Skip to main content

Principles of Immunotherapy

  • Chapter
  • First Online:
Clinical Neuroimmunology

Part of the book series: Current Clinical Neurology ((CCNEU))

  • 1698 Accesses

Abstract

Immunotherapeutic intervention varies from immunomodulation, which adjusts the immune system back toward a state of homeostasis, to immunosuppression, which ablates specific compartments or pathways involved in the pathologic process. These approaches carry both benefit and risk. This chapter will discuss current and future principles of immunotherapeutic approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kasper L. Haque, Azizul., Haque, Sakhina DA Regulatory mechanisms of the immune system in multiple sclerosis. T regulatory cells: turned on to turn off. J Neurol. 2007;254 Suppl 1:110–4.

    Google Scholar 

  2. Duddy M et al. Distinct effector cytokine profiles of memory and naive human B cell subsets and implication in multiple sclerosis. J Immunol. 2007;178(10):6092–9.

    PubMed  CAS  Google Scholar 

  3. Richman DP, Agius MA. Treatment principles in the management of autoimmune myasthenia gravis. Ann N Y Acad Sci. 2003;998:457–72.

    PubMed  CAS  Google Scholar 

  4. Blanco P et al. Dendritic cells and cytokines in human inflammatory and autoimmune diseases. Cytokine Growth Factor Rev. 2008;19(1):41–52.

    PubMed  CAS  Google Scholar 

  5. Dittel BN. CD4 T cells: balancing the coming and going of autoimmune-mediated inflammation in the CNS. Brain Behav Immun. 2008;22(4):421–30.

    PubMed  CAS  Google Scholar 

  6. Costantino CM, Baecher-Allan C, Hafler DA. Multiple sclerosis and regulatory T cells. J Clin Immunol. 2008;28(6):697–706.

    PubMed  Google Scholar 

  7. Kasper G et al. Matrix metalloprotease activity is an essential link between ­mechanical stimulus and mesenchymal stem cell behavior. Stem Cells. 2007;25(8):1985–94.

    PubMed  CAS  Google Scholar 

  8. Chang X et al. Foxp3 controls autoreactive T cell activation through transcriptional regulation of early growth response genes and E3 ubiquitin ligase genes, independently of thymic selection. Clin Immunol. 2006;121(3):274–85.

    PubMed  CAS  Google Scholar 

  9. Chang X et al. The Scurfy mutation of FoxP3 in the thymus stroma leads to defective thymopoiesis. J Exp Med. 2005;202(8):1141–51.

    PubMed  CAS  Google Scholar 

  10. Sakaguchi S. Regulatory T cells: key controllers of immunologic self-tolerance. Cell. 2000;101(5):455–8.

    PubMed  CAS  Google Scholar 

  11. Taylor A et al. Mechanisms of immune suppression by interleukin-10 and transforming growth factor-beta: the role of T regulatory cells. Immunology. 2006;117(4):433–42.

    PubMed  CAS  Google Scholar 

  12. Miyara M, Sakaguchi SD-M. Natural regulatory T cells: mechanisms of suppression. Trends Mol Med. 2007;13(3):108–16.

    PubMed  CAS  Google Scholar 

  13. Reder AT et al. Low T8 antigen density on lymphocytes in active multiple sclerosis. Ann Neurol. 1984;16(2):242–9.

    PubMed  CAS  Google Scholar 

  14. Sakaguchi S, Wing K, Miyara MD-N. Regulatory T cells – a brief history and perspective. Eur J Immunol. 2007;37 Suppl 1:S116–23.

    PubMed  CAS  Google Scholar 

  15. Abbas AK, Lichtman A. Cellular and molecular immunology. 2nd ed. Philadelphia: Saunders Elsevier; 2006. p. 324.

    Google Scholar 

  16. Zhang C, Zhang J, et al. The regulatory effect of natural killer cells: do “NK-reg cells” exist? Cell Mol Immunol. 2006;3(4):241–54.

    PubMed  CAS  Google Scholar 

  17. Li Z, Lim WK, et al. Cutting edge: in vivo blockade of human IL-2 receptor induces expansion of CD56(bright) regulatory NK cells in patients with active uveitis. J Immunol. 2005;174(9):5187–91.

    PubMed  CAS  Google Scholar 

  18. Waldmann TA, Tagaya Y. The multifaceted regulation of interleukin-15 expression and the role of this cytokine in NK cell differentiation and host response to intracellular pathogens. Annu Rev Immunol. 1999;17:19–49.

    PubMed  CAS  Google Scholar 

  19. Nowak M, Stein-Streilein J. Invariant NKT cells and tolerance. Int Rev Immunol. 2007;26(1–2):95–119.

    PubMed  CAS  Google Scholar 

  20. Bendelac A, Savage PB, Teyton L. The biology of NKT cells. Annu Rev Immunol. 2007;25:297–336.

    PubMed  CAS  Google Scholar 

  21. Yamaura A et al. Human invariant Valpha24+ natural killer T cells acquire regulatory functions by interacting with IL-10-treated dendritic cells. Blood. 2008;111(8):4254–63.

    PubMed  CAS  Google Scholar 

  22. Godfrey DI, McCluskey J, Rossjohn J. CD1d antigen presentation: treats for NKT cells. Nat Immunol. 2005;6(8):754–6.

    PubMed  CAS  Google Scholar 

  23. Burrows PD, Cooper MD. B-cell development in man. Curr Opin Immunol. 1993;5(2):201–6.

    PubMed  CAS  Google Scholar 

  24. Tangye SG et al. BAFF, APRIL and human B cell disorders. Semin Immunol. 2006;18(5):305–17.

    PubMed  CAS  Google Scholar 

  25. Uckun FM. Regulation of human B-cell ontogeny. Blood. 1990;76(10):1908–23.

    PubMed  CAS  Google Scholar 

  26. Sun J, Lin Z, et al. BAFF-targeting therapy, a promising strategy for treating autoimmune diseases. Eur J Pharmacol. 2008;597(1–3):1–5.

    PubMed  CAS  Google Scholar 

  27. Dalakas MC. B cells as therapeutic targets in autoimmune neurological disorders. Nat Clin Pract Neurol. 2008;4(10):557–67.

    PubMed  CAS  Google Scholar 

  28. Schneider P et al. BAFF, a novel ligand of the tumor necrosis factor family, stimulates B cell growth. J Exp Med. 1999;189(11):1747–56.

    PubMed  CAS  Google Scholar 

  29. Gross JA et al. TACI and BCMA are receptors for a TNF homologue implicated in B-cell autoimmune disease. Nature. 2000;404(6781):995–9.

    PubMed  CAS  Google Scholar 

  30. Thompson JS et al. BAFF-R, a newly identified TNF receptor that specifically interacts with BAFF. Science. 2001;293(5537):2108–11.

    PubMed  CAS  Google Scholar 

  31. Krumbholz M et al. BAFF is produced by astrocytes and up-regulated in multiple sclerosis lesions and primary central nervous system lymphoma. J Exp Med. 2005;201(2):195–200.

    PubMed  CAS  Google Scholar 

  32. Nardelli B et al. Synthesis and release of B-lymphocyte stimulator from myeloid cells. Blood. 2001;97(1):198–204.

    PubMed  CAS  Google Scholar 

  33. Ng LG et al. B cell-activating factor belonging to the TNF family (BAFF)-R is the principal BAFF receptor facilitating BAFF costimulation of circulating T and B cells. J Immunol. 2004;173(2):807–17.

    PubMed  CAS  Google Scholar 

  34. Craxton A et al. Macrophage- and dendritic cell-dependent regulation of human B-cell proliferation requires the TNF family ligand BAFF. Blood. 2003;101(11):4464–71.

    PubMed  CAS  Google Scholar 

  35. Katsenelson N et al. Synthetic CpG oligodeoxynucleotides augment BAFF- and APRIL-mediated immunoglobulin secretion. Eur J Immunol. 2007;37(7):1785–95.

    PubMed  CAS  Google Scholar 

  36. Meyer-Bahlburg A, Rawlings DG. B cell autonomous TLR signaling and autoimmunity. Autoimmun Rev. 2008;7(4):313–6.

    PubMed  CAS  Google Scholar 

  37. Cheema GS et al. Elevated serum B lymphocyte stimulator levels in patients with systemic immune-based rheumatic diseases. Arthritis Rheum. 2001;44(6):1313–9.

    PubMed  CAS  Google Scholar 

  38. Groom J et al. Association of BAFF/BLyS overexpression and altered B cell differentiation with Sjogren’s syndrome. J Clin Invest. 2002;109(1):59–68.

    PubMed  CAS  Google Scholar 

  39. Krumbholz M et al. Interferon-beta increases BAFF levels in multiple sclerosis: implications for B cell autoimmunity. Brain. 2008;131(Pt 6):1455–63.

    PubMed  CAS  Google Scholar 

  40. Hamzaoui K et al. Serum BAFF levels and skin mRNA expression in patients with Behcet’s disease. Clin Exp Rheumatol. 2008;26(4 Suppl 50):S64–71.

    PubMed  CAS  Google Scholar 

  41. Thangarajh M et al. Expression of B-cell-activating factor of the TNF family (BAFF) and its receptors in multiple sclerosis. J Neuroimmunol. 2004;152(1–2):183–90.

    PubMed  CAS  Google Scholar 

  42. Thien M et al. Excess BAFF rescues self-reactive B cells from peripheral deletion and allows them to enter forbidden follicular and marginal zone niches. Immunity. 2004;20(6):785–98.

    PubMed  CAS  Google Scholar 

  43. Chen X, Jensen PE. The role of B lymphocytes as antigen-presenting cells. Arch Immunol Ther Exp (Warsz). 2008;56(2):77–83.

    CAS  Google Scholar 

  44. Hawker K. B-cell-targeted treatment for multiple sclerosis: mechanism of action and clinical data. Curr Opin Neurol. 2008;21 Suppl 1:S19–25.

    PubMed  Google Scholar 

  45. Chan OT et al. A novel mouse with B cells but lacking serum antibody reveals an antibody-independent role for B cells in murine lupus. J Exp Med. 1999;189(10):1639–48.

    PubMed  CAS  Google Scholar 

  46. Lanzavecchia A. Receptor-mediated antigen uptake and its effect on antigen presentation to class II-restricted T lymphocytes. Annu Rev Immunol. 1990;8:773–93.

    PubMed  CAS  Google Scholar 

  47. Lund FE et al. Regulatory roles for cytokine-producing B cells in infection and autoimmune disease. Curr Dir Autoimmun. 2005;8:25–54.

    PubMed  CAS  Google Scholar 

  48. Pistoia V. Production of cytokines by human B cells in health and disease. Immunol Today. 1997;18(7):343–50.

    PubMed  CAS  Google Scholar 

  49. Duddy ME, Alter A, Bar-Or A. Distinct profiles of human B cell effector cytokines: a role in immune regulation? J Immunol. 2004;172(6):3422–7.

    PubMed  CAS  Google Scholar 

  50. Banchereau J et al. The CD40 antigen and its ligand. Annu Rev Immunol. 1994;12:881–922.

    PubMed  CAS  Google Scholar 

  51. Fillatreau S et al. B cells regulate autoimmunity by provision of IL-10. Nat Immunol. 2002;3(10):944–50.

    PubMed  CAS  Google Scholar 

  52. Mizoguchi A et al. Chronic intestinal inflammatory condition generates IL-10-producing regulatory B cell subset characterized by CD1d upregulation. Immunity. 2002;16(2):219–30.

    PubMed  CAS  Google Scholar 

  53. Mauri C et al. Prevention of arthritis by interleukin 10-producing B cells. J Exp Med. 2003;197(4):489–501.

    PubMed  CAS  Google Scholar 

  54. Matsushita T et al. Regulatory B cells inhibit EAE initiation in mice while other B cells promote disease progression. J Clin Invest. 2008;118(10):3420–30.

    PubMed  CAS  Google Scholar 

  55. Serafini B et al. Detection of ectopic B-cell follicles with germinal centers in the meninges of patients with secondary progressive multiple sclerosis. Brain Pathol. 2004;14(2):164–74.

    PubMed  Google Scholar 

  56. Sims GP et al. Somatic hypermutation and selection of B cells in thymic germinal centers responding to acetylcholine receptor in myasthenia gravis. J Immunol. 2001;167(4):1935–44.

    PubMed  CAS  Google Scholar 

  57. Roxanis I et al. Thymic myoid cells and germinal center formation in myasthenia gravis; possible roles in pathogenesis. J Neuroimmunol. 2002;125(1–2):185–97.

    PubMed  CAS  Google Scholar 

  58. Aloisi F et al. Lymphoid chemokines in chronic neuroinflammation. J Neuroimmunol. 2008;198(1–2):106–12.

    PubMed  CAS  Google Scholar 

  59. Magliozzi R et al. Meningeal B-cell follicles in secondary progressive multiple sclerosis associate with early onset of disease and severe cortical pathology. Brain. 2007;130(Pt 4):1089–104.

    PubMed  Google Scholar 

  60. Engelhardt B, Ransohoff RM. The ins and outs of T-lymphocyte trafficking to the CNS: anatomical sites and molecular mechanisms. Trends Immunol. 2005;26(9):485–95.

    PubMed  CAS  Google Scholar 

  61. Man S, Ubogu EE, Ransohoff RM. Inflammatory cell migration into the central nervous system: a few new twists on an old tale. Brain Pathol. 2007;17(2):243–50.

    PubMed  CAS  Google Scholar 

  62. Allt G, Lawrenson JG. Is the pial microvessel a good model for blood-brain barrier studies? Brain Res Brain Res Rev. 1997;24(1):67–76.

    PubMed  CAS  Google Scholar 

  63. Kivisakk P et al. Human cerebrospinal fluid central memory CD4+ T cells: evidence for trafficking through choroid plexus and meninges via P-selectin. Proc Natl Acad Sci USA. 2003;100(14):8389–94.

    PubMed  Google Scholar 

  64. Provencio JJ et al. Comparison of ventricular and lumbar cerebrospinal fluid T cells in non-inflammatory neurological disorder (NIND) patients. J Neuroimmunol. 2005;163(1–2):179–84.

    PubMed  CAS  Google Scholar 

  65. Weller RO et al. Lymphatic drainage of the brain and the pathophysiology of neurological disease. Acta Neuropathol. 2009;117(1):1–14.

    PubMed  CAS  Google Scholar 

  66. Konat GW, Borysiewicz E, Fil D, James I. Peripheral challenge with double- stranded RNA elicits global up-regulation of cytokine gene expression in the brain. J Neurosci Res. 2009;87(6):1381–8.

    PubMed  CAS  Google Scholar 

  67. Schenkel AR, Mamdouh Z. Locomotion of monocytes on endothelium is a critical step during extravasation. Nat Immunol. 2004;5(4):393–400.

    PubMed  CAS  Google Scholar 

  68. Charo IF, Ransohoff RM. The many roles of chemokines and chemokine receptors in inflammation. N Engl J Med. 2006;354(6):610–21.

    PubMed  CAS  Google Scholar 

  69. Cardona AE et al. Chemokines in and out of the central nervous system: much more than chemotaxis and inflammation. J Leukoc Biol. 2008;84(3):587–94.

    PubMed  CAS  Google Scholar 

  70. Bazan JF et al. A new class of membrane-bound chemokine with a CX3C motif. Nature. 1997;385(6617):640–4.

    PubMed  CAS  Google Scholar 

  71. Avolio C et al. Serum MMP-9/TIMP-1 and MMP-2/TIMP-2 ratios in multiple sclerosis: relationships with different magnetic resonance imaging measures of disease activity during IFN-beta-1a treatment. Mult Scler. 2005;11(4):441–6.

    PubMed  CAS  Google Scholar 

  72. Takabe K et al. “Inside-out” signaling of sphingosine-1-phosphate: therapeutic targets. Pharmacol Rev. 2008;60(2):181–95.

    PubMed  CAS  Google Scholar 

  73. Spiegel S, Milstien S. Sphingosine-1-phosphate: an enigmatic signalling lipid. Nat Rev Mol Cell Biol. 2003;4(5):397–407.

    PubMed  CAS  Google Scholar 

  74. Cuvillier O et al. Suppression of ceramide-mediated programmed cell death by sphingosine-1-phosphate. Nature. 1996;381(6585):800–3.

    PubMed  CAS  Google Scholar 

  75. Graler MH et al. The sphingosine 1-phosphate receptor S1P4 regulates cell shape and motility via coupling to Gi and G12/13. J Cell Biochem. 2003;89(3):507–19.

    PubMed  CAS  Google Scholar 

  76. Wang W, Huang MC, Goetzl EJ. Type 1 sphingosine 1-phosphate G protein-coupled receptor (S1P1) mediation of enhanced IL-4 generation by CD4 T cells from S1P1 transgenic mice. J Immunol. 2007;178(8):4885–90.

    PubMed  CAS  Google Scholar 

  77. Terai K et al. Edg-8 receptors are preferentially expressed in oligodendrocyte ­lineage cells of the rat CNS. Neuroscience. 2003;116(4):1053–62.

    PubMed  CAS  Google Scholar 

  78. Allende ML et al. S1P1 receptor expression regulates emergence of NKT cells in peripheral tissues. FASEB J. 2008;22(1):307–15.

    PubMed  CAS  Google Scholar 

  79. Shiow LR et al. CD69 acts downstream of interferon-alpha/beta to inhibit S1P1 and lymphocyte egress from lymphoid organs. Nature. 2006;440(7083):540–4.

    PubMed  CAS  Google Scholar 

  80. Lande R et al. Plasmacytoid dendritic cells in multiple sclerosis: intracerebral recruitment and impaired maturation in response to interferon-beta. J Neuropathol Exp Neurol. 2008;67(5):388–401.

    PubMed  CAS  Google Scholar 

  81. Wakkach A et al. Characterization of dendritic cells that induce tolerance and T regulatory 1 cell differentiation in vivo. Immunity. 2003;18(5):605–17.

    PubMed  CAS  Google Scholar 

  82. Ito T et al. Plasmacytoid dendritic cells prime IL-10-producing T regulatory cells by inducible costimulator ligand. J Exp Med. 2007;204(1):105–15.

    PubMed  CAS  Google Scholar 

  83. Meriggioli MN et al. Strategies for treating autoimmunity: novel insights from experimental myasthenia gravis. Ann N Y Acad Sci. 2008;1132:276–82.

    PubMed  CAS  Google Scholar 

  84. Itano AA et al. Distinct dendritic cell populations sequentially present antigen to CD4 T cells and stimulate different aspects of cell-mediated immunity. Immunity. 2003;19(1):47–57.

    PubMed  CAS  Google Scholar 

  85. Tarbell KV, Yamazaki S. The interactions of dendritic cells with antigen-specific, regulatory T cells that suppress autoimmunity. Semin Immunol. 2006;18(2):93–102.

    PubMed  CAS  Google Scholar 

  86. Groux H, Fournier N. Role of dendritic cells in the generation of regulatory T cells. Semin Immunol. 2004;16(2):99–106.

    PubMed  CAS  Google Scholar 

  87. Javed A, Reder AT. Therapeutic role of beta-interferons in multiple sclerosis. Pharmacol Ther. 2006;110(1):35–56.

    PubMed  CAS  Google Scholar 

  88. Zhao W et al. Stat2-dependent regulation of MHC class II expression. J Immunol. 2007;179(1):463–71.

    PubMed  CAS  Google Scholar 

  89. Alison MR, Islam S. Attributes of adult stem cells. J Pathol. 2009;217(2):144–60.

    PubMed  CAS  Google Scholar 

  90. Conover JC, Notti RQ. The neural stem cell niche. Cell Tissue Res. 2008;331(1):211–24.

    PubMed  Google Scholar 

  91. Rice CM, Scolding NJ. Adult stem cells-reprogramming neurological repair? Lancet. 2004;364(9429):193–9.

    PubMed  CAS  Google Scholar 

  92. Singec I, Snyder EY. Inflammation as a matchmaker: revisiting cell fusion. Nat Cell Biol. 2008;10(5):503–5.

    PubMed  CAS  Google Scholar 

  93. Whone AL, Scolding NJ. Mesenchymal stem cells and neurodegenerative disease. Clin Pharmacol Ther. 2009;85(1):19–20.

    PubMed  CAS  Google Scholar 

  94. Korbling M, Estrov Z, Champlin R. Adult stem cells and tissue repair. Bone Marrow Transplant. 2003;32 Suppl 1:S23–4.

    PubMed  Google Scholar 

  95. Burt RK et al. Autologous non-myeloablative haemopoietic stem cell transplantation in relapsing-remitting multiple sclerosis: a phase I/II study. Lancet Neurol. 2009;8(3):244–53.

    PubMed  CAS  Google Scholar 

  96. Burt RK et al. Hematopoietic stem cell transplantation for progressive multiple sclerosis: failure of a total body irradiation-based conditioning regimen to prevent disease progression in patients with high disability scores. Blood. 2003;102(7):2373–8.

    PubMed  CAS  Google Scholar 

  97. Burt RK et al. The promise of hematopoietic stem cell transplantation for autoimmune diseases. Bone Marrow Transplant. 2003;31(7):521–4.

    PubMed  CAS  Google Scholar 

  98. Freedman MS, Atkins HL. Suppressing immunity in advancing MS: too much too late, or too late for much? Neurology. 2004;62(2):168–9.

    PubMed  Google Scholar 

  99. Li Y et al. Human marrow stromal cell therapy for stroke in rat: neurotrophins and functional recovery. Neurology. 2002;59(4):514–23.

    PubMed  CAS  Google Scholar 

  100. Pittenger MF et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284(5411):143–7.

    PubMed  CAS  Google Scholar 

  101. Zappia E et al. Mesenchymal stem cells ameliorate experimental autoimmune encephalomyelitis inducing T-cell anergy. Blood. 2005;106(5):1755–61.

    PubMed  CAS  Google Scholar 

  102. Larghero J, Vija L, Lecourt S, Michel L, Verrecchia F, Farge D. Mesenchymal stem cells and immunomodulation: toward new immunosuppressive strategies for the treatment of autoimmune diseases? Rev Med Interne. 2009;30(3):287–99.

    PubMed  CAS  Google Scholar 

  103. Bai L, Lennon DP, Eaton V, Maier K, Caplan AI, Miller SD, et al. Human bone marrow-derived mesenchymal stem cells induce Th2-polarized immune response and promote endogenous repair in animal models of multiple sclerosis. Glia. 2009;57(11):1192–203.

    PubMed  Google Scholar 

  104. Wang M et al. The immunomodulatory activity of human umbilical cord blood-derived mesenchymal stem cells in vitro. Immunology. 2009;126(2):220–32.

    PubMed  CAS  Google Scholar 

  105. Yadirgi G, Marino S. Adult neural stem cells and their role in brain pathology. J Pathol. 2009;217(2):242–53.

    PubMed  CAS  Google Scholar 

  106. Pluchino S et al. Persistent inflammation alters the function of the endogenous brain stem cell compartment. Brain. 2008;131(Pt 10):2564–78.

    PubMed  Google Scholar 

  107. Ben-Hur T et al. Transplanted multipotential neural precursor cells migrate into the inflamed white matter in response to experimental autoimmune encephalomyelitis. Glia. 2003;41(1):73–80.

    PubMed  Google Scholar 

  108. Pluchino S, Martino G. The therapeutic plasticity of neural stem/precursor cells in multiple sclerosis. J Neurol Sci. 2008;265(1–2):105–10.

    PubMed  CAS  Google Scholar 

  109. Patrikios P et al. Remyelination is extensive in a subset of multiple sclerosis patients. Brain. 2006;129(Pt 12):3165–72.

    PubMed  Google Scholar 

  110. Patani R et al. Remyelination can be extensive in multiple sclerosis despite a long disease course. Neuropathol Appl Neurobiol. 2007;33(3):277–87.

    PubMed  CAS  Google Scholar 

  111. Franklin RJ, Kotter MR. The biology of CNS remyelination: the key to therapeutic advances. J Neurol. 2008;255 Suppl 1:19–25.

    PubMed  CAS  Google Scholar 

  112. Kuhlmann T et al. Differentiation block of oligodendroglial progenitor cells as a cause for remyelination failure in chronic multiple sclerosis. Brain. 2008;131(Pt 7):1749–58.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Joscelyn, J.L., Kasper, L. (2011). Principles of Immunotherapy. In: Rizvi, S., Coyle, P. (eds) Clinical Neuroimmunology. Current Clinical Neurology. Humana Press. https://doi.org/10.1007/978-1-60327-860-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-860-7_2

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-859-1

  • Online ISBN: 978-1-60327-860-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics