejel S, Klatt P, Menissier-de Murcia J, et al. Impact of telomerase ablation on organismal viability, aging, and tumorigenesis in mice lacking the DNA repair proteins PARP-1, Ku86, or DNA-PKcs. J Cell Biol 2004;167:627–38.

    Article  CAS  PubMed  Google Scholar 

  98. Espejel S, Franco S, Sgura A, et al. Functional interaction between DNA-PKcs and telomerase in telomere length maintenance. EMBO J 2002;21:6275–87.

    Article  CAS  PubMed  Google Scholar 

  99. Wong KK, Maser RS, Sahin E, et al. Diminished lifespan and acute stress-induced death in DNA-PKcs-deficient mice with limiting telomeres. Oncogene 2007;26:2815–21.

    Article  CAS  PubMed  Google Scholar 

  100. Asha S. M, Sandy Chang. WRN at telomeres: implications for aging and cancer. J Cell Sci 2007;120:713–21.

    Article  CAS  Google Scholar 

  101. Lombard DB, Beard C, Johnson B, et al. Mutations in the WRN gene in mice accelerate mortality in a p53-null background. Mol Cell Biol 2000;20:3286–91.

    Article  CAS  PubMed  Google Scholar 

  102. Chang S, Multani AS, Cabrera NG, et al. Essential role of limiting telomeres in the pathogenesis of Werner syndrome. Nat Genet 2004;36:877–82.

    Article  CAS  PubMed  Google Scholar 

  103. Du X, Shen J, Kugan N, et al. Telomere shortening exposes functions for the mouse Werner and Bloom syndrome genes. Mol Cell Biol 2004;24:8437–46.

    Article  CAS  PubMed  Google Scholar 

  104. Hackett JA, Greider CW. End resection initiates genomic instability in the absence of telomerase. Mol Cell Biol 2003;23:8450–61.

    Article  CAS  PubMed  Google Scholar 

  105. Maringele L, Lydall D. EXO1-dependent single-stranded DNA at telomeres activates subsets of DNA damage and spindle checkpoint pathways in budding yeast yku70Delta mutants. Genes Dev 2002;16:1919–33.

    Article  CAS  PubMed  Google Scholar 

  106. Maringele L, Lydall D. EXO1 plays a role in generating type I and type II survivors in budding yeast. Genetics 2004;166:1641–9.

    Article  CAS  PubMed  Google Scholar 

  107. Wei K, Clark AB, Wong E, et al. Inactivation of Exonuclease 1 in mice results in DNA mismatch repair defects, increased cancer susceptibility, and male and female sterility. Genes Dev 2003;17:603 –14.

    Article  CAS  PubMed  Google Scholar 

  108. Schaetzlein S, Kodandaramireddy NR, Ju Z, et al. Exonuclease-1 deletion impairs DNA damage signaling and prolongs lifespan of telomere-dysfunctional mice. Cell 2007;130:863–77.

    Article  CAS  PubMed  Google Scholar 

  109. Siegl-Cachedenier I, Munoz P, Flores JM, Klatt P, Blasco MA. Deficient mismatch repair improves organismal fitness and survival of mice with dysfunctional telomeres. Genes Dev 2007;21:2234–47.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science + Business Media, LLC

About this chapter

Cite this chapter

Huang, X., Ju, Z. (2009). Mouse Model: Telomeres and Telomerase in Stem Cell and Cancer. In: Hiyama, K. (eds) Telomeres and Telomerase in Cancer. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1007/978-1-60327-879-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-879-9_6

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-306-0

  • Online ISBN: 978-1-60327-879-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics