Skip to main content

Protocol II: Importance and Methods of Telomere G-Tail Length Quantification

  • Chapter
Telomeres and Telomerase in Cancer

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

  • 1263 Accesses

Abstract

All eukaryotic chromosome DNA ends have telomere DNA consisting of double-stranded telomere DNA repeats, which terminate in single-stranded 3′-overhangs called G-tails. Unprotected and exposed G-tails may be recognized by DNA damage signaling, inducing apoptotic signals that may cause dysfunction of tissues or initiation of carcinogenesis. Although G-tail length is essential for telomere end protection mechanism, the involvement of G-tail length in diseases is poorly understood. In this review, we introduce the importance of G-tail length and various protocols for G-tail measurement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. de Lange T. Shelterin: the protein complex that shapes and safeguards human telomeres. Genes Dev 2005;19:2100–10.

    Article  PubMed  Google Scholar 

  2. Moyzis RK, Buckingham JM, Cram LS, et al. A highly conserved repetitive DNA sequence, (TTAGGG)n, present at the telomeres of human chromosomes. Proc Natl Acad Sci USA 1988;85:6622–6.

    Article  CAS  PubMed  Google Scholar 

  3. Meyne J, Ratliff RL, Moyzis RK. Conservation of the human telomere sequence (TTAGGG)n among vertebrates. Proc Natl Acad Sci USA 1989;86:7049–53.

    Article  CAS  PubMed  Google Scholar 

  4. Makarov VL, Hirose Y, Langmore JP. Long G tails at both ends of human chromosomes suggest a C strand degradation mechanism for telomere shortening. Cell 1997;88:657–66.

    Article  CAS  PubMed  Google Scholar 

  5. Hemann MT, Greider CW. G-strand overhangs on telomeres in telomerase-deficient mouse cells. Nucleic Acids Res 1999;27:3964–9.

    Article  CAS  PubMed  Google Scholar 

  6. Huffman KE, Levene SD, Tesmer VM, Shay JW, Wright WE. Telomere shortening is proportional to the size of the G-rich telomeric 3′-overhang. J Biol Chem 2000;275:19719–22.

    Article  CAS  PubMed  Google Scholar 

  7. Dionne I, Wellinger RJ. Cell cycle-regulated generation of single-stranded G-rich DNA in the absence of telomerase. Proc Natl Acad Sci USA 1996;93:13902–7.

    Article  CAS  PubMed  Google Scholar 

  8. Anno K, Hayashi A, Takahashi T, Masui Y, Ide T, Tahara H. Telomerase activation induces elongation of the telomeric single-stranded overhang, but does not prevent chromosome aberrations in human vascular endothelial cells. Biochem Biophys Res Commun 2007;353:926–32.

    Article  CAS  PubMed  Google Scholar 

  9. Tahara H, Kusunoki M, Yamanaka Y, Matsumura S, Ide T. G-tail telomere HPA: simple measurement of human single-stranded telomeric overhangs. Nat Meth 2005;2:829–31.

    Article  CAS  Google Scholar 

  10. Slagboom PE, Droog S, Boomsma DI. Genetic determination of telomere size in humans: a twin study of three age groups. Am J Hum Genet 1994;55:876–82.

    CAS  PubMed  Google Scholar 

  11. Allsopp RC, Vaziri H, Patterson C, et al. Telomere length predicts replicative capacity of human fibroblasts. Proc Natl Acad Sci USA 1992;89:10114–8.

    Article  CAS  PubMed  Google Scholar 

  12. Walne AJ, Marrone A, Dokal I. Dyskeratosis congenita: a disorder of defective telomere maintenance? Int J Hematol 2005;82:184–9.

    Article  CAS  PubMed  Google Scholar 

  13. Tahara H, Tokutake Y, Maeda S, et al. Abnormal telomere dynamics of B-lymphoblastoid cell strains from Werner's syndrome patients transformed by Epstein-Barr virus. Oncogene 1997;15:1911–20.

    Article  CAS  PubMed  Google Scholar 

  14. Cobb JA, Bjergbaek L. RecQ helicases: lessons from model organisms. Nucleic Acids Res 2006;34:4106–14.

    Article  CAS  PubMed  Google Scholar 

  15. Brosh RM, Jr., Waheed J, Sommers JA. Biochemical characterization of the DNA substrate specificity of Werner syndrome helicase. J Biol Chem 2002;277:23236–45.

    Article  CAS  PubMed  Google Scholar 

  16. Karow JK, Chakraverty RK, Hickson ID. The Bloom's syndrome gene product is a 3′–5prime; DNA helicase. J Biol Chem 1997;272:30611–4.

    Article  CAS  PubMed  Google Scholar 

  17. Opresko PL, Mason PA, Podell ER, et al. POT1 stimulates RecQ helicases WRN and BLM to unwind telomeric DNA substrates. J Biol Chem 2005;280:32069–80.

    Article  CAS  PubMed  Google Scholar 

  18. Callen E, Surralles J. Telomere dysfunction in genome instability syndromes. Mutat Res 2004;567:85–104.

    Article  CAS  PubMed  Google Scholar 

  19. Lillard-Wetherell K, Machwe A, Langland GT, et al. Association and regulation of the BLM helicase by the telomere proteins TRF1 and TRF2. Hum Mol Genet 2004;13:1919–32.

    Article  CAS  PubMed  Google Scholar 

  20. Opresko PL, von Kobbe C, Laine JP, Harrigan J, Hickson ID, Bohr VA. Telomere-binding protein TRF2 binds to and stimulates the Werner and Bloom syndrome helicases. J Biol Chem 2002;277:41110–9.

    Article  CAS  PubMed  Google Scholar 

  21. Stavropoulos DJ, Bradshaw PS, Li X, et al. The Bloom syndrome helicase BLM interacts with TRF2 in ALT cells and promotes telomeric DNA synthesis. Hum Mol Genet 2002;11:3135– 44.

    Article  CAS  PubMed  Google Scholar 

  22. Meeker AK, Hicks JL, Iacobuzio-Donahue CA, et al. Telomere length abnormalities occur early in the initiation of epithelial carcinogenesis. Clin Cancer Res 2004;10:3317–26.

    Article  CAS  PubMed  Google Scholar 

  23. Singh SK, Clarke ID, Terasaki M, et al. Identification of a cancer stem cell in human brain tumors. Cancer Res 2003;63:5821–8.

    CAS  PubMed  Google Scholar 

  24. O'Brien CA, Pollett A, Gallinger S, Dick JE. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 2007;445:106–10.

    Article  PubMed  Google Scholar 

  25. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 2003;100:3983–8.

    Article  CAS  PubMed  Google Scholar 

  26. Khanna KK, Jackson SP. DNA double-strand breaks: signaling, repair and the cancer connection. Nat Genet 2001;27:247–54.

    Article  CAS  PubMed  Google Scholar 

  27. Park Y, Gerson SL. DNA repair defects in stem cell function and aging. Annu Rev Med 2005;56:495–508.

    Article  CAS  PubMed  Google Scholar 

  28. Sarin KY, Cheung P, Gilison D, et al. Conditional telomerase induction causes proliferation of hair follicle stem cells. Nature 2005;436:1048–52.

    Article  CAS  PubMed  Google Scholar 

  29. Tahara H, Shin-Ya K, Seimiya H, Yamada H, Tsuruo T, Ide T. G-Quadruplex stabilization by telomestatin induces TRF2 protein dissociation from telomeres and anaphase bridge formation accompanied by loss of the 3′ telomeric overhang in cancer cells. Oncogene 2006;25:1955–66.

    Article  CAS  PubMed  Google Scholar 

  30. Cimino-Reale G, Pascale E, Battiloro E, Starace G, Verna R, D'Ambrosio E. The length of telomeric G-rich strand 3′-overhang measured by oligonucleotide ligation assay. Nucleic Acids Res 2001;29:E35.

    Article  CAS  PubMed  Google Scholar 

  31. Chai W, Shay JW, Wright WE. Human telomeres maintain their overhang length at senescence. Mol Cell Biol 2005;25:2158–68.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was founded in part by a Grant-in-Aid for Scientific Research from the Ministory of Education, Culture, Sports, Science and Technology, Japan, and Japan Science and Technology Agency, Japan.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media, LLC

About this chapter

Cite this chapter

Shimamoto, A., Aoki, E., Sera, A.M., Tahara, H. (2009). Protocol II: Importance and Methods of Telomere G-Tail Length Quantification. In: Hiyama, K. (eds) Telomeres and Telomerase in Cancer. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1007/978-1-60327-879-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-879-9_15

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-306-0

  • Online ISBN: 978-1-60327-879-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics