Advertisement

The Neuroimmunology of Cortical Disease (Dementia, Epilepsy, and Autoimmune Encephalopathies)

  • Julie L. Roth
  • Brian R. Ott
  • John N. Gaitanis
  • Andrew S. Blum
Chapter
Part of the Current Clinical Neurology book series (CCNEU)

Abstract

Alzheimer’s disease (AD) is a neurodegenerative disorder characterized ­pathologically by large numbers of extracellular neuritic plaques containing a core of amyloid Aβ fibrils as well as intracellular neurofibrillary tangles containing hyperphosphorylated tau protein filaments in the neurons of the cerebral cortex. Other features include reactive gliosis, synaptic loss, neuronal death, and mitochondrial dysfunction. A small percentage of cases are due to genetic mutations of the amyloid precursor gene on chromosome 21 and mutations in presenilin 1 and 2 genes on chromosomes 2 and 14, respectively [1]. These presenilin proteins are inherent to secretase enzymes involved with cleavage of the amyloid Aβ precursor protein into amyloidogenic A fragments, particularly Aβ42 [2]. Apolipoprotein E4 is an important risk factor allele for other cases [3]. The molecular underpinnings for the common form of AD occurring sporadically in older patients remain largely to be elucidated.

Keywords

Dementia Neuritic plaques Immunotherapy Limbic encephalitis Neuromyotonia 

References

  1. 1.
    Bird TD. Genetic aspects of Alzheimer disease. Genet Med. 2008;10(4):231–9.PubMedCrossRefGoogle Scholar
  2. 2.
    Selkoe DJ. Alzheimer’s disease results from the cerebral accumulation and cytotoxicity of amyloid beta-protein. J Alzheimers Dis. 2001;3(1):75–80.PubMedGoogle Scholar
  3. 3.
    Jofre-Monseny L, Minihane AM, Rimbach G. Impact of apoE genotype on oxidative stress, inflammation and disease risk. Mol Nutr Food Res. 2008;52(1):131–45.PubMedCrossRefGoogle Scholar
  4. 4.
    Eikelenboom P, Rozemuller AJ, Hoozemans JJ, Veerhuis R, van Gool WA. Neuroinflammation and Alzheimer disease: clinical and therapeutic implications. Alzheimer Dis Assoc Disord. 2000;14 Suppl 1:S54–61.PubMedGoogle Scholar
  5. 5.
    McGeer PL, McGeer EG. NSAIDs and Alzheimer disease: epidemiological, animal model and clinical studies. Neurobiol Aging. 2007;28(5):639–47.PubMedCrossRefGoogle Scholar
  6. 6.
    Etminan M, Gill S, Samii A. Effect of non-steroidal anti-inflammatory drugs on risk of Alzheimer’s disease: systematic review and meta-analysis of observational studies. BMJ. 2003;327(7407):128.PubMedCrossRefGoogle Scholar
  7. 7.
    Hayden KM, Zandi PP, Khachaturian AS, et al. Does NSAID use modify cognitive trajectories in the elderly? The Cache County study. Neurology. 2007;69(3):275–82.PubMedCrossRefGoogle Scholar
  8. 8.
    Int V, Ruitenberg A, Hofman A, et al. Nonsteroidal antiinflammatory drugs and the risk of Alzheimer’s disease. N Engl J Med. 2001;345(21):1515–21.CrossRefGoogle Scholar
  9. 9.
    Firuzi O, Pratico D. Coxibs and Alzheimer’s disease: should they stay or should they go? Ann Neurol. 2006;59(2):219–28.PubMedCrossRefGoogle Scholar
  10. 10.
    Rogers J, Kirby LC, Hempelman SR, et al. Clinical trial of indomethacin in Alzheimer’s disease. Neurology. 1993;43(8):1609–11.PubMedGoogle Scholar
  11. 11.
    Scharf JM, Daffner KR. NSAIDs in the prevention of dementia: a Cache-22? Neurology. 2007;69(3):235–6.PubMedCrossRefGoogle Scholar
  12. 12.
    Reines SA, Block GA, Morris JC, et al. Rofecoxib: no effect on Alzheimer’s disease in a 1-year, randomized, blinded, controlled study. Neurology. 2004;62(1):66–71.PubMedGoogle Scholar
  13. 13.
    Aisen PS, Schafer KA, Grundman M, et al. Effects of rofecoxib or naproxen vs placebo on Alzheimer disease progression: a randomized controlled trial. JAMA. 2003;289(21):2819–26.PubMedCrossRefGoogle Scholar
  14. 14.
    Aisen PS, Davis KL, Berg JD, et al. A randomized controlled trial of prednisone in Alzheimer’s disease. Alzheimer’s Disease Cooperative Study. Neurology. 2000;54(3):588–93.PubMedGoogle Scholar
  15. 15.
    Lyketsos CG, Breitner JC, et al. ADAPT Research Group. Naproxen and celecoxib do not prevent AD in early results from a randomized controlled trial. Neurology. 2007;68(21):1800–8.Google Scholar
  16. 16.
    Honig LS. Inflammation in neurodegenerative disease: good, bad, or irrelevant? Arch Neurol. 2000;57(6):786–8.PubMedCrossRefGoogle Scholar
  17. 17.
    Mackenzie IR, Munoz DG. Nonsteroidal anti-inflammatory drug use and Alzheimer-type pathology in aging. Neurology. 1998;50(4):986–90.PubMedGoogle Scholar
  18. 18.
    Halliday GM, Shepherd CE, McCann H, et al. Effect of anti-inflammatory medications on neuropathological findings in Alzheimer disease. Arch Neurol. 2000;57(6):831–6.PubMedCrossRefGoogle Scholar
  19. 19.
    Tobinick EL, Gross H. Rapid cognitive improvement in Alzheimer’s disease ­following perispinal etanercept administration. J Neuroinflammation. 2008;5:2.PubMedCrossRefGoogle Scholar
  20. 20.
    Tobinick E, Gross H, Weinberger A, Cohen H. TNF-alpha modulation for treatment of Alzheimer’s disease: a 6-month pilot study. MedGenMed. 2006;8(2):25.PubMedGoogle Scholar
  21. 21.
    Griffin WS. Perispinal etanercept: potential as an Alzheimer therapeutic. J Neuroinflammation. 2008;5:3.PubMedCrossRefGoogle Scholar
  22. 22.
    Tobinick E. Perispinal etanercept for treatment of Alzheimer’s disease. Curr Alzheimer Res. 2007;4(5):550–2.PubMedCrossRefGoogle Scholar
  23. 23.
    Serretti A, Olgiati P, De RD. Genetics of Alzheimer’s disease. A rapidly evolving field. J Alzheimers Dis. 2007;12(1):73–92.PubMedGoogle Scholar
  24. 24.
    Crawford FC, Wood M, Ferguson S, et al. Genomic analysis of response to traumatic brain injury in a mouse model of Alzheimer’s disease (APPsw). Brain Res. 2007;1185:45–58.PubMedCrossRefGoogle Scholar
  25. 25.
    Ozturk C, Ozge A, Yalin OO, et al. The diagnostic role of serum inflammatory and soluble proteins on dementia subtypes: correlation with cognitive and functional decline. Behav Neurol. 2007;18(4):207–15.PubMedGoogle Scholar
  26. 26.
    Shah RS, Lee HG, Xiongwei Z, Perry G, Smith MA, Castellani RJ. Current approaches in the treatment of Alzheimer’s disease. Biomed Pharmacother. 2008;62(4):199–207.PubMedCrossRefGoogle Scholar
  27. 27.
    Andreasen N, Zetterberg H. Amyloid-related biomarkers for Alzheimer’s disease. Curr Med Chem. 2008;15(8):766–71.PubMedCrossRefGoogle Scholar
  28. 28.
    McLean CA, Cherny RA, Fraser FW, et al. Soluble pool of Abeta amyloid as a determinant of severity of neurodegeneration in Alzheimer’s disease. Ann Neurol. 1999;46(6):860–6.PubMedCrossRefGoogle Scholar
  29. 29.
    Schenk D, Barbour R, Dunn W, et al. Immunization with amyloid-beta attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature. 1999;400(6740):173–7.PubMedCrossRefGoogle Scholar
  30. 30.
    Bayer AJ, Bullock R, Jones RW, et al. Evaluation of the safety and immunogenicity of synthetic Abeta42 (AN1792) in patients with AD. Neurology. 2005;64(1):94–101.PubMedCrossRefGoogle Scholar
  31. 31.
    Orgogozo JM, Gilman S, Dartigues JF, et al. Subacute meningoencephalitis in a subset of patients with AD after Abeta42 immunization. Neurology. 2003;61(1):46–54.PubMedGoogle Scholar
  32. 32.
    Hock C, Konietzko U, Streffer JR, et al. Antibodies against beta-amyloid slow cognitive decline in Alzheimer’s disease. Neuron. 2003;38(4):547–54.PubMedCrossRefGoogle Scholar
  33. 33.
    Gilman S, Koller M, Black RS, et al. Clinical effects of Abeta immunization (AN1792) in patients with AD in an interrupted trial. Neurology. 2005;64(9):1553–62.PubMedCrossRefGoogle Scholar
  34. 34.
    Holmes C, Boche D, Wilkinson D, et al. Long-term effects of Abeta42 immunisation in Alzheimer’s disease: follow-up of a randomised, placebo-controlled phase I trial. Lancet. 2008;372(9634):216–23.PubMedCrossRefGoogle Scholar
  35. 35.
    Masliah E, Hansen L, Adame A, et al. Abeta vaccination effects on plaque pathology in the absence of encephalitis in Alzheimer disease. Neurology. 2005;64(1):129–31.PubMedCrossRefGoogle Scholar
  36. 36.
    Fox NC, Black RS, Gilman S, et al. Effects of Abeta immunization (AN1792) on MRI measures of cerebral volume in Alzheimer disease. Neurology. 2005;64(9):1563–72.PubMedCrossRefGoogle Scholar
  37. 37.
    Relkin NR. Current state of immunotherapy for Alzheimer’s disease. CNS Spectr. 2008;13(10 Suppl 16):39–41.PubMedGoogle Scholar
  38. 38.
    Grundman M, Black R. Clinical trials of bapineuzumab, a beta-amyloid-targeted immunotherapy in patients with mild to moderate Alzheimer’s disease. Alzheimers Dement. 2008;4 Suppl 2:T166.CrossRefGoogle Scholar
  39. 39.
    Rinne JO, Brooks DJ, Rossor MN, et al. 11C-PiB PET assessment of change in fibrillar amyloid-β load in patients with Alzheimer’s disease treated with bapineuzumab: a phase 2, double-blind, placebo-controlled, ascending-dose study. Lancet Neurol. 2010;9(4):363–72.PubMedCrossRefGoogle Scholar
  40. 40.
    Gandy S. Testing the amyloid hypothesis of Alzheimer’s disease in vivo. Lancet Neurol. 2010;9(4):333–5.PubMedCrossRefGoogle Scholar
  41. 41.
    Siemers ER, Friedrich S, Dean RA, et al. Safety, tolerability and biomarker effects of an abeta monoclonal antibody administered to patients with Alzheimer’s ­disease. Alzheimers Dement. 2008;4 Suppl 4:T774.CrossRefGoogle Scholar
  42. 42.
    Dodel RC, Du Y, Depboylu C, et al. Intravenous immunoglobulins containing antibodies against beta-amyloid for the treatment of Alzheimer’s disease. J Neurol Neurosurg Psychiatry. 2004;75(10):1472–4.PubMedCrossRefGoogle Scholar
  43. 43.
    Relkin N, Tsakanikas DI, Adamiak B, et al. A double-blind, placebo-controlled, phase II clinical trial of intravenous immunoglobulin (IVIG) for treatment of Alzheimer’s disease. In: Meeting of the American Academy of Neurology, 12–19 April 2008, Chicago, IL. Session S41.007.Google Scholar
  44. 44.
    Hampton T. Studies probe potential of experimental therapies for Alzheimer disease. JAMA. 2008;300(11):1287–9.PubMedCrossRefGoogle Scholar
  45. 45.
    Pfeifer M, Boncristiano S, Bondolfi L, et al. Cerebral hemorrhage after passive anti-Abeta immunotherapy. Science. 2002;298(5597):1379.PubMedCrossRefGoogle Scholar
  46. 46.
    Rasmussen T, Olszewski J, Lloyd-Smith D. Focal seizures due to chronic localized encephalitis. Neurology. 1958;8:435–45.PubMedGoogle Scholar
  47. 47.
    Rogers SW, Andrews PI, Gahring LC, et al. Autoantibodies to glutamate receptor GluR3 in Rasmussen’s encephalitis. Science. 1994;265:648–51.PubMedCrossRefGoogle Scholar
  48. 48.
    He XP, Patel M, Whitney KD, et al. Glutamate receptor GluR3 antibodies and death of cortical cells. Neuron. 1998;20:153–63.PubMedCrossRefGoogle Scholar
  49. 49.
    Aarli JA. Rasmussen’s encephalitis: a challenge to neuroimmunology. Curr Opin Neurol. 2000;13:297–9.PubMedCrossRefGoogle Scholar
  50. 50.
    Pleasure D. Diagnostic and pathogenic significance of glutamate receptor autoantibodies. Arch Neuorl. 2008;65(5):589–92.CrossRefGoogle Scholar
  51. 51.
    Wiendl H, Bien CG, Bernasconi P, et al. GluR3 antibodies: prevalence in focal ­epilepsy but no specificity for Rasmussen’s encephalitis. Neurology. 2001;57(8):1511–4.PubMedGoogle Scholar
  52. 52.
    Takahashi Y, Mori H, Mishina M, et al. Autoantibodies to NMDA receptor in patients with chronic forms of epilepsia partialis continua. Neurology. 2003;61:891–6.PubMedGoogle Scholar
  53. 53.
    Granata T, Fusco L, et al. Experience with immunomodulatory treatments in Rasmussen’s encephalitis. Neurology. 2003;61(12):1807–10.PubMedGoogle Scholar
  54. 54.
    Leach JP, Chadwick DW, Miles JB, Hart IK. Improvement in adult-onset Rasmussen’s encephalitis with long-term immunomodulatory therapy. Neurology. 1999;52:738–42.PubMedGoogle Scholar
  55. 55.
    Hart YM, Cortez M, Andermann F, et al. The medical treatment of Rasmussen’s syndrome (Chronic encephalitis and epilepsy): effect of high dose steroids and/or immunoglobulins in 19 patients. Neurology. 1994;44:1030–6.PubMedGoogle Scholar
  56. 56.
    Andrews PI, Dichter MA, Berkovic SF, Newton MR, McNamara JO. Plasmapheresis in Rasmussen’s encephalitis. Neurology. 1996;46:242–6.PubMedGoogle Scholar
  57. 57.
    Castillo P, Woodruff B, Caselli R, et al. Steroid-responsive encephalopathy associated with autoimmune thyroiditis. Arch Neurol. 2006;63:197–202.PubMedCrossRefGoogle Scholar
  58. 58.
    Brain L, Jellinek E, Ball K. Hashimoto’s disease and encephalopathy. Lancet. 1966;2:512–4.PubMedCrossRefGoogle Scholar
  59. 59.
    Chong J, Rowland L, Utiger R. Hashimoto encephalopathy: syndrome or myth? Arch Neurol. 2003;60:164–71.PubMedCrossRefGoogle Scholar
  60. 60.
    Shaw P, Walls T, Newman P, et al. Hashimoto’s encephalopathy: a steroid-responsive disorder associated with high anti-thyroid antibody titers – report of 5 cases. Neurology. 1991;41:228–33.PubMedGoogle Scholar
  61. 61.
    Geschwind MD, Shu H, Haman A, et al. Rapidly progressive dementia. Ann Neurol. 2008;64(1):97–108.PubMedCrossRefGoogle Scholar
  62. 62.
    Seipelt M, Zerr I, Nau R, et al. Hashimoto’s encephalitis as a differential diagnosis of Creutzfeldt-Jakob disease. J Neurol Neurosurg Psychiatry. 1999;66:172–6.PubMedCrossRefGoogle Scholar
  63. 63.
    Ferracci F, Moretto G, Candeago RM, et al. Antithyroid antibodies in the CSF: their role in the pathogenesis of Hashimoto’s encephalopathy. Neurology. 2003;60(4):712–4.PubMedGoogle Scholar
  64. 64.
    Forchetti CM, Katsamakis G, Garron DC. Autoimmune thyroiditis and a rapidly progressive dementia: global hypoperfusion on SPECT scanning suggests a possible mechanism. Neurology. 1997;49:623–6.PubMedGoogle Scholar
  65. 65.
    Mocellin R, Walterfang M, Velakoulis D. Hashimoto’s encephalopathy: epidemiology, pathogenesis and management. CNS Drugs. 2007;21(10):799–811.PubMedCrossRefGoogle Scholar
  66. 66.
    Nolte KW, Unbehaun A, Sieker H, et al. Hashimoto encephalopathy: a brainstem vasculitis? Neurology. 2000;54:769–70.PubMedGoogle Scholar
  67. 67.
    Palace J, Lang B. Epilepsy: an autoimmune disease? J Neurol Neurosurg Psychiatry. 2000;69:711–4.PubMedCrossRefGoogle Scholar
  68. 68.
    Hussain NS, Rumbaugh J, Kerr D, et al. Effects of prednisone and plasma exchange on cognitive impairment in Hashimoto encephalopathy. Neurology. 2005;64(1):165–6.PubMedCrossRefGoogle Scholar
  69. 69.
    Graus F, Dalmau J. Paraneoplastic neurological syndromes: diagnosis and treatment. Curr Opin Neurol. 2007;20:732–7.PubMedGoogle Scholar
  70. 70.
    Tuzun E, Dalmau J. Limbic encephalitis and variants: classification, diagnosis and treatment. Neurologist. 2007;13:261–71.PubMedCrossRefGoogle Scholar
  71. 71.
    Pittock SJ, Kryzer TJ, Lennon VA. Paraneoplastic antibodies coexist and predict cancer, not neurological syndrome. Ann Neurol. 2004;56:715–9.PubMedCrossRefGoogle Scholar
  72. 72.
    Bataller L, Galiano R, Garcia-Escrig M. Reversible paraneoplastic limbic encephalitis associated with antibodies to the AMPA receptor. Neurology. 2010;74(3):265–7.PubMedCrossRefGoogle Scholar
  73. 73.
    Voltz R, Gultekin SH, Rosenfeld MR, et al. A serological marker of paraneoplastic limbic and brain-stem encephalitis in patients with testicular cancer. N Engl J Med. 1999;340:1788–95.PubMedCrossRefGoogle Scholar
  74. 74.
    Dalmau J, Tuzun E, Wu H-Y, et al. Paraneoplastic anti-N-methyl-D-aspartate receptor encephalitis associated with ovarian teratoma. Ann Neurol. 2007;61(1):25–36.PubMedCrossRefGoogle Scholar
  75. 75.
    Gulekin SH, Rosenfeld MR, Voltz R, et al. Paraneoplastic limbic encephalitis: neurological symptoms, immunological findings and tumour association in 50 patients. Brain. 2000;123:1481–94.CrossRefGoogle Scholar
  76. 76.
    Graus F, Saiz A, Lai M, et al. Neuronal surface antigen antibodies in limbic encephalitis: clinical-immunologic associations. Neurology. 2008;7:1930–6.Google Scholar
  77. 77.
    Vincent A, Buckley C, Schott JM, et al. Potassium channel antibody-associated encephalopathy: a potentially immunotherapy-responsive form of limbic encephalitis. Brain. 2004;127(3):701–12.PubMedCrossRefGoogle Scholar
  78. 78.
    Tan KM, Lennon VA, Klein CJ, et al. Clinical spectrum of voltage-gated potassium channel autoimmunity. Neurology. 2008;70:1883–90.PubMedCrossRefGoogle Scholar
  79. 79.
    Rueff L, Graber JJ, Bernbaum M, Kuzniecky RI. Voltage-gated potassium ­channel antibody-mediated syndromes: a spectrum of clinical manifestations. Rev Neurol Dis. 2008;5(2):65–72.PubMedGoogle Scholar
  80. 80.
    Geschwind MD, Tan KM, Lennon VA, et al. Voltage-gated potassium channel autoimmunity mimicking Creutzfeldt-Jakob disease. Arch Neurol. 2008;65(10):1341–6.PubMedCrossRefGoogle Scholar
  81. 81.
    Novillo-Lopez ME, Rossi JE, Dalmau J, Masjuan J. Treatment-responsive subacute limbic encephalitis and NMDA receptor antibodies in a man. Neurology. 2008;70(9):728–9.PubMedCrossRefGoogle Scholar
  82. 82.
    Iizuka T, Sakai F, Ide T, et al. Anti-NMDA receptor encephalitis in Japan: long-term outcome without tumor removal. Neurology. 2008;70:504–11.PubMedCrossRefGoogle Scholar
  83. 83.
    Nasky KM, Knittel DR, Manos GH. Psychosis associated with anti-N-methyl-D-aspartate receptor antibodies. CNS Spectr. 2008;13(8):699–702.PubMedGoogle Scholar
  84. 84.
    Pittock SJ, Yoshikawa H, Ahlskog JE, et al. Glutamic acid decarboxylase autoimmunity with brainstem, extrapyramidal, and spinal cord dysfunction. Mayo Clin Proc. 2006;81(9):1207–14.PubMedCrossRefGoogle Scholar
  85. 85.
    Honnorat J, Saiz A, Giometto B, et al. Cerebellar ataxia with anti-glutamic acid decarboxylase antibodies: study of 14 patients. Arch Neurol. 2001;58:225–30.PubMedCrossRefGoogle Scholar
  86. 86.
    Reetz A, Solimena M, Matteoli M, et al. GABA and pancreatic beta-cells: colocalization of glutamic acid decarboxylase (GAD) and GABA with synaptic-­like microvesicles suggests their role in GABA storage and secretion. EMBO J. 1991;10:1275–84.PubMedGoogle Scholar
  87. 87.
    Zimmet PZ, Shaten BJ, Kuller LH, et al. Antibodies to glutamic acid decarboxylase and diabetes mellitus in the multiple risk factor intervention trial. Am J Epidemiol. 1994;140:683–90.PubMedGoogle Scholar
  88. 88.
    Darnell RB, Victor J, Rubin M, et al. A novel antineuronal antibody in stiff-man syndrome. Neurology. 1993;43(1):114–20.PubMedGoogle Scholar
  89. 89.
    Solimena M, Folli F, Aparisi R, et al. Auto-antibodies to GABAergic neurons and pancreatic beta cells in stiff-man syndrome. N Engl J Med. 1990;322:1555–60.PubMedCrossRefGoogle Scholar
  90. 90.
    Meinck HM, Thompson PD. Research review: stiff man syndrome and related conditions. Mov Disord. 2002;17(5):853–66.PubMedCrossRefGoogle Scholar
  91. 91.
    Peltola J, Kulmala P, Isojarvi J, et al. Autoantibodies to glutamic acid decarboxylase in patients with therapy-resistant epilepsy. Neurology. 2000;55:46–50.PubMedGoogle Scholar
  92. 92.
    Mazzi G, DeRoia D, Cruciatti B, et al. Plasma exchange for anti GAD associated non paraneoplastic limbic encephalitis. Transfus Apher Sci. 2008;39(3):229–33.PubMedCrossRefGoogle Scholar
  93. 93.
    Saiz Al, Blanco Y, Sabater L, et al. Spectrum of neurological syndromes associated with glutamic acid decarboxylase antibodies: diagnostic clues for this association. Brain. 2008;131(10):2553–63.PubMedCrossRefGoogle Scholar
  94. 94.
    Mata S, Muscas GC, Naldi I, et al. Non-paraneoplastic limbic encephalitis associated with anti-glutamic acid decarboxylase antibodies. J Neuroimmunol. 2008;199:155–9.PubMedCrossRefGoogle Scholar
  95. 95.
    Nemni R, Braghi S, Natali-Sora MG, et al. Autoantibodies to glutamic acid decarboxylase in palatal myoclonus and epilepsy. Ann Neurol. 1994;36:665–7.PubMedCrossRefGoogle Scholar
  96. 96.
    Giomotto B, Nicolao P, Macucci M, et al. Temporal-lobe epilepsy associated with glutamic-acid-decarboxylase autoantibodies. Lancet. 1998;352:457.CrossRefGoogle Scholar
  97. 97.
    Yoshimoto T, Doi M, Fukai N, et al. Type I diabetes mellitus and drug-resistant epilepsy: presence of high titer of anti-glutamic acid decarboxylase autoantibodies in serum and cerebrospinal fluid. Intern Med. 2005;44:1174–7.PubMedCrossRefGoogle Scholar
  98. 98.
    Vulliemoz S, Vanini G, Truffert A, et al. Epilepsy and cerebellar ataxia associated with anti-glutamic acid decarboxylase antibodies. J Neurol Neurosurg Psychiatry. 2007;78:187–9.PubMedCrossRefGoogle Scholar
  99. 99.
    Kanter IC, Huttner HB, Staykov D, et al. Cyclophosphamide for anti-GAD antibody-positive refractory status epilepticus. Epilepsia. 2007;49:914–20.PubMedCrossRefGoogle Scholar
  100. 100.
    Bartolomei F, Boucraut J, Barrie M, et al. Cryptogenic partial epilepsy’s with anti-GM1 antibodies: a new form of immune-mediated epilepsy? Epilepsia. 1996;37:922–6.PubMedCrossRefGoogle Scholar
  101. 101.
    Connolly AM, Chez MG, Pestronk A, et al. Serum antibodies to brain in Laundau-Kleffner variant, autism and other neurological disorders. J Pediatr. 1999;134:607–13.PubMedCrossRefGoogle Scholar
  102. 102.
    Bradley WG, Daroff RB, Fenichel GM, Jankovic J. Neurology in clinical practice. 4th ed. Philadelphia: Elsevier; 2004.Google Scholar
  103. 103.
    Gobbi G, Bouquet F, Greco L, et al. Coeliac disease, epilepsy and cerebral ­calcifications: The Italian working group on celiac disease and epilepsy. Lancet. 1992;340(8817):439–43.PubMedCrossRefGoogle Scholar
  104. 104.
    Ebersole JS, Pedley TA. Current practice of clinical electroencephalography. Philadelphia: Lippincott Williams and Wilkins; 2003.Google Scholar
  105. 105.
    Ransohoff R. Immunology: barrier to electrical storms: epilepsy is characterized by repetitive seizures due to abnormal electrical activity in the brain. Immune cells promote development of this disorder by mediating the breakdown of the blood-brain barrier. Nature. 2009;457(7226):155–6.PubMedCrossRefGoogle Scholar
  106. 106.
    Tamagno G, Federspil G, Murialdo G. Clinical and diagnostic aspects of encephalopathy associated with autoimmune thyroid disease (or Hashimoto’s encephalopathy). Intern Emerg Med. 2006;1(1):15–23.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Julie L. Roth
    • 1
  • Brian R. Ott
    • 2
  • John N. Gaitanis
    • 3
  • Andrew S. Blum
    • 1
  1. 1.Comprehensive Epilepsy Program, Department of Neurology, Rhode Island HospitalThe Warren Alpert Medical School at Brown UniversityProvidenceUSA
  2. 2.Alzheimer’s Disease & Memory Disorders Center, Department of Neurology, Rhode Island HospitalThe Warren Alpert Medical School at Brown UniversityProvidenceUSA
  3. 3.Department of Clinical NeurosciencesWarren Alpert Medical School at Brown UniversityProvidenceUSA

Personalised recommendations