Advertisement

Disease Modifying Agents in the Treatment of Multiple Sclerosis

  • Syed A. Rizvi
Chapter
Part of the Current Clinical Neurology book series (CCNEU)

Abstract

Numerous agents have been tested in multiple sclerosis and the vast majority of these have either failed to show a beneficial effect or produced undesirable side effects. In some cases, there was worsening of disease activity. Treatment strategies for multiple sclerosis over the last 16 years have undergone a profound change. Several treatment options are now available primarily targeting the inflammatory phase of the disease [clinically isolated syndrome (CIS), relapsing remitting multiple sclerosis (RRMS), and secondary progressive multiple sclerosis (SPMS) with relapses]. All currently approved disease-modifying agents (DMA) are moderately effective in reducing relapses and MRI activity. The treatment effect appears to be greater when these drugs are used soon after onset of symptoms. The effect on long-term disability seems to be modest if any. This chapter reviews both currently used agents (both FDA approved and off-label) and also discusses several promising agents in various phases of development.

Keywords

Clinically isolated syndrome Relapse Neurodegeneration Side effects Stem cells Plasmapheresis 

References

  1. 1.
    Yong VW. Differential mechanisms of action of interferon-beta and glatiramer acetate in MS. Neurology. 2002;59:802–8.PubMedGoogle Scholar
  2. 2.
    Yong VW, Chabot S, Stuve O, Williams G. Interferon beta in the treatment of multiple sclerosis: mechanisms of action. Neurology. 1998;51:682–9.PubMedGoogle Scholar
  3. 3.
    Kieseier BC, Seifert T, Giovannoni G, Hartung HP. Matrix metalloproteinases in inflammatory demyelination: targets for treatment. Neurology. 1999;53:20–5.PubMedGoogle Scholar
  4. 4.
    The IFNB Multiple Sclerosis Study Group. Interferon beta-1b is effective in relapsing-remitting multiple sclerosis. I. Clinical results of a multi-center, randomized, double-blind, placebo-controlled trial. Neurology. 1993;43:655–61.Google Scholar
  5. 5.
    Paty DW, Li DK, UBC MS/MRI Study Group and the IFNB Multiple Sclerosis Study Group. Interferon beta-1b is effective in relapsing-remitting multiple sclerosis. II. MRI analysis results of a multicenter, randomized, double-blind, placebo-controlled trial. Neurology. 1993;43:662–7.PubMedGoogle Scholar
  6. 6.
    The IFNB Multiple Sclerosis Study Group and the University of British Columbia MS/MRI Analysis Group. Interferon beta-1b in the treatment of multiple sclerosis: final outcome of the randomized controlled trial. Neurology. 1995;45:1277–85.Google Scholar
  7. 7.
    Jacobs LD, Cookfair DL, Rudick RA, Herndon RM, Richert JR, Slazar AM, et al. Intramuscular interferon beta-1a for disease progression in relapsing multiple sclerosis. Ann Neurol. 1996;39:285–94.PubMedCrossRefGoogle Scholar
  8. 8.
    Rudick RA, Goodkin DE, Jacobs LD, Cookfair DL, Herndon RM, Richert JR, et al. Impact of interferon beta-1a on neurologic disability in relapsing multiple sclerosis. The Multiple Sclerosis Collaborative Research Group. Neurology. 1997;49(2):358–63.PubMedGoogle Scholar
  9. 9.
    Simon JH, Jacobs LD, Campion M, Wende K, Simonian N, Cookfair DL, et al. Magnetic resonance studies of intramuscular interferon beta-1a for relapsing multiple sclerosis. The Multiple Sclerosis Collaborative Research Group. Ann Neurol. 1998;43:79–87.PubMedCrossRefGoogle Scholar
  10. 10.
    Rudick RA, Fisher E, Lee JC, et al. Use of the brain parenchymal fraction to measure whole brain atrophy in relapsing-remitting MS. Multiple Sclerosis Collaborative Research Group. Neurology. 1999;53:1698–704.PubMedGoogle Scholar
  11. 11.
    PRISMS Study Group. Randomized double-blind placebo-controlled study of ­interferon beta-1a in relapsing remitting multiple sclerosis. Lancet. 1998;352:1498–504.CrossRefGoogle Scholar
  12. 12.
    Li DK. Magnetic resonance imaging results of the PRISMS trial: a randomized, double-blind, placebo-controlled study of interferonbeta1a in relapsing-remitting multiple sclerosis. Prevention of relapses and disability by interferon-beta1a subcutaneously in multiple sclerosis. Ann Neurol. 1999;46:197–206.PubMedCrossRefGoogle Scholar
  13. 13.
    PRISMS Study Group. PRISMS-4: Long-term efficacy of interferon-beta-1a in relapsing MS. Neurology. 2001;56:1628–36.Google Scholar
  14. 14.
    Kappos L, Traboulsee A, Constantinescu C, et al. Long-term subcutaneous interferon beta-1a therapy in patients with relapsing-remitting MS. Neurology. 2006;67:944–53.PubMedCrossRefGoogle Scholar
  15. 15.
    Walther EU, Hohlfeld R. Multiple sclerosis: side effects of interferon therapy and their management. Neurology. 1999;53:1622–7.PubMedGoogle Scholar
  16. 16.
    Goodin DS, Frohman EM, Hurwitz B, et al. Neutralizing antibodies to interferon beta: assessment of their clinical and radiographic impact: an evidence report: report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology. Neurology. 2007;68:977–84.PubMedCrossRefGoogle Scholar
  17. 17.
    Farina C, Weber MS, Meinl E, Wekerle H, Hohlfeld R. Glatiramer acetate in multiple sclerosis: update on potential mechanisms of action. Lancet Neurol. 2005;4:567–75.PubMedCrossRefGoogle Scholar
  18. 18.
    Johnson KP, Brooks BR, Cohen JA, Ford CC, Goldstein J, Lisak RP, et al. Copolymer 1 reduces relapse rate and improves disability in relapsing- remitting multiple sclerosis: results of a phase III multicenter, double-blind placebo-controlled trial. Neurology. 1995;45:1268–76.PubMedGoogle Scholar
  19. 19.
    Johnson KP, Brooks BR, Cohen JA, Ford CC, Goldstein J, Lisak RP, et al. Extended use of glatiramer acetate (Copaxone) is well tolerated and maintains its clinical effect on multiple sclerosis relapse rate and degree of disability. Copolymer 1 Multiple Sclerosis Study Group. Neurology. 1998;50:701–8.PubMedGoogle Scholar
  20. 20.
    Comi G, Filippi M, Wolinsky JS. European/Canadian multicenter, double- blind, randomized, placebo-controlled study of the effects of glatiramer acetate on magnetic resonance imaging-measured disease activity and burden in patients with relapsing multiple sclerosis. European/Canadian Glatiramer Acetate Study Group. Ann Neurol. 2001;49:290–7.PubMedCrossRefGoogle Scholar
  21. 21.
    Ford C, Johnson KP, Lisak RP, et al. A prospective open,-label study of glatiramer acetate: over a decade of continuous use in multiple sclerosis patients. Mult Scler. 2006;12:309–20.PubMedCrossRefGoogle Scholar
  22. 22.
    Goodin DS, Cohen BA, O’Connor P, Kappos L, Stevens JC. Assessment: the use of natalizumab (Tysabri) for the treatment of multiple sclerosis (an evidence-based review): report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology. Neurology. 2008;71:766–73.PubMedCrossRefGoogle Scholar
  23. 23.
    Putzki N, Kollia K, Woods S, Igwe E, Diener HC, Limmroth V. Natalizumab is effective as second line therapy in the treatment of relapsing remitting MS. Eur J Neurol. 2009;16:424–6.PubMedCrossRefGoogle Scholar
  24. 24.
    Engelhardt B, Kappos L. Natalizumab: targeting alpha4-integrins in multiple sclerosis. Neurodegener Dis. 2008;5:16–22.PubMedCrossRefGoogle Scholar
  25. 25.
    Stüve O, Cravens PD, Frohman EM, Phillips JT, Remington GM, von Geldern G, et al. Immunologic, clinical, and radiologic status 14 months after cessation of natalizumab therapy. Neurology. 2009;72:396–401.PubMedCrossRefGoogle Scholar
  26. 26.
    Polman CH, O’Connor PW, Havrdova E, et al., AFFIRM Investigators. A randomized, placebo-controlled trial of natalizumab for relapsing multiple sclerosis. N Engl J Med. 2006;354:899–910.Google Scholar
  27. 27.
    Rudick RA, Stuart WH, Calabresi PA, et al., SENTINEL Investigators. Natalizumab plus interferon beta-1a for relapsing multiple sclerosis. N Engl J Med. 2006;354:911–23.Google Scholar
  28. 28.
    Miller DH, Soon D, Fernando KT, MacManus DG, Barker GJ, Yousry TA, et al. MRI outcomes in a placebo-controlled trial of natalizumab in relapsing MS. Neurology. 2007;68:1390–401.PubMedCrossRefGoogle Scholar
  29. 29.
    Hutchinson M, Kappos L, Calabresi PA, Confavreux C, Giovannoni G, Galetta SL, et al. The efficacy of natalizumab in patients with relapsing multiple sclerosis: subgroup analyses of AFFIRM and SENTINEL. J Neurol. 2009;256(3):405–15.PubMedCrossRefGoogle Scholar
  30. 30.
    Calabresi PA, Giovannoni G, Confavreux C, Galetta SL, Havrdova E, Hutchinson M, et al. The incidence and significance of anti-natalizumab antibodies: results from AFFIRM and SENTINEL. Neurology. 2007;69:1391–403.PubMedCrossRefGoogle Scholar
  31. 31.
    O’Connor PW, Goodman A, Willmer-Hulme AJ, Libonati MA, Metz L, Murray RS, et al. Randomized multicenter trial of natalizumab in acute MS relapses: clinical and MRI effects. Neurology. 2004;62:2038–43.PubMedGoogle Scholar
  32. 32.
    Goodman AD, Rossman H, Bar-Or A, Miller A, Miller DH, Schmierer K, et al. Results of a phase 2, randomized, double-blind, placebo-controlled study. Neurology. 2009;72:806–12.PubMedCrossRefGoogle Scholar
  33. 33.
    Ghezzi A, Pozzilli C, Grimaldi LM, Brescia Morra V, Bortolon F, Capra R, et al. Safety and efficacy of natalizumab in children with multiple sclerosis. Neurology. 2010;75(10):912–7.PubMedCrossRefGoogle Scholar
  34. 34.
    Vellinga MM, Castelijns JA, Barkhof F, Uitdehaag BM, Polman CH. Postwithdrawal rebound increase in T2 lesional activity in natalizumab-treated MS patients. Neurology. 2008;70:1150–1.PubMedCrossRefGoogle Scholar
  35. 35.
    Miravalle A, Jensen R, Kinkel RP. Immune reconstitution inflammatory syndrome in patients with multiple sclerosis following cessation of natalizumab therapy. Arch Neurol. 2011;68(2):186–91.PubMedCrossRefGoogle Scholar
  36. 36.
    West TW, Cree BA. Natalizumab dosage suspension: are we helping or hurting? Ann Neurol. 2010;68(3):395–9.PubMedCrossRefGoogle Scholar
  37. 37.
    Kleinschmidt-DeMasters BK, Tyler KL. Progressive multifocal leukoencephalopathy complicating treatment with natalizumab and interferon beta-1a for multiple sclerosis. N Engl J Med. 2005;353:369–74.PubMedCrossRefGoogle Scholar
  38. 38.
    Langer-Gould A, Atlas SW, Green AJ, Bollen AW, Pelletier D. Progressive multifocal leukoencephalopathy in a patient treated with natalizumab. N Engl J Med. 2005;353:375–81.PubMedCrossRefGoogle Scholar
  39. 39.
    Van Assche G, Van Ranst M, Sciot R, et al. Progressive multifocal leukoencephalopathy after natalizumab therapy for Crohn’s disease. N Engl J Med. 2005;353:362–8.PubMedCrossRefGoogle Scholar
  40. 40.
    Yousry TA, Major EO, Ryschkewitsch C, et al. Evaluation of patients treated with natalizumab for progressive multifocal leukoencephalopathy. N Engl J Med. 2006;354:924–33.PubMedCrossRefGoogle Scholar
  41. 41.
    Khalili K, White MK, Lublin F, Ferrante P, Berger JR. Reactivation of JC virus and development of PML in patients with multiple sclerosis. Neurology. 2007;68:985–90.PubMedCrossRefGoogle Scholar
  42. 42.
    Carson KR, Focosi D, Major EO, Petrini M, Richey EA, West DP, et al. Monoclonal antibody-associated progressive multifocal leucoencephalopathy in patients treated with rituximab, natalizumab, and efalizumab: a Review from the Research on Adverse Drug Events and Reports (RADAR) Project. Lancet Oncol. 2009;10(8):816–24.PubMedCrossRefGoogle Scholar
  43. 43.
    Berger JR, Houff SA, Major EO. Monoclonal antibodies and progressive multifocal leukoencephalopathy. MAbs. 2009;1(6):583–9.PubMedCrossRefGoogle Scholar
  44. 44.
    Berger JR. Progressive multifocal leukoencephalopathy and newer biological agents. Drug Saf. 2010;33(11):969–83.PubMedCrossRefGoogle Scholar
  45. 45.
    Khatri BO, Man S, Giovannoni G, Koo AP, Lee J-C, Tucky B, et al. Effect of plasma exchange in accelerating natalizumab clearance and restoring leukocyte function. Neurology. 2009;72:402–9.PubMedCrossRefGoogle Scholar
  46. 46.
    Gorelik L, Lerner M, Bixler S, Crossman M, Schlain B, Simon K, et al. Anti-JC virus antibodies: implications for PML risk stratification. Ann Neurol. 2010;68(3):295–303.PubMedCrossRefGoogle Scholar
  47. 47.
    Brinkmann V, Davis MD, Heise CE, et al. The immune modulator FTY720 targets sphingosine 1-phosphate receptors. J Biol Chem. 2002;277:21453–7. 25:115–124.PubMedCrossRefGoogle Scholar
  48. 48.
    Mehling M, Lindberg R, Raulf F, Kuhle J, Hess C, Kappos L, et al. Th17 central memory T cells are reduced by FTY720 in patients with multiple sclerosis. Neurology. 2010;75(5):403–10.PubMedCrossRefGoogle Scholar
  49. 49.
    Sensken SC, Bode C, Gräler MH. Accumulation of fingolimod (FTY720) in lymphoid tissues contributes to prolonged efficacy. Pharmacol Exp Ther. 2009;328(3):963–9.CrossRefGoogle Scholar
  50. 50.
    Van Doorn R, Van Horssen J, Verzijl D, Witte M, Ronken E, Van Het Hof B, et al. Sphingosine 1-phosphate receptor 1 and 3 are upregulated in multiple sclerosis lesions. Glia. 2010;58(12):1465–76.PubMedGoogle Scholar
  51. 51.
    O’Connor P, Comi G, Montalban X, Antel J, Radue EW, de Vera A, et al. Oral fingolimod (FTY720) in multiple sclerosis: two-year results of a phase II extension study. Neurology. 2009;72(1):73–9.PubMedCrossRefGoogle Scholar
  52. 52.
    Cohen JA, Barkhof F, Comi G, Hartung HP, Khatri BO, Montalban X, et al. Oral fingolimod or intramuscular interferon for relapsing multiple sclerosis. N Engl J Med. 2010;362:402.PubMedCrossRefGoogle Scholar
  53. 53.
    Leypoldt F, Münchau A, Moeller F, Bester M, Gerloff C, Heesen C. Hemorrhaging focal encephalitis under fingolimod (FTY720) treatment: a case report. Neurology. 2009;72(11):1022–4.PubMedCrossRefGoogle Scholar
  54. 54.
    Kappos L, Radue EW, O’Connor P, Polman C, Hohlfeld R, Calabresi P, et al. A placebo-controlled trial of oral fingolimod in relapsing multiple sclerosis. N Engl J Med. 2010;362:387.PubMedCrossRefGoogle Scholar
  55. 55.
    Johnson TA, Shames I, Keezer M, Lapierre Y, Haegert DG, Bar-Or A, et al. Reconstitution of circulating lymphocyte counts in FTY720-treated MS patients. Clin Immunol. 2010;137(1):15–20.PubMedCrossRefGoogle Scholar
  56. 56.
    Neuhaus O, Wiendl H, Kieseier BC, Archelos JJ, Hemmer B, Stuve O, et al. Multiple sclerosis: mitoxantrone promotes differential effects on immunocompetent cells in vitro. J Neuroimmunol. 2005;168:128–37.PubMedCrossRefGoogle Scholar
  57. 57.
    Kopadze T, Dehmel T, Hartung HP, Stuve O, Kieseier BC. Inhibition by mitoxantrone of in vitro migration of immunocompetent cells: a possible mechanism for therapeutic efficacy in the treatment of multiple sclerosis. Arch Neurol. 2006;63:1572–8.PubMedCrossRefGoogle Scholar
  58. 58.
    Hartung HP, Gonsette R, Konig N, Kwiecinski H, Guseo A, Morrissey SP, et al. Mitoxantrone in progressive multiple sclerosis: a placebo-controlled, double blind, randomized multicentre trial. Lancet. 2002;360:2018–25.PubMedCrossRefGoogle Scholar
  59. 59.
    Vollmer T, Panitch H, Bar-Or A, Dunn J, Freedman M, Gazda S, et al. Glatiramer acetate after induction therapy with mitoxantrone in relapsing multiple sclerosis. Mult Scler. 2008;14:663–70.PubMedCrossRefGoogle Scholar
  60. 60.
    Edan G, Comi G, Lebrun D, Brassat C, Lubetzki C, Stankoff B, et al. The French-Italian Mitoxantrone-Interferon-beta trial: a 3-year randomized study. Mult Scler. 2007;13 Suppl 2:S22–3.Google Scholar
  61. 61.
    Goffette S, Van P V, Vanoverschelde JL, Morandini E, Sindic CJ. Severe delayed heart failure in three multiple sclerosis patients previously treated with mitoxantrone. J Neurol. 2005;252:1217–22.PubMedCrossRefGoogle Scholar
  62. 62.
    Rizvi SA, Zwibel H, Fox EJ. Mitoxantrone for multiple sclerosis in clinical practice. Neurology. 2004;63:S25–7.PubMedGoogle Scholar
  63. 63.
    Ellis R, Boggild M. Therapy-related acute leukaemia with Mitoxantrone: what is the risk and can we minimise it? Mult Scler. 2009;15(4):505–8.PubMedCrossRefGoogle Scholar
  64. 64.
    Gonsette RE, Dubois B. Pixantrone (BBR2778): a new immunosuppressant in multiple sclerosis with a low cardiotoxicity. J Neurol Sci. 2004;223:81–6.PubMedCrossRefGoogle Scholar
  65. 65.
    Bernitsas E, Wei W, Mikol DD. Suppression of mitoxantrone cardiotoxicity in multiple sclerosis patients by dexrazoxane. Ann Neurol. 2006;59:206–9.PubMedCrossRefGoogle Scholar
  66. 66.
    Okuda DT, Mowry EM, Beheshtian A, Waubant E, Baranzini SE, Goodin DS, et al. Incidental MRI anomalies suggestive of multiple sclerosis: the radiologically isolated syndrome. Neurology. 2009;72(9):800–5. Erratum in: Neurology. 2009;72(14):1284.PubMedCrossRefGoogle Scholar
  67. 67.
    Sayao AL, Devonshire V, Tremlett H. Longitudinal follow-up of “benign” multiple sclerosis at 20 years. Neurology. 2007;68:496–500.PubMedCrossRefGoogle Scholar
  68. 68.
    Trapp BD, Peterson J, Ransohoff RM, Rudick R, Mork S, Bo L. Axonal transection in the lesions of multiple sclerosis. N Engl J Med. 1998;338:278–85.PubMedCrossRefGoogle Scholar
  69. 69.
    Trapp BD, Ransohoff R, Rudick R. Axonal pathology in multiple sclerosis: relationship to neurologic disability. Curr Opin Neurol. 1999;12:295–302.PubMedCrossRefGoogle Scholar
  70. 70.
    De Stefano N, Narayanan S, Francis GS, et al. Evidence of axonal damage in the early stages of multiple sclerosis and its relevance to disability. Arch Neurol. 2001;58:65–70.PubMedCrossRefGoogle Scholar
  71. 71.
    Fisniku LK, Brex PA, Altmann DR, Miszkiel KA, Benton CE, Lanyon R, et al. Disability and T2 MRI lesions: a 20-year follow-up of patients with relapse onset of multiple sclerosis. Brain. 2008;31:808–17.CrossRefGoogle Scholar
  72. 72.
    Kappos L, Polman CH, Freedman MS, Edan G, Hartung HP, Miller DH, et al. Treatment with interferon beta-1b delays conversion to clinically definite and McDonald MS in patients with clinically isolated syndromes. Neurology. 2006;67:1242–9.PubMedCrossRefGoogle Scholar
  73. 73.
    Kappos L, Freedman MS, Polman CH, Edan G, Hartung HP, Miller DH, et al. Effect of early versus delayed interferon beta-1b treatment on disability after a first clinical event suggestive of multiple sclerosis: a 3-year follow-up analysis of the BENEFIT study. Lancet. 2007;370:389–97.PubMedCrossRefGoogle Scholar
  74. 74.
    Kappos L, Freedman MS, Polman CH, Edan G, Hartung HP, Miller DH, et al. Long-term effect of early treatment with interferon beta-1b after a first clinical event suggestive of multiple sclerosis: 5-year active treatment extension of the phase 3 BENEFIT trial. Lancet Neurol. 2009;8(11):987–97.PubMedCrossRefGoogle Scholar
  75. 75.
    Jacobs LD, Beck RW, Simon JH, Kinkel RP, Brownscheidle CM, Murray TJ, et al. Intramuscular interferon beta-1a therapy initiated during a first demyelinating event in multiple sclerosis. CHAMPS Study Group. N Engl J Med. 2000;343:898–904.PubMedCrossRefGoogle Scholar
  76. 76.
    Kinkel RP, Kollman C, O’Connor P, Murray TJ, Simon J, Arnold D, et al. IM interferon beta-1a delays definite multiple sclerosis 5 years after a first demyelinating event. Neurology. 2006;66:678–84.PubMedCrossRefGoogle Scholar
  77. 77.
    Comi G, Filippi M, Barkhof F, Durelli L, Edan G, Fernandez O, et al. Effect of early interferon treatment on conversion to definite multiple sclerosis: a randomised study. Lancet. 2001;357:1576–82.PubMedCrossRefGoogle Scholar
  78. 78.
    Comi G, Martinelli V, Rodegher M, Moiola L, Bajenaru O, Carra A, et al. Effect of glatiramer acetate on conversion to clinically definite multiple sclerosis in patients with clinically isolated syndrome (PreCISe study): a randomised, double-blind, placebo-controlled trial. Lancet. 2009;374:1503–11.PubMedCrossRefGoogle Scholar
  79. 79.
    O’Connor P, Filippi M, Arnason B, Comi G, Cook S, Goodin D, et al. 250 mug or 500 mug interferon beta-1b versus 20 mg glatiramer acetate in relapsing-remitting multiple sclerosis: a prospective, randomised, multicentre study. Lancet Neurol. 2009;10:889–97.CrossRefGoogle Scholar
  80. 80.
    Cadavid D, Wolansky LJ, Skurnick J, et al. Efficacy of treatment of MS with IFNβ-1b or glatiramer acetate by monthly brain MRI in the BECOME study. Neurology. 2009;72(23):1976–83.PubMedCrossRefGoogle Scholar
  81. 81.
    Mikol DD, Barkhof F, Chang P, et al., on behalf of the REGARD Study Group. Comparison of subcutaneous interferon beta-1a with glatiramer acetate in patients with relapsing multiple sclerosis (the Rebif vs Glatiramer Acetate in Relapsing MS Disease [REGARD] study): a multicentre, randomised, parallel, open-label trial. Lancet Neurol 2008;7:903–914.Google Scholar
  82. 82.
    Klawiter EC, Cross AH, Naismith RT. The present efficacy of multiple sclerosis therapeutics: is the new 66% just the old 33%? Neurology. 2009;73:984–90.PubMedCrossRefGoogle Scholar
  83. 83.
    Panitch H, Goodin DS, Francis G, et al. Randomized, comparative study of interferon beta-1a treatment regimens in MS: the EVIDENCE Trial. Neurology. 2002;59:1496–506.PubMedGoogle Scholar
  84. 84.
    Durelli L, Verdun E, Barbero P, et al. Every-other-day interferon beta-1b versus once-weekly interferon beta-1a for multiple sclerosis: results of a 2-year prospective randomised multicentre study (INCOMIN). Lancet. 2002;359:1453–60.PubMedCrossRefGoogle Scholar
  85. 85.
    Caon C, Din M, Ching W, Tselis A, Lisak R, Khan O. Clinical course after change of immunomodulating therapy in relapsing-remitting multiple sclerosis. Eur J Neurol. 2006;13:471–4.PubMedCrossRefGoogle Scholar
  86. 86.
    Hl Z. Glatiramer acetate in treatment-naive and prior interferon-beta-1b-treated multiple sclerosis patients. Acta Neurol Scand. 2006;113:378–86.CrossRefGoogle Scholar
  87. 87.
    Fernandez O, Guerrero M, Mayorga C, et al. Combination therapy with interferon beta-1b and azathioprine in secondary progressive multiple sclerosis. A two-year pilot study. J Neurol. 2002;249:1058–62.PubMedCrossRefGoogle Scholar
  88. 88.
    Lus G, Romano F, Scuotto A, Accardo C, Cotrufo R. Azathioprine and interferon beta(1a) in relapsing-remitting multiple sclerosis patients: increasing efficacy of combined treatment. Eur Neurol. 2004;51:15–20.PubMedCrossRefGoogle Scholar
  89. 89.
    Birnbaum G, Cree B, Altafullah I, Zinser M, Reder AT. Combining beta interferon and atorvastatin may increase disease activity in multiple sclerosis. Neurology. 2008;71:1390–5.PubMedCrossRefGoogle Scholar
  90. 90.
    Debouverie M, Taillandier L, Pittion-Vouyovitch S, Louis S, Vespignani H. Clinical follow-up of 304 patients with multiple sclerosis three years after mitoxantrone treatment. J Neurol. 2007;254(10):1370–5.PubMedCrossRefGoogle Scholar
  91. 91.
    European Study Group on interferon beta-1b in secondary progressive MS Placebo-controlled multicentre randomised trial of interferon beta-1b in treatment of secondary progressive multiple sclerosis. Lancet. 1998;352:1491–7.Google Scholar
  92. 92.
    Panitch H, Miller A, Paty D, Weinshenker B. North American Study Group on Interferon beta-1b in secondary progressive MS interferon beta-1b in secondary progressive MS: results from a 3-year controlled study. Neurology. 2004;63:1788–95.PubMedGoogle Scholar
  93. 93.
    Kappos L, Weinshenker B, Pozzilli C, Thompson AJ, Dahlke F, Beckmann K, et al. European (EU-SPMS) Interferon beta-1b in Secondary Progressive Multiple Sclerosis Trial Steering Committee and Independent Advisory Board; North American (NA-SPMS) Interferon beta- 1b in Secondary Progressive Multiple Sclerosis Trial Steering Committee and Independent Advisory Board Interferon beta-1b in secondary progressive MS: a combined analysis of the two trials. Neurology. 2004;63:1779–87.PubMedGoogle Scholar
  94. 94.
    SPECTRIMS Study Group. Randomized controlled trial of interferon- beta-1a in secondary progressive MS: clinical results. Neurology. 2001;56:1496–504.Google Scholar
  95. 95.
    Cohen JA, Cutter GR, Fischer JS, Goodman AD, Heidenreich FR, Kooijmans MF, et al. Benefit of interferon beta-1a on MSFC progression in secondary progressive MS. Neurology. 2002;59:679–87.PubMedGoogle Scholar
  96. 96.
    Frohman EM, Shah A, Eggenberger E, Metz L, Zivadinov R, Stuve O. Corticosteroids for multiple sclerosis: I. Application for treating exacerbations. Neurotherapeutics. 2007;4:618–26.PubMedCrossRefGoogle Scholar
  97. 97.
    Thrower BW. Relapse management in multiple sclerosis. Neurologist. 2009;15(1):1–5. Review.PubMedCrossRefGoogle Scholar
  98. 98.
    Gold R, Buttgereit F, Toyka KV. Mechanism of action of glucocorticosteroid hormones: possible implications for therapy of neuroimmunological disorders. J Neuroimmunol. 2001;117:1–8.PubMedCrossRefGoogle Scholar
  99. 99.
    Alam SM, Kyriakides T, Lawden M, Newman PK. Methylprednisolone in multiple sclerosis: a comparison of oral with intravenous therapy at equivalent high dose. J Neurol Neurosurg Psychiatry. 1993;56:1219–20.PubMedCrossRefGoogle Scholar
  100. 100.
    Barnes D, Hughes RA, Morris RW, Wade-Jones O, Brown P, Britton T, et al. Randomised trial of oral and intravenous methylprednisolone in acute relapses of multiple sclerosis. Lancet. 1997;349:902–6.PubMedCrossRefGoogle Scholar
  101. 101.
    Zivadinov R, Rudick RA, De Masi R, Nasuelli D, Ukmar M, Pozzi-Mucelli RS, et al. Effects of IV methylprednisolone on brain atrophy in relapsing-remitting MS. Neurology. 2001;57:1239–47.PubMedGoogle Scholar
  102. 102.
    Sorensen PS, Mellgren SI, Svenningsson A, et al. NORdic trial of oral methylprednisolone as add-on therapy to interferon beta-1a for treatment of relapsing-remitting multiple sclerosis (NORMIMS study): a randomised, placebo-controlled trial. Lancet Neurol. 2009;8(6):519–29.PubMedCrossRefGoogle Scholar
  103. 103.
    Ferrero S, Esposito F, Pretta S, et al. Fetal risks related to the treatment of multiple sclerosis during pregnancy and breastfeeding. Expert Rev Neurother. 2006;6(12):1823–31.PubMedCrossRefGoogle Scholar
  104. 104.
    de Seze J, Chapelotte M, Delalande S, Ferriby D, Stojkovic T, Vermersch P. Intravenous corticosteroids in the postpartum period for reduction of acute exacerbations in multiple sclerosis. Mult Scler. 2004;10(5):596–7.PubMedCrossRefGoogle Scholar
  105. 105.
    Pozzilli C, Antonini G, Bagnato F, Mainero C, Tomassini V, Onesti E, et al. Monthly corticosteroids decrease neutralizing antibodies to IFNbeta1 b: a randomized trial in multiple sclerosis. J Neurol. 2002;249(1):50–6.PubMedCrossRefGoogle Scholar
  106. 106.
    Kovarsky J. Clinical pharmacology and toxicology of cyclophosphamide: emphasis on use in rheumatic diseases. Semin Arthritis Rheum. 1983;12:359–72.PubMedCrossRefGoogle Scholar
  107. 107.
    Weiner HL, Mackin GA, Orav EJ, et al. Intermittent cyclophosphamide pulse therapy in progressive multiple sclerosis: final report of the Northeast Cooperative Multiple Sclerosis Treatment Group. Neurology. 1993;43:910–8.PubMedGoogle Scholar
  108. 108.
    The Canadian Cooperative Multiple Sclerosis Study Group. The Canadian cooperative trial of cyclophosphamide and plasma exchange in progressive multiple sclerosis. Lancet. 1991;337:441–6.Google Scholar
  109. 109.
    Weinstock-Guttman B. Treatment of fulminant multiple sclerosis with intervenous cyclophosphamide. Neurologist. 1997;3:178–85.CrossRefGoogle Scholar
  110. 110.
    Khan OA, Zvartau-Hind M, Caon C, et al. Effect of monthly intravenous cyclophosphamide in rapidly deteriorating multiple sclerosis patients resistant to conventional therapy. Mult Scler. 2001;7:185–8.PubMedGoogle Scholar
  111. 111.
    Smith DR, Weinstock-Guttman B, Cohen JA, et al. A randomized blinded trial of combination therapy with cyclophosphamide in patients-with active multiple sclerosis on interferon beta. Mult Scler. 2005;11:573–82.PubMedCrossRefGoogle Scholar
  112. 112.
    Stillwell TJ, Benson Jr RC. Cyclophosphamide-induced hemorrhagic cystitis. A review of 100 patients. Cancer. 1988;61:451–7.PubMedCrossRefGoogle Scholar
  113. 113.
    De Ridder D, van Poppel H, Demonty L, et al. Bladder cancer in patients with multiple sclerosis treated with cyclophosphamide. J Urol. 1998;159:1881–4.PubMedCrossRefGoogle Scholar
  114. 114.
    Yudkin PL, Ellison GW, Ghezzi A, Goodkin DE, Hughes RA, McPherson K, et al. Overview of azathioprine treatment in multiple sclerosis. Lancet. 1991;338(8774):1051–5.PubMedCrossRefGoogle Scholar
  115. 115.
    Casetta I, Iuliano G, Filippini G. Azathioprine for multiple sclerosis. Cochrane Database Syst Rev. 2007;(4):CD003982. Review.Google Scholar
  116. 116.
    Pulicken M, Bash CN, Costello K, Said A, Cuffari C, Wilterdink JL, et al. Optimization of the safety and efficacy of interferon beta 1b and azathioprine combination therapy in multiple sclerosis. Mult Scler. 2005;11(2):169–74.PubMedCrossRefGoogle Scholar
  117. 117.
    Markovic-Plese S, Bielekova B, Kadom N, Leist TP, Martin R, Frank JA, et al. Longitudinal MRI study: the effects of azathioprine in MS patients refractory to interferon beta-1b. Neurology. 2003;60(11):1849–51.PubMedGoogle Scholar
  118. 118.
    Goodkin DE, Rudick RA, VanderBrug Mendendorp S, et al. Low dose (7.5 mg) oral methotrexate reduces the rate of progression in chronic progressive multiple sclerosis. Ann Neurol. 1995;37:30–40.PubMedCrossRefGoogle Scholar
  119. 119.
    Cohen JA, Imrey PB, Calabresi PA, et al. Results of the Avonex Combination Trial (ACT) in relapsing-remitting MS. Neurology. 2009;72:535–41.PubMedCrossRefGoogle Scholar
  120. 120.
    Becker BN. Mycophenolate mofetil. Transplant Proc. 1999;31:2777–8.PubMedCrossRefGoogle Scholar
  121. 121.
    Tan T, Lawrance IC. Use of mycophenolate mofetil in inflammatory bowel disease. World J Gastroenterol. 2009;15(13):1594–9.PubMedCrossRefGoogle Scholar
  122. 122.
    Tran GT, Carter N, Hodgkinson SJ. Mycophenolate mofetil treatment accelerates recovery from experimental allergic encephalomyelitis. Int Immunopharmacol. 2001;1(9–10):1709–23.PubMedCrossRefGoogle Scholar
  123. 123.
    Vermersch P, Waucquier N, Michelin E, Bourteel H, Stojkovic T, Ferriby D. G-SEP. Combination of IFN beta-1a (Avonex) and mycophenolate mofetil (Cellcept) in multiple sclerosis. Eur J Neurol. 2007;14(1):85–9.PubMedCrossRefGoogle Scholar
  124. 124.
    Hartung HP. Advances in the understanding of the mechanism of action of IVIg. J Neurol. 2008;255 Suppl 3:3–6.PubMedCrossRefGoogle Scholar
  125. 125.
    Trebst C, Stangel M. Promotion of remyelination by immunoglobulins: implications for the treatment of multiple sclerosis. Curr Pharm Des. 2006;12(2):241–9.PubMedCrossRefGoogle Scholar
  126. 126.
    Sørensen P, Fazekas F, Lee M. Intravenous immunoglobulin G for the treatment of relapsing-remitting multiple sclerosis: a meta-analysis. Eur J Neurol. 2002;9(6):557–63.PubMedCrossRefGoogle Scholar
  127. 127.
    Fazekas F, Lublin FD, Li D, et al. Intravenous immunoglobulin in relapsing-remitting multiple sclerosis: a dose-finding trial. Neurology. 2008;71:265–71.PubMedCrossRefGoogle Scholar
  128. 128.
    Hommes O, Soerensen P, Fazekas F, et al. Intravenous immunoglobulin in secondary progressive multiple sclerosis: randomised, placebo-controlled trial. Lancet. 2004;364:1149–56.PubMedCrossRefGoogle Scholar
  129. 129.
    Achiron A, Kishner I, Sarova-Pinhas I, et al. Intravenous immunoglobulin treatment following the first demyelinating event suggestive of multiple sclerosis: a randomized, double-blind, placebo-controlled trial. Arch Neurol. 2004;61:1515–20.PubMedCrossRefGoogle Scholar
  130. 130.
    Lin X, Turner B, Constantinescu C. Cerebral volume change in secondary progressive multiple sclerosis: effects of intravenous immunoglobulins. J Neurol. 2002;249:I/169.CrossRefGoogle Scholar
  131. 131.
    Lehmann HC, Hartung HP, Hetzel GR, Stuve O, Kieseier BC. Plasma exchange in neuroimmunological disorders: Part 1: Rationale and treatment of inflammatory central nervous system disorders. Arch Neurol. 2006;63:930–5.PubMedCrossRefGoogle Scholar
  132. 132.
    Weinshenker BG. Therapeutic plasma exchange for acute inflammatory demyelinating syndromes of the central nervous system. J Clin Apher. 1999;14:144–8.PubMedCrossRefGoogle Scholar
  133. 133.
    Llufriu S, Castillo J, Blanco Y, Ramió-Torrentà L, Río J, Vallès M, et al. Plasma exchange for acute attacks of CNS demyelination: predictors of improvement at 6 months. Neurology. 2009;73:949–53.PubMedCrossRefGoogle Scholar
  134. 134.
    Schilling S, Linker RA, Konig FB, Koziolek M, Bahr M, Muller GA, et al. Plasma exchange therapy for steroid-unresponsive multiple sclerosis relapses: clinical experience with 16 patients. Nervenarzt. 2006;77:430–8.PubMedCrossRefGoogle Scholar
  135. 135.
    Bielekova B, Becker BL. Monoclonal antibodies in MS: mechanisms of action. Neurology. 2010;74 Suppl 1:S31–40.PubMedCrossRefGoogle Scholar
  136. 136.
    Liossis SN, Sfikakis PP. Rituximab-induced B cell depletion in autoimmune ­diseases: potential effects on T cells. Clin Immunol. 2008;127:280–5.PubMedCrossRefGoogle Scholar
  137. 137.
    Fanale MA, Younes A. Monoclonal antibodies in the treatment of non-Hodgkin’s lymphoma. Drugs. 2007;67:333–50.PubMedCrossRefGoogle Scholar
  138. 138.
    Schuna AA. Rituximab for the treatment of rheumatoid arthritis. Pharmacotherapy. 2007;27:1702–10.PubMedCrossRefGoogle Scholar
  139. 139.
    Cree BA et al. An open label study of the effects of rituximab in neuromyelitis optica. Neurology. 2005;64:1270–2.PubMedCrossRefGoogle Scholar
  140. 140.
    Pestronk A et al. Treatment of IgM antibody associated polyneuropathies using rituximab. J Neurol Neurosurg Psychiatry. 2003;74:485–9.PubMedCrossRefGoogle Scholar
  141. 141.
    Hauser SL et al. B-cell depletion with rituximab in relapsing-remitting multiple sclerosis. N Engl J Med. 2008;358:676–88.PubMedCrossRefGoogle Scholar
  142. 142.
    Cepok S et al. Short-lived plasma blasts are the main B cell effector subset during the course of multiple sclerosis. Brain. 2005;128:1667–76.PubMedCrossRefGoogle Scholar
  143. 143.
    Qin Y et al. Intrathecal B-cell clonal expansion, an early sign of humoral immunity, in the cerebrospinal fluid of patients with clinically isolated syndrome suggestive of multiple sclerosis. Lab Invest. 2003;83:1081–8.PubMedCrossRefGoogle Scholar
  144. 144.
    Stuve O et al. Clinical stabilization and effective B-lymphocyte depletion in the cerebrospinal fluid and peripheral blood of a patient with fulminant relapsing-remitting multiple sclerosis. Arch Neurol. 2005;62:1620–3.PubMedCrossRefGoogle Scholar
  145. 145.
    Carson KR, Evens AM, Richey EA, Habermann TM, Focosi D, Seymour JF, et al. Progressive multifocal leukoencephalopathy after rituximab therapy in HIV-negative patients: a report of 57 cases from the Research on Adverse Drug Events and Reports project. Blood. 2009;113(20):4834–40.PubMedCrossRefGoogle Scholar
  146. 146.
    Hutas G. Ocrelizumab, a humanized monoclonal antibody against CD20 for inflammatory disorders and B-cell malignancies. Curr Opin Investig Drugs. 2008;9(11):1206–15.PubMedGoogle Scholar
  147. 147.
    Flynn JM, Byrd JC. Campath-1H monoclonal antibody therapy. Curr Opin Oncol. 2000;12:574–81.PubMedCrossRefGoogle Scholar
  148. 148.
    Coles AJ, Cox A, Le Page E, et al. The window of therapeutic opportunity in multiple sclerosis: evidence from monoclonal antibody therapy. J Neurol. 2006;253:98–108.PubMedCrossRefGoogle Scholar
  149. 149.
    Coles A, Deans J, Compston A. Campath-1H treatment of multiple sclerosis: lessons from the bedside for the bench. Clin Neurol Neurosurg. 2004;106:270–4.PubMedCrossRefGoogle Scholar
  150. 150.
    Fox E et al. Two-years results with alemtuzumab in patients with active relapsing-remitting multiple sclerosis who have failed licensed beta interferon therapies. Mult Scler. 2007;13:A558.CrossRefGoogle Scholar
  151. 151.
    Coles AJ, Compston DA, Selmaj KW, Lake SL, Moran S, Margolin DH, et al. Alemtuzumab vs. interferon beta-1a in early multiple sclerosis. N Engl J Med. 2008;359(17):1786–801.PubMedCrossRefGoogle Scholar
  152. 152.
    Goebel J, Stevens E, Forrest K, Roszman TL. Daclizumab (Zenapax) inhibits early interleukin-2 receptor signal transduction events. Transpl Immunol. 2000;8:153–9.PubMedCrossRefGoogle Scholar
  153. 153.
    Bielekova B, Catalfamo M, Reichert-Scrivner S, et al. Regulatory CD56 bright natural killer cells mediate immunomodulatory effects of IL 2R{alpha}-targeted therapy (daclizumab) in multiple sclerosis. Proc Natl Acad Sci USA. 2006;103:5941–594696.PubMedCrossRefGoogle Scholar
  154. 154.
    Bielekova B, Richert N, Howard T, et al. Humanized anti-CD25 (daclizumab) inhibits disease activity in multiple sclerosis patients failing to respond to interferon {beta}. Proc Natl Acad Sci USA. 2004;101:8705–8.PubMedCrossRefGoogle Scholar
  155. 155.
    Rose JW, Burns JB, Bjorklund J, Klein J, Watt HE, Carlson NG. Daclizumab phase II trial in relapsing and remitting multiple sclerosis: MRI and clinical results. Neurology. 2007;69:785–9.PubMedCrossRefGoogle Scholar
  156. 156.
    Sipe JC et al. Cladribine improves relapsing-remitting MS: a double blind, placebo controlled study. Neurology. 1997;48 Suppl 2:A340.Google Scholar
  157. 157.
    Sipe JC et al. Development of cladribine treatment in multiple sclerosis. Mult Scler. 1996;1:343–7.PubMedGoogle Scholar
  158. 158.
    Rice GP, Filippi M, Comi G. Cladribine and progressive MS: clinical and MRI outcomes of a multicenter controlled trial. Cladribine MRI Study Group. Neurology. 2000;54:1145–55.PubMedGoogle Scholar
  159. 159.
    Giovannoni G, Comi G, Cook S, Rammohan K, Rieckmann P, Sorensen PS, et al. A placebo-controlled trial of oral cladribine for relapsing multiple sclerosis. N Engl J Med. 2010;362:416.PubMedCrossRefGoogle Scholar
  160. 160.
    O’Connor PW et al. A phase II study of the safety and efficacy of teriflunomide in multiple sclerosis with relapses. Teriflunomide Multiple Sclerosis Trial Group; University of British Columbia MS/MRI Research Group. Neurology. 2006;66:894–900.PubMedCrossRefGoogle Scholar
  161. 161.
    Noseworthy JH, Wolinsky JS, Lublin FD, Whitaker JN, Linde A, Gjorstrup P, et al. Linomide in relapsing and secondary progressive MS: part I: trial design and clinical results. North American Linomide Investigators. Neurology. 2000;54(9):1726–33.PubMedGoogle Scholar
  162. 162.
    Polman C et al. Treatment with laquinimod reduces development of active MRI lesions in relapsing MS. Neurology. 2005;64:987–91.PubMedCrossRefGoogle Scholar
  163. 163.
    Kappos L et al. BG00012, a novel oral fumarate, is effective in patients with relapsing-remitting multiple sclerosis. Mult Scler. 2006;12:A325.CrossRefGoogle Scholar
  164. 164.
    Mancardi G, Saccardi R. Auto logous haematopoietic stem-cell transplantation in multiple sclerosis. Lancet Neurol. 2008;7:626–36.PubMedCrossRefGoogle Scholar
  165. 165.
    Roccatagliata L, Rocca MA, Valsasina P, Bonzano L, Sormani MP, Saccardi R, et al. The long-term effect of AHSCT on MRI measures of MS evolution: a five year follow-up study. Mult Scler. 2007;13:1068–70.PubMedCrossRefGoogle Scholar
  166. 166.
    Inglese M et al. Brain tissue loss occurs after suppression of enhancement in patients with multiple sclerosis treated with autologous haematopoietic stem cell transplantation. J Neurol Neurosurg Psychiatry. 2004;75:643–4.PubMedGoogle Scholar
  167. 167.
    Chen JT et al. Brain atrophy after immunoablation and stem cell transplantation in multiple sclerosis. Neurology. 2006;66:1935–7.PubMedCrossRefGoogle Scholar
  168. 168.
    Freedman MS, Atkins HL, Azzarelli B, Kolar OJ, Brück W. Autologous haematopoietic stem cell transplantation fails to stop demyelination and neurodegeneration in multiple sclerosis. Brain. 2007;130:1254–62.PubMedCrossRefGoogle Scholar
  169. 169.
    Perier O, Gregoire A. Electron microscopic features of multiple sclerosis. Brain. 1965;88:937–52.PubMedCrossRefGoogle Scholar
  170. 170.
    Patrikios P, Stadelmann C, Kutzelnigg A, Rauschka H, Schmidbauer M, Laursen H, et al. Remyelination is extensive in a subset of multiple sclerosis patients. Brain. 2006;129:3165–72.PubMedCrossRefGoogle Scholar
  171. 171.
    Ishibashi T, Dakin KA, Stevens B, Lee PR, Kozlov LV, Stewart CL, et al. Astrocytes promote myelination in response to electrical impulses. Neuron. 2006;49:823–32.PubMedCrossRefGoogle Scholar
  172. 172.
    Hoffmann K, Lindner M, Stangel M, Löscher W. Epileptic seizures and hippocampal damage after cupri-zone-induced demyelination in C56BL/6 mice. Exp Neurol. 2008;210:308–21.PubMedCrossRefGoogle Scholar
  173. 173.
    Su KG, Banker G, Bourdette D, Forte M. Axonal degeneration in multiple ­sclerosis: the mitochondrial hypothesis. Curr Neurol Neurosci Rep. 2009;9(5):411–7. Review.PubMedCrossRefGoogle Scholar
  174. 174.
    Mahad D, Ziabreva I, Lassmann H, Turnbull D. Mitochondrial defects in acute multiple sclerosis lesions. Brain. 2008;131(Pt 7):1722–35.PubMedCrossRefGoogle Scholar
  175. 175.
    Metz LM, Zhang Y, Yeung M, Patry DG, Bell RB, Stoian CA, et al. Minocycline reduces gadolinium-enhancing magnetic resonance imaging lesions in multiple sclerosis. Ann Neurol. 2004;55:756.PubMedCrossRefGoogle Scholar
  176. 176.
    Kalkers NF, Barkhof F, Bergers E, van Schijndel R, Polman CH. The effect of the neuroprotective agent riluzole on MRI parameters in patients with progressive multiple sclerosis: a pilot study. Mult Scler. 2002;8:532–3.PubMedCrossRefGoogle Scholar
  177. 177.
    Warrington AE, Asakura K, Bieber AJ, Ciric B, Van Keulen V, Kaveri SV, et al. Human monoclonal antibodies reactive to oligodendrocytes promote remyelination in a model of multiple sclerosis. Proc Natl Acad Sci USA. 2000;97:6820–5.PubMedCrossRefGoogle Scholar
  178. 178.
    Ehrenreich H, Fischer B, Norra C, Schellenberger F, Stender N, Stiefel M, et al. Exploring human recombinant erythropoietin in chronic progressive multiple sclerosis. Brain. 2007;130:2577–88.PubMedCrossRefGoogle Scholar
  179. 179.
    Frank JA, Richert N, Lewis B, Bash C, Howard T, Civil R, et al. A pilot study of recombinant insulin-like growth factor-1 in seven multiple sclerosis patients. Mult Scler. 2002;8:24–9.PubMedGoogle Scholar
  180. 180.
    Waxman SG. Mechanisms of disease: sodium channels and neuroprotection in multiple sclerosis-current status. Nat Clin Pract Neurol. 2008;4:159–69.PubMedCrossRefGoogle Scholar
  181. 181.
    Leary SM, Miller DH, Stevenson VL, et al. Interferon beta-1a in primary ­progressive MS: an exploratory, randomized, controlled trial. Neurology. 2003;60:44–51.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Syed A. Rizvi
    • 1
  1. 1.Department of Clinical NeuroscienceBrown UniversityProvidenceUSA

Personalised recommendations