The Neuroimmunology of Cancer

  • Enrico C. Lallana
  • William F. Hickey
  • Camilo E. Fadul
Part of the Current Clinical Neurology book series (CCNEU)


Decreased immune surveillance is thought to be one of the mechanisms by which neoplastic cells are able to thrive. When cancer is located in the nervous system, an immune privileged site, its ability to evade detection, and targeting by immune cells may contribute to its aggressive behavior. Furthermore, high-grade gliomas, the most frequent and lethal primary brain tumors, induce both a local and systemic state of immune suppression that hampers efforts to manipulate the immune system as an effective therapeutic modality. On the other hand, there are rare instances when the immune response elucidated against systemic cancer causes nervous system injury without direct spread of the tumor. Although the neural injury is thought to be mediated by an autoimmune process, in most cases it is uncertain if it is caused by a humoral response, a cellular response, or a combination of both. This chapter reviews concepts related to the unique relationship between the nervous and immune systems, when cancer is present, as well as immune therapeutic modalities employed when the neural structures are affected directly by a primary tumor or indirectly in the case of paraneoplastic neurologic syndromes. The distinct immunologic characteristics of the central nervous system (CNS) become more unique and complex in the setting of neoplastic disease. In 2008, approximately 1,437,180 new cancer cases, including 21,810 arising from the nervous system, were diagnosed in the USA [1]. Gliomas, the most frequent type of brain tumors, are characterized by the infiltration of normal cerebral tissue, but this rarely results in systemic metastases. The tumor microenvironment shows a meager inflammatory response often accompanied by systemic immune suppression. These alterations might be considered epiphenomena unrelated to tumor pathogenesis, but experimental and clinical observations suggest that the immune system plays an important role in glioma biology. Our current concept of glioma immunobiology lends strong support to the idea of manipulating the immune system as a therapeutic approach for primary brain tumors. Glioma immunotherapy has evolved over the years, unfortunately as yet, without a major success. Nevertheless, extraneural or systemic neoplasms can trigger an immune response that in rare instances have repercussions in the nervous system. These interactions indirectly cause clinical syndromes that are aptly termed paraneoplastic neurologic syndromes. In some cases, antibodies have been identified as the element responsible for the phenomenon, but as primary tumors of the brain and spinal cord, the role that the immune system plays in the pathogenesis of these syndromes has not been clearly elucidated.


Gliomas Immunology Nervous system Paraneoplastic syndromes 


  1. 1.
    Jemal A, Siegel R, Ward E, et al. Cancer statistics, 2008. CA Cancer J Clin. 2008;58(2):71–96.PubMedCrossRefGoogle Scholar
  2. 2.
    Louis DN, Ohgaki H, Wiestler OD, et al. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. 2007;114(2):97–109.PubMedCrossRefGoogle Scholar
  3. 3.
    CBTRUS (2008) Statistical report: primary brain tumors in the United States, 2000–2004. Central Brain Tumor Registry of the United States, Hindsdale, IL.Google Scholar
  4. 4.
    Owens T, Tran E, Hassan-Zahraee M, Krakowski M. Immune cell entry to the CNS – a focus for immunoregulation of EAE. Res Immunol. 1998;149(9):781–9. discussion 844–6, 855–60.PubMedCrossRefGoogle Scholar
  5. 5.
    Hickey WF. Leukocyte traffic in the central nervous system: the participants and their roles. Semin Immunol. 1999;11(2):125–37.PubMedCrossRefGoogle Scholar
  6. 6.
    Pachter JS, de Vries HE, Fabry Z. The blood-brain barrier and its role in immune privilege in the central nervous system. J Neuropathol Exp Neurol. 2003;62(6):593–604.PubMedGoogle Scholar
  7. 7.
    Greenwood J, Wang Y, Calder VL. Lymphocyte adhesion and transendothelial migration in the central nervous system: the role of LFA-1, ICAM-1, VLA-4 and VCAM-1. off. Immunology. 1995;86(3):408–15.PubMedGoogle Scholar
  8. 8.
    Romanic AM, Graesser D, Baron JL, Visintin I, Janeway Jr CA, Madri JA. T cell adhesion to endothelial cells and extracellular matrix is modulated upon transendothelial cell migration. Lab Invest. 1997;76(1):11–23.PubMedGoogle Scholar
  9. 9.
    Johnson MD, Gold LI, Moses HL. Evidence for transforming growth factor-beta expression in human leptomeningeal cells and transforming growth factor-beta-like activity in human cerebrospinal fluid. Lab Invest. 1992;67(3):360–8.PubMedGoogle Scholar
  10. 10.
    Taylor AW, Streilein JW. Inhibition of antigen-stimulated effector T cells by human cerebrospinal fluid. Neuroimmunomodulation. 1996;3(2–3):112–8.PubMedCrossRefGoogle Scholar
  11. 11.
    Aloisi F, De Simone R, Columba-Cabezas S, Levi G. Opposite effects of interferon-gamma and prostaglandin E2 on tumor necrosis factor and interleukin-10 production in microglia: a regulatory loop controlling microglia pro- and anti-inflammatory activities. J Neurosci Res. 1999;56(6):571–80.PubMedCrossRefGoogle Scholar
  12. 12.
    Irani DN, Lin KI, Griffin DE. Brain-derived gangliosides regulate the cytokine production and proliferation of activated T cells. J Immunol. 1996;157(10):4333–40.PubMedGoogle Scholar
  13. 13.
    Maca RD. The effects of prostaglandins on the proliferation of cultured human T lymphocytes. Immunopharmacology. 1983;6(4):267–77.PubMedCrossRefGoogle Scholar
  14. 14.
    Hickey WF, Vass K, Lassmann H. Bone marrow-derived elements in the central nervous system: an immunohistochemical and ultrastructural survey of rat chimeras. J Neuropathol Exp Neurol. 1992;51(3):246–56.PubMedCrossRefGoogle Scholar
  15. 15.
    Ekstrand AJ, Sugawa N, James CD, Collins VP. Amplified and rearranged epidermal growth factor receptor genes in human glioblastomas reveal deletions of sequences encoding portions of the N- and/or C-terminal tails. Proc Natl Acad Sci USA. 1992;89(10):4309–13.PubMedCrossRefGoogle Scholar
  16. 16.
    Ding H, Shannon P, Lau N, et al. Oligodendrogliomas result from the expression of an activated mutant epidermal growth factor receptor in a RAS transgenic mouse astrocytoma model. Cancer Res. 2003;63(5):1106–13.PubMedGoogle Scholar
  17. 17.
    Sampson JH, Crotty LE, Lee S, et al. Unarmed, tumor-specific monoclonal antibody effectively treats brain tumors. Proc Natl Acad Sci USA. 2000;97(13):7503–8.PubMedCrossRefGoogle Scholar
  18. 18.
    Zhang JG, Eguchi J, Kruse CA, et al. Antigenic profiling of glioma cells to generate allogeneic vaccines or dendritic cell-based therapeutics. Clin Cancer Res. 2007;13(2 Pt 1):566–75.PubMedCrossRefGoogle Scholar
  19. 19.
    Restifo NP, Esquivel F, Kawakami Y, et al. Identification of human cancers deficient in antigen processing. J Exp Med. 1993;177(2):265–72.PubMedCrossRefGoogle Scholar
  20. 20.
    Ito A, Shinkai M, Honda H, Wakabayashi T, Yoshida J, Kobayashi T. Augmentation of MHC class I antigen presentation via heat shock protein expression by hyperthermia. Cancer Immunol Immunother. 2001;50(10):515–22.PubMedCrossRefGoogle Scholar
  21. 21.
    Saito T, Tanaka R, Yoshida S, Washiyama K, Kumanishi T. Immunohistochemical analysis of tumor-infiltrating lymphocytes and major histocompatibility antigens in human gliomas and metastatic brain tumors. Surg Neurol. 1988;29(6):435–42.PubMedCrossRefGoogle Scholar
  22. 22.
    Miyagi K, Ingram M, Techy GB, Jacques DB, Freshwater DB, Sheldon H. Immunohistochemical detection and correlation between MHC antigen and cell-mediated immune system in recurrent glioma by APAAP method. Neurol Med Chir (Tokyo). 1990;30(9):649–55.CrossRefGoogle Scholar
  23. 23.
    Friese MA, Platten M, Lutz SZ, et al. MICA/NKG2D-mediated immunogene therapy of experimental gliomas. Cancer Res. 2003;63(24):8996–9006.PubMedGoogle Scholar
  24. 24.
    Gehrmann J, Matsumoto Y, Kreutzberg GW. Microglia: intrinsic immuneffector cell of the brain. Brain Res Brain Res Rev. 1995;20(3):269–87.PubMedCrossRefGoogle Scholar
  25. 25.
    Hickey WF. Basic principles of immunological surveillance of the normal central nervous system. Glia. 2001;36(2):118–24.PubMedCrossRefGoogle Scholar
  26. 26.
    Roggendorf W, Strupp S, Paulus W. Distribution and characterization of ­microglia/macrophages in human brain tumors. Acta Neuropathol. 1996;92(3):288–93.PubMedCrossRefGoogle Scholar
  27. 27.
    Rossi ML, Hughes JT, Esiri MM, Coakham HB, Brownell DB. Immunohistological study of mononuclear cell infiltrate in malignant gliomas. Acta Neuropathol. 1987;74(3):269–77.PubMedCrossRefGoogle Scholar
  28. 28.
    Hong LL, Johannsen L, Krueger JM. Modulation of human leukocyte antigen DR expression in glioblastoma cells by interferon gamma and other cytokines. J Neuroimmunol. 1991;35(1–3):139–52.PubMedCrossRefGoogle Scholar
  29. 29.
    Reder AT, Lascola CD, Flanders SA, et al. Astrocyte cytolysis by MHC class II-specific mouse T cell clones. Transplantation. 1993;56(2):393–9.PubMedCrossRefGoogle Scholar
  30. 30.
    Gabrilovich DI, Chen HL, Girgis KR, et al. Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells. Nat Med. 1996;2(10):1096–103.PubMedCrossRefGoogle Scholar
  31. 31.
    Brooks WH, Netsky MG, Normansell DE, Horwitz DA. Depressed cell-mediated immunity in patients with primary intracranial tumors. Characterization of a humoral immunosuppressive factor. J Exp Med. 1972;136(6):1631–47.PubMedCrossRefGoogle Scholar
  32. 32.
    Mahaley Jr MS, Brooks WH, Roszman TL, Bigner DD, Dudka L, Richardson S. Immunobiology of primary intracranial tumors. Part 1: studies of the cellular and humoral general immune competence of brain-tumor patients. J Neurosurg. 1977;46(4):467–76.PubMedCrossRefGoogle Scholar
  33. 33.
    McVicar DW, Davis DF, Merchant RE. In vitro analysis of the proliferative potential of T cells from patients with brain tumor: glioma-associated immunosuppression unrelated to intrinsic cellular defect. J Neurosurg. 1992;76(2):251–60.PubMedCrossRefGoogle Scholar
  34. 34.
    Kuppner MC, Hamou MF, Sawamura Y, Bodmer S, de Tribolet N. Inhibition of lymphocyte function by glioblastoma-derived transforming growth factor beta 2. J Neurosurg. 1989;71(2):211–7.PubMedCrossRefGoogle Scholar
  35. 35.
    Wagner S, Czub S, Greif M, et al. Microglial/macrophage expression of interleukin 10 in human glioblastomas. Int J Cancer. 1999;82(1):12–6.PubMedCrossRefGoogle Scholar
  36. 36.
    Hunter KE, Sporn MB, Davies AM. Transforming growth factor-betas inhibit mitogen-stimulated proliferation of astrocytes. Glia. 1993;7(3):203–11.PubMedCrossRefGoogle Scholar
  37. 37.
    Rich JN, Zhang M, Datto MB, Bigner DD, Wang XF. Transforming growth factor-beta-mediated p15(INK4B) induction and growth inhibition in astrocytes is SMAD3-dependent and a pathway prominently altered in human glioma cell lines. J Biol Chem. 1999;274(49):35053–8.PubMedCrossRefGoogle Scholar
  38. 38.
    Paulus W, Baur I, Huettner C, et al. Effects of transforming growth factor-beta 1 on collagen synthesis, integrin expression, adhesion and invasion of glioma cells. J Neuropathol Exp Neurol. 1995;54(2):236–44.PubMedCrossRefGoogle Scholar
  39. 39.
    Koochekpour S, Merzak A, Pilkington GJ. Vascular endothelial growth factor production is stimulated by gangliosides and TGF-beta isoforms in human glioma cells in vitro. Cancer Lett. 1996;102(1–2):209–15.PubMedCrossRefGoogle Scholar
  40. 40.
    Huettner C, Czub S, Kerkau S, Roggendorf W, Tonn JC. Interleukin 10 is expressed in human gliomas in vivo and increases glioma cell proliferation and motility in vitro. Anticancer Res. 1997;17(5A):3217–24.PubMedGoogle Scholar
  41. 41.
    Van Meir E, Sawamura Y, Diserens AC, Hamou MF, de Tribolet N. Human glioblastoma cells release interleukin 6 in vivo and in vitro. Cancer Res. 1990;50(20):6683–8.PubMedGoogle Scholar
  42. 42.
    Goswami S, Gupta A, Sharma SK. Interleukin-6-mediated autocrine growth promotion in human glioblastoma multiforme cell line U87MG. J Neurochem. 1998;71(5):1837–45.PubMedCrossRefGoogle Scholar
  43. 43.
    Van Meir E, Ceska M, Effenberger F, et al. Interleukin-8 is produced in neoplastic and infectious diseases of the human central nervous system. Cancer Res. 1992;52(16):4297–305.PubMedGoogle Scholar
  44. 44.
    Brat DJ, Bellail AC, Van Meir EG. The role of interleukin-8 and its receptors in gliomagenesis and tumoral angiogenesis. Neuro-oncol. 2005;7(2):122–33.PubMedCrossRefGoogle Scholar
  45. 45.
    Li A, Dubey S, Varney ML, Dave BJ, Singh RK. IL-8 directly enhanced endothelial cell survival, proliferation, and matrix metalloproteinases production and regulated angiogenesis. J Immunol. 2003;170(6):3369–76.PubMedGoogle Scholar
  46. 46.
    Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol. 1995;155(3):1151–64.PubMedGoogle Scholar
  47. 47.
    Ichihara F, Kono K, Takahashi A, Kawaida H, Sugai H, Fujii H. Increased populations of regulatory T cells in peripheral blood and tumor-infiltrating lymphocytes in patients with gastric and esophageal cancers. Clin Cancer Res. 2003;9(12):4404–8.PubMedGoogle Scholar
  48. 48.
    Ling KL, Pratap SE, Bates GJ, et al. Increased frequency of regulatory T cells in peripheral blood and tumour infiltrating lymphocytes in colorectal cancer patients. Cancer Immun. 2007;7:7.PubMedGoogle Scholar
  49. 49.
    Liyanage UK, Moore TT, Joo HG, et al. Prevalence of regulatory T cells is increased in peripheral blood and tumor microenvironment of patients with pancreas or breast adenocarcinoma. J Immunol. 2002;169(5):2756–61.PubMedGoogle Scholar
  50. 50.
    El Andaloussi A, Lesniak MS. An increase in CD4+CD25+FOXP3+ regulatory T cells in tumor-infiltrating lymphocytes of human glioblastoma multiform. Neuro-oncol. 2006;8(3):234–43.PubMedCrossRefGoogle Scholar
  51. 51.
    Fecci PE, Mitchell DA, Whitesides JF, et al. Increased regulatory T-cell fraction amidst a diminished CD4 compartment explains cellular immune defects in patients with malignant glioma. Cancer Res. 2006;66(6):3294–302.PubMedCrossRefGoogle Scholar
  52. 52.
    Zheng SG, Wang JH, Gray JD, Soucier H, Horwitz DA. Natural and induced CD4+CD25+ cells educate CD4+CD25- cells to develop suppressive activity: the role of IL-2, TGF-beta, and IL-10. J Immunol. 2004;172(9):5213–21.PubMedGoogle Scholar
  53. 53.
    Faillot T, Magdelenat H, Mady E, et al. A phase I study of an anti-epidermal growth factor receptor monoclonal antibody for the treatment of malignant gliomas. Neurosurgery. 1996;39(3):478–83.PubMedGoogle Scholar
  54. 54.
    Stragliotto G, Vega F, Stasiecki P, Gropp P, Poisson M, Delattre JY. Multiple infusions of anti-epidermal growth factor receptor (EGFR) monoclonal antibody (EMD 55,900) in patients with recurrent malignant gliomas. Eur J Cancer. 1996;32A(4):636–40.PubMedCrossRefGoogle Scholar
  55. 55.
    Wersall P, Ohlsson I, Biberfeld P, et al. Intratumoral infusion of the monoclonal antibody, mAb 425, against the epidermal-growth-factor receptor in patients with advanced malignant glioma. Cancer Immunol Immunother. 1997;44(3):157–64.PubMedCrossRefGoogle Scholar
  56. 56.
    Quang TS, Brady LW. Radioimmunotherapy as a novel treatment regimen: 125I-labeled monoclonal antibody 425 in the treatment of high-grade brain gliomas. Int J Radiat Oncol Biol Phys. 2004;58(3):972–5.PubMedCrossRefGoogle Scholar
  57. 57.
    Sunada H, Magun BE, Mendelsohn J, MacLeod CL. Monoclonal antibody against epidermal growth factor receptor is internalized without stimulating receptor phosphorylation. Proc Natl Acad Sci USA. 1986;83(11):3825–9.PubMedCrossRefGoogle Scholar
  58. 58.
    Eller JL, Longo SL, Kyle MM, Bassano D, Hicklin DJ, Canute GW. Anti-epidermal growth factor receptor monoclonal antibody cetuximab augments radiation effects in glioblastoma multiforme in vitro and in vivo. Neurosurgery. 2005;56:155–62. discussion 162.PubMedGoogle Scholar
  59. 59.
    Young H, Kaplan A, Regelson W. Immunotherapy with autologous white cell infusions (“lymphocytes”) in the treatment of recurrrent glioblastoma multiforme: a preliminary report. Cancer. 1977;40(3):1037–44.PubMedCrossRefGoogle Scholar
  60. 60.
    Kruse CA, Lillehei KO, Mitchell DH, Kleinschmidt-DeMasters B, Bellgrau D. Analysis of interleukin 2 and various effector cell populations in adoptive immunotherapy of 9L rat gliosarcoma: allogeneic cytotoxic T lymphocytes prevent tumor take. Proc Natl Acad Sci USA. 1990;87(24):9577–81.PubMedCrossRefGoogle Scholar
  61. 61.
    Tzeng JJ, Barth RF, Clendenon NR, Gordon WA. Adoptive immunotherapy of a rat glioma using lymphokine-activated killer cells and interleukin 2. Cancer Res. 1990;50(14):4338–43.PubMedGoogle Scholar
  62. 62.
    Merchant RE, Grant AJ, Merchant LH, Young HF. Adoptive immunotherapy for recurrent glioblastoma multiforme using lymphokine activated killer cells and recombinant interleukin-2. Cancer. 1988;62(4):665–71.PubMedCrossRefGoogle Scholar
  63. 63.
    Barba D, Saris SC, Holder C, Rosenberg SA, Oldfield EH. Intratumoral LAK cell and interleukin-2 therapy of human gliomas. J Neurosurg. 1989;70(2):175–82.PubMedCrossRefGoogle Scholar
  64. 64.
    Kruse CA, Mitchell DH, Lillehei KO, et al. Interleukin-2-activated lymphocytes from brain tumor patients. A comparison of two preparations generated in vitro. Cancer. 1989;64(8):1629–37.PubMedCrossRefGoogle Scholar
  65. 65.
    Quattrocchi KB, Miller CH, Cush S, et al. Pilot study of local autologous tumor infiltrating lymphocytes for the treatment of recurrent malignant gliomas. J Neurooncol. 1999;45(2):141–57.PubMedCrossRefGoogle Scholar
  66. 66.
    Plautz GE, Touhalisky JE, Shu S. Treatment of murine gliomas by adoptive transfer of ex vivo activated tumor-draining lymph node cells. Cell Immunol. 1997;178(2):101–7.PubMedCrossRefGoogle Scholar
  67. 67.
    Merchant RE, Ellison MD, Young HF. Immunotherapy for malignant glioma using human recombinant interleukin-2 and activated autologous lymphocytes. A review of pre-clinical and clinical investigations. J Neurooncol. 1990;8(2):173–88.PubMedCrossRefGoogle Scholar
  68. 68.
    Fukushima T, Yamamoto M, Ikeda K, et al. Treatment of malignant astrocytomas with recombinant mutant human tumor necrosis factor-alpha (TNF-SAM2). Anticancer Res. 1998;18(5D):3965–70.PubMedGoogle Scholar
  69. 69.
    Yoshida J, Wakabayashi T, Mizuno M, et al. Clinical effect of intra-arterial tumor necrosis factor-alpha for malignant glioma. J Neurosurg. 1992;77(1):78–83.PubMedCrossRefGoogle Scholar
  70. 70.
    Jereb B, Petric J, Lamovec J, Skrbec M, Soss E. Intratumor application of human leukocyte interferon-alpha in patients with malignant brain tumors. Am J Clin Oncol. 1989;12(1):1–7.PubMedCrossRefGoogle Scholar
  71. 71.
    Jereb B, Petric-Grabnar G, Klun B, Lamovec J, Skrbec M, Soos E. Addition of IFN-alpha to treatment of malignant brain tumors. Acta Oncol. 1994;33(6):651–4.PubMedCrossRefGoogle Scholar
  72. 72.
    von Wild KR, Knocke TH. The effects of local and systemic interferon beta (Fiblaferon) on supratentorial malignant cerebral glioma – a phase II study. Neurosurg Rev. 1991;14(3):203–13.CrossRefGoogle Scholar
  73. 73.
    Yung WK, Prados M, Levin VA, et al. Intravenous recombinant interferon beta in patients with recurrent malignant gliomas: a phase I/II study. J Clin Oncol. 1991;9(11):1945–9.PubMedGoogle Scholar
  74. 74.
    Priestman TJ, Bleehen NM, Rampling R, Stenning S, Nethersell AJ, Scott J. A phase II evaluation of human lymphoblastoid interferon (Wellferon) in relapsed high grade malignant glioma. Medical Research Council Brain Tumour Working Party. Clin Oncol (R Coll Radiol). 1993;5(3):165–8.Google Scholar
  75. 75.
    Farkkila M, Jaaskelainen J, Kallio M, et al. Randomised, controlled study of intratumoral recombinant gamma-interferon treatment in newly diagnosed glioblastoma. Br J Cancer. 1994;70(1):138–41.PubMedCrossRefGoogle Scholar
  76. 76.
    Hatano M, Eguchi J, Tatsumi T, et al. EphA2 as a glioma-associated antigen: a novel target for glioma vaccines. Neoplasia. 2005;7(8):717–22.PubMedCrossRefGoogle Scholar
  77. 77.
    Schmitz M, Wehner R, Stevanovic S, et al. Identification of a naturally processed T cell epitope derived from the glioma-associated protein SOX11. Cancer Lett. 2007;245(1–2):331–6.PubMedCrossRefGoogle Scholar
  78. 78.
    Celluzzi CM, Mayordomo JI, Storkus WJ, Lotze MT, Falo Jr LD. Peptide-pulsed dendritic cells induce antigen-specific CTL-mediated protective tumor immunity. J Exp Med. 1996;183(1):283–7.PubMedCrossRefGoogle Scholar
  79. 79.
    Zitvogel L, Mayordomo JI, Tjandrawan T, et al. Therapy of murine tumors with tumor peptide-pulsed dendritic cells: dependence on T cells, B7 costimulation, and T helper cell 1-associated cytokines. J Exp Med. 1996;183(1):87–97.PubMedCrossRefGoogle Scholar
  80. 80.
    Ribas A, Butterfield LH, Hu B, et al. Generation of T-cell immunity to a murine melanoma using MART-1-engineered dendritic cells. J Immunother. 2000;23(1):59–66.PubMedCrossRefGoogle Scholar
  81. 81.
    Kikuchi T, Akasaki Y, Irie M, Homma S, Abe T, Ohno T. Results of a phase I clinical trial of vaccination of glioma patients with fusions of dendritic and glioma cells. Cancer Immunol Immunother. 2001;50(7):337–44.PubMedCrossRefGoogle Scholar
  82. 82.
    Yu JS, Wheeler CJ, Zeltzer PM, et al. Vaccination of malignant glioma patients with peptide-pulsed dendritic cells elicits systemic cytotoxicity and intracranial T-cell infiltration. Cancer Res. 2001;61(3):842–7.PubMedGoogle Scholar
  83. 83.
    Yamanaka R, Abe T, Yajima N, et al. Vaccination of recurrent glioma patients with tumour lysate-pulsed dendritic cells elicits immune responses: results of a clinical phase I/II trial. Br J Cancer. 2003;89(7):1172–9.PubMedCrossRefGoogle Scholar
  84. 84.
    Rutkowski S, De Vleeschouwer S, Kaempgen E, et al. Surgery and adjuvant dendritic cell-based tumour vaccination for patients with relapsed malignant glioma, a feasibility study. Br J Cancer. 2004;91(9):1656–62.PubMedGoogle Scholar
  85. 85.
    Liau LM, Prins RM, Kiertscher SM, et al. Dendritic cell vaccination in glioblastoma patients induces systemic and intracranial T-cell responses modulated by the local central nervous system tumor microenvironment. Clin Cancer Res. 2005;11(15):5515–25.PubMedCrossRefGoogle Scholar
  86. 86.
    Yamanaka R, Homma J, Yajima N, et al. Clinical evaluation of dendritic cell vaccination for patients with recurrent glioma: results of a clinical phase I/II trial. Clin Cancer Res. 2005;11(11):4160–7.PubMedCrossRefGoogle Scholar
  87. 87.
    Wikstrand CJ, Hale LP, Batra SK, et al. Monoclonal antibodies against EGFRvIII are tumor specific and react with breast and lung carcinomas and malignant gliomas. Cancer Res. 1995;55(14):3140–8.PubMedGoogle Scholar
  88. 88.
    Sampson JH, Archer GE, Mitchell DA, Heimberger AB, Bigner DD. Tumor-specific immunotherapy targeting the EGFRvIII mutation in patients with malignant glioma. Semin Immunol. 2008;20(5):267–75.PubMedCrossRefGoogle Scholar
  89. 89.
    Heimberger AB, Hussain SF, Aldape K, et al. Tumor-specific peptide vaccination in newly diagnosed patients with GBM. J Clin Oncol. 2006;24(18S):2529 (Abstracts).Google Scholar
  90. 90.
    Sampson JH, Archer GE, Bigner DD, et al. Effect of EGFRvIII-targeted vaccine (CDX-110) on immune response and TTP when given with simultaneous standard and continuous temozolomide in patients with GBM. J Clin Oncol. 2008;26(Suppl):2001. doi: 2001 (Meeting Abstracts).Google Scholar
  91. 91.
    Wheeler CJ, Das A, Liu G, Yu JS, Black KL. Clinical responsiveness of glioblastoma multiforme to chemotherapy after vaccination. Clin Cancer Res. 2004;10(16):5316–26.PubMedCrossRefGoogle Scholar
  92. 92.
    Liu G, Akasaki Y, Khong HT, et al. Cytotoxic T cell targeting of TRP-2 sensitizes human malignant glioma to chemotherapy. Oncogene. 2005;24(33):5226–34.PubMedCrossRefGoogle Scholar
  93. 93.
    Wheeler CJ, Black KL, Liu G, et al. Vaccination elicits correlated immune and clinical responses in glioblastoma multiforme patients. Cancer Res. 2008;68(14):5955–64.PubMedCrossRefGoogle Scholar
  94. 94.
    Dudley ME, Wunderlich JR, Yang JC, et al. Adoptive cell transfer therapy following non-myeloablative but lymphodepleting chemotherapy for the treatment of patients with refractory metastatic melanoma. J Clin Oncol. 2005;23(10):2346–57.PubMedCrossRefGoogle Scholar
  95. 95.
    Oppenheim H. Ueber Hirnsymptome bei Carcinomatose ohne nachweisbare Veranderungen im Gehirn. Charite Annalen. 1888;13:335–44.Google Scholar
  96. 96.
    Posner JB, DeAngelis LM. Neurologic complications of cancer. 2nd ed. New York: Oxford University Press; 2009.Google Scholar
  97. 97.
    Darnell RB, Posner JB. Paraneoplastic syndromes involving the nervous system. N Engl J Med. 2003;349(16):1543–54.PubMedCrossRefGoogle Scholar
  98. 98.
    Furneaux HM, Rosenblum MK, Dalmau J, et al. Selective expression of Purkinje-cell antigens in tumor tissue from patients with paraneoplastic cerebellar degeneration. N Engl J Med. 1990;322(26):1844–51.PubMedCrossRefGoogle Scholar
  99. 99.
    Dalmau J, Furneaux HM, Cordon-Cardo C, Posner JB. The expression of the Hu (paraneoplastic encephalomyelitis/sensory neuronopathy) antigen in human normal and tumor tissues. Am J Pathol. 1992;141(4):881–6.PubMedGoogle Scholar
  100. 100.
    O’Neill JH, Murray NM, Newsom-Davis J. The Lambert-Eaton myasthenic ­syndrome. A review of 50 cases. Brain. 1988;111(Pt 3):577–96.PubMedCrossRefGoogle Scholar
  101. 101.
    Shillito P, Molenaar PC, Vincent A, et al. Acquired neuromyotonia: evidence for autoantibodies directed against K+ channels of peripheral nerves. Ann Neurol. 1995;38(5):714–22.PubMedCrossRefGoogle Scholar
  102. 102.
    Tomimitsu H, Arimura K, Nagado T, et al. Mechanism of action of voltage-gated K+ channel antibodies in acquired neuromyotonia. Ann Neurol. 2004;56(3):440–4.PubMedCrossRefGoogle Scholar
  103. 103.
    Buckley C, Oger J, Clover L, et al. Potassium channel antibodies in two patients with reversible limbic encephalitis. Ann Neurol. 2001;50(1):73–8.PubMedCrossRefGoogle Scholar
  104. 104.
    Vincent A, Buckley C, Schott JM, et al. Potassium channel antibody-associated encephalopathy: a potentially immunotherapy-responsive form of limbic encephalitis. Brain. 2004;127(Pt 3):701–12.PubMedGoogle Scholar
  105. 105.
    Dalmau J, Tuzun E, Wu HY, et al. Paraneoplastic anti-N-methyl-D-aspartate receptor encephalitis associated with ovarian teratoma. Ann Neurol. 2007;61(1):25–36.PubMedCrossRefGoogle Scholar
  106. 106.
    Iizuka T, Sakai F, Ide T, et al. Anti-NMDA receptor encephalitis in Japan: long-term outcome without tumor removal. Neurology. 2008;70(7):504–11.PubMedCrossRefGoogle Scholar
  107. 107.
    Coesmans M, Smitt PA, Linden DJ, et al. Mechanisms underlying cerebellar motor deficits due to mGluR1-autoantibodies. Ann Neurol. 2003;53(3):325–36.PubMedCrossRefGoogle Scholar
  108. 108.
    Maeda A, Maeda T, Ohguro H, Palczewski K, Sato N. Vaccination with recoverin, a cancer-associated retinopathy antigen, induces autoimmune retinal dysfunction and tumor cell regression in mice. Eur J Immunol. 2002;32(8):2300–7.PubMedCrossRefGoogle Scholar
  109. 109.
    Sommer C, Weishaupt A, Brinkhoff J, et al. Paraneoplastic stiff-person syndrome: passive transfer to rats by means of IgG antibodies to amphiphysin. Lancet. 2005;365(9468):1406–11.PubMedCrossRefGoogle Scholar
  110. 110.
    Vernino S, Low PA, Fealey RD, Stewart JD, Farrugia G, Lennon VA. Autoan­tibodies to ganglionic acetylcholine receptors in autoimmune autonomic neuropathies. N Engl J Med. 2000;343(12):847–55.PubMedCrossRefGoogle Scholar
  111. 111.
    Bernal F, Graus F, Pifarre A, Saiz A, Benyahia B, Ribalta T. Immunohistochemical analysis of anti-Hu-associated paraneoplastic encephalomyelitis. Acta Neuropathol. 2002;103(5):509–15.PubMedCrossRefGoogle Scholar
  112. 112.
    Blumenthal DT, Salzman KL, Digre KB, Jensen RL, Dunson WA, Dalmau J. Early pathologic findings and long-term improvement in anti-Ma2-associated encephalitis. Neurology. 2006;67(1):146–9.PubMedCrossRefGoogle Scholar
  113. 113.
    Albert ML, Darnell JC, Bender A, Francisco LM, Bhardwaj N, Darnell RB. Tumor-specific killer cells in paraneoplastic cerebellar degeneration. Nat Med. 1998;4(11):1321–4.PubMedCrossRefGoogle Scholar
  114. 114.
    Albert ML, Austin LM, Darnell RB. Detection and treatment of activated T cells in the cerebrospinal fluid of patients with paraneoplastic cerebellar degeneration. Ann Neurol. 2000;47(1):9–17.PubMedCrossRefGoogle Scholar
  115. 115.
    Tanaka K, Tanaka M, Igarashi S, Onodera O, Miyatake T, Tsuji S. Trial to establish an animal model of paraneoplastic cerebellar degeneration with anti-Yo antibody. 2. Passive transfer of murine mononuclear cells activated with recombinant Yo protein to paraneoplastic cerebellar degeneration lymphocytes in severe combined immunodeficiency mice. Clin Neurol Neurosurg. 1995;97(1):101–5.PubMedCrossRefGoogle Scholar
  116. 116.
    Tanaka M, Tanaka K, Onodera O, Tsuji S. Trial to establish an animal model of paraneoplastic cerebellar degeneration with anti-Yo antibody. 1. Mouse strains bearing different MHC molecules produce antibodies on immunization with recombinant Yo protein, but do not cause Purkinje cell loss. Clin Neurol Neurosurg. 1995;97(1):95–100.PubMedCrossRefGoogle Scholar
  117. 117.
    Peterson K, Rosenblum MK, Kotanides H, Posner JB. Paraneoplastic cerebellar degeneration. I. A clinical analysis of 55 anti-Yo antibody-positive patients. Neurology. 1992;42(10):1931–7.PubMedGoogle Scholar
  118. 118.
    Hammack JE, Kimmel DW, O’Neill BP, Lennon VA. Paraneoplastic cerebellar degeneration: a clinical comparison of patients with and without Purkinje cell cytoplasmic antibodies. Mayo Clin Proc. 1990;65(11):1423–31.PubMedGoogle Scholar
  119. 119.
    Hammack J, Kotanides H, Rosenblum MK, Posner JB. Paraneoplastic cerebellar degeneration. II. Clinical and immunologic findings in 21 patients with Hodgkin’s disease. Neurology. 1992;42(10):1938–43.PubMedGoogle Scholar
  120. 120.
    McHugh JC, Tubridy N, Collins CD, Hutchinson M. Unusual MRI abnormalities in anti-Yo positive “pure” paraneoplastic cerebellar degeneration. J Neurol. 2008;255(1):138–9.PubMedCrossRefGoogle Scholar
  121. 121.
    Verschuuren J, Chuang L, Rosenblum MK, et al. Inflammatory infiltrates and complete absence of Purkinje cells in anti-Yo-associated paraneoplastic cerebellar degeneration. Acta Neuropathol. 1996;91(5):519–25.PubMedCrossRefGoogle Scholar
  122. 122.
    Chen YT, Rettig WJ, Yenamandra AK, et al. Cerebellar degeneration-related antigen: a highly conserved neuroectodermal marker mapped to chromosomes X in human and mouse. Proc Natl Acad Sci USA. 1990;87(8):3077–81.PubMedCrossRefGoogle Scholar
  123. 123.
    Shams’ili S, Grefkens J, de Leeuw B, et al. Paraneoplastic cerebellar degeneration associated with antineuronal antibodies: analysis of 50 patients. Brain. 2003;126(Pt 6):1409–18.PubMedCrossRefGoogle Scholar
  124. 124.
    Bernal F, Shams’ili S, Rojas I, et al. Anti-Tr antibodies as markers of paraneoplastic cerebellar degeneration and Hodgkin’s disease. Neurology. 2003;60(2):230–4.PubMedGoogle Scholar
  125. 125.
    Graus F, Dalmau J, Valldeoriola F, et al. Immunological characterization of a neuronal antibody (anti-Tr) associated with paraneoplastic cerebellar degeneration and Hodgkin’s disease. J Neuroimmunol. 1997;74(1–2):55–61.PubMedCrossRefGoogle Scholar
  126. 126.
    Gultekin SH, Rosenfeld MR, Voltz R, Eichen J, Posner JB, Dalmau J. Paraneoplastic limbic encephalitis: neurological symptoms, immunological findings and tumour association in 50 patients. Brain. 2000;123(Pt 7):1481–94.PubMedCrossRefGoogle Scholar
  127. 127.
    Dalmau J, Graus F, Villarejo A, et al. Clinical analysis of anti-Ma2-associated encephalitis. Brain. 2004;127(Pt 8):1831–44.PubMedCrossRefGoogle Scholar
  128. 128.
    Pittock SJ, Lucchinetti CF. Inflammatory transverse myelitis: evolving concepts. Curr Opin Neurol. 2006;19(4):362–8.PubMedCrossRefGoogle Scholar
  129. 129.
    Fadul CE, Stommel EW, Dragnev KH, Eskey CJ, Dalmau JO. Focal paraneoplastic limbic encephalitis presenting as orgasmic epilepsy. J Neurooncol. 2005;72(2):195–8.PubMedCrossRefGoogle Scholar
  130. 130.
    Lawn ND, Westmoreland BF, Kiely MJ, Lennon VA, Vernino S. Clinical, magnetic resonance imaging, and electroencephalographic findings in paraneoplastic limbic encephalitis. Mayo Clin Proc. 2003;78(11):1363–8.PubMedCrossRefGoogle Scholar
  131. 131.
    Yu Z, Kryzer TJ, Griesmann GE, Kim K, Benarroch EE, Lennon VA. CRMP-5 neuronal autoantibody: marker of lung cancer and thymoma-related autoimmunity. Ann Neurol. 2001;49(2):146–54.PubMedCrossRefGoogle Scholar
  132. 132.
    Rosenfeld MR, Eichen JG, Wade DF, Posner JB, Dalmau J. Molecular and clinical diversity in paraneoplastic immunity to Ma proteins. Ann Neurol. 2001;50(3):339–48.PubMedCrossRefGoogle Scholar
  133. 133.
    Rudnick E, Khakoo Y, Antunes NL, et al. Opsoclonus-myoclonus-ataxia syndrome in neuroblastoma: clinical outcome and antineuronal antibodies-a report from the Children’s Cancer Group Study. Med Pediatr Oncol. 2001;36(6):612–22.PubMedCrossRefGoogle Scholar
  134. 134.
    Antunes NL, Khakoo Y, Matthay KK, et al. Antineuronal antibodies in patients with neuroblastoma and paraneoplastic opsoclonus-myoclonus. J Pediatr Hematol Oncol. 2000;22(4):315–20.PubMedCrossRefGoogle Scholar
  135. 135.
    Connolly AM, Pestronk A, Mehta S, Pranzatelli 3rd MR, Noetzel MJ. Serum autoantibodies in childhood opsoclonus-myoclonus syndrome: an analysis of antigenic targets in neural tissues. J Pediatr. 1997;130(6):878–84.PubMedCrossRefGoogle Scholar
  136. 136.
    Blaes F, Fuhlhuber V, Korfei M, et al. Surface-binding autoantibodies to cerebellar neurons in opsoclonus syndrome. Ann Neurol. 2005;58(2):313–7.PubMedCrossRefGoogle Scholar
  137. 137.
    Korfei M, Fuhlhuber V, Schmidt-Woll T, Kaps M, Preissner KT, Blaes F. Functional characterisation of autoantibodies from patients with pediatric ­opsoclonus-myoclonus-syndrome. J Neuroimmunol. 2005;170(1–2):150–7.PubMedCrossRefGoogle Scholar
  138. 138.
    Seute T, Leffers P, ten Velde GP, Twijnstra A. Neurologic disorders in 432 consecutive patients with small cell lung carcinoma. Cancer. 2004;100(4):801–6.PubMedCrossRefGoogle Scholar
  139. 139.
    Tim RM, Massey JM, Sanders DB. Lambert-Eaton Myasthenic Syndrome (LEMS): clinical and electrodiagnostic features and response to therapy in 59 patients. Ann N Y Acad Sci. 1998;84:823–6.CrossRefGoogle Scholar
  140. 140.
    Argov Z, Shapira Y, Averbuch-Heller L, Wirguin I. Lambert-Eaton myasthenic syndrome (LEMS) in association with lymphoproliferative disorders. Muscle Nerve. 1995;18(7):715–9.PubMedCrossRefGoogle Scholar
  141. 141.
    Burns TM, Juel VC, Sanders DB, Phillips II LH. Neuroendocrine lung tumors and disorders of the neuromuscular junction. Neurology. 1999;52(7):1490–1.PubMedGoogle Scholar
  142. 142.
    Wirtz PW, Lang B, Graus F, et al. P/Q-type calcium channel antibodies, Lambert-Eaton myasthenic syndrome and survival in small cell lung cancer. J Neuroimmunol. 2005;164(1–2):161–5.PubMedCrossRefGoogle Scholar
  143. 143.
    Graus F, Vincent A, Pozo-Rosich P, et al. Anti-glial nuclear antibody: marker of lung cancer-related paraneoplastic neurological syndromes. J Neuroimmunol. 2005;165(1–2):166–71.PubMedCrossRefGoogle Scholar
  144. 144.
    Keime-Guibert F, Graus F, Broet P, et al. Clinical outcome of patients with anti-Hu-associated encephalomyelitis after treatment of the tumor. Neurology. 1999;53(8):1719–23.PubMedGoogle Scholar
  145. 145.
    Douglas CA, Ellershaw J. Anti-Hu antibodies may indicate a positive response to chemotherapy in paraneoplastic syndrome secondary to small cell lung cancer. Palliat Med. 2003;17(7):638–9.PubMedCrossRefGoogle Scholar
  146. 146.
    Bataller L, Graus F, Saiz A, Vilchez JJ. Clinical outcome in adult onset idiopathic or paraneoplastic opsoclonus-myoclonus. Brain. 2001;124(Pt 2):437–43.PubMedCrossRefGoogle Scholar
  147. 147.
    Chalk CH, Murray NM, Newsom-Davis J, O’Neill JH, Spiro SG. Response of the Lambert-Eaton myasthenic syndrome to treatment of associated small-cell lung carcinoma. Neurology. 1990;40(10):1552–6.PubMedGoogle Scholar
  148. 148.
    Lang B, Newsom-Davis J, Prior C, Wray D. Antibodies to motor nerve terminals: an electrophysiological study of a human myasthenic syndrome transferred to mouse. J Physiol. 1983;344(1):335–45.PubMedGoogle Scholar
  149. 149.
    Ertle F, Behnisch W, Al Mulla NA, et al. Treatment of neuroblastoma-related opsoclonus-myoclonus-ataxia syndrome with high-dose dexamethasone pulses. Pediatr Blood Cancer. 2008;50(3):683–7.PubMedCrossRefGoogle Scholar
  150. 150.
    Russo C, Cohen SL, Petruzzi MJ, de Alarcon PA. Long-term neurologic outcome in children with opsoclonus-myoclonus associated with neuroblastoma: a report from the Pediatric Oncology Group. Med Pediatr Oncol. 1997;28(4):284–8.PubMedCrossRefGoogle Scholar
  151. 151.
    Yiu VWY, Kovithavongs T, McGonigle LF, Ferreira P. Plasmapheresis as an effective treatment for opsoclonus-myoclonus syndrome. Pediatr Neurol. 2001;24(1):72–4.PubMedCrossRefGoogle Scholar
  152. 152.
    Pranzatelli MR, Tate ED, Travelstead AL, Longee D. Immunologic and ­clinical responses to rituximab in a child with opsoclonus-myoclonus syndrome. Pediatrics. 2005;115(1):e115–9.PubMedGoogle Scholar
  153. 153.
    Stark E, Wurster U, Patzold U, Sailer M, Haas J. Immunological and clinical response to immunosuppressive treatment in paraneoplastic cerebellar degeneration. Arch Neurol. 1995;52(8):814–8.PubMedGoogle Scholar
  154. 154.
    David YB, Warner E, Levitan M, Sutton DM, Malkin MG, Dalmau JO. Autoimmune paraneoplastic cerebellar degeneration in ovarian carcinoma patients treated with plasmapheresis and immunoglobulin. A case report. Cancer. 1996;78(10):2153–6.PubMedCrossRefGoogle Scholar
  155. 155.
    Cocconi G, Ceci G, Juvarra G, et al. Successful treatment of subacute cerebellar degeneration in ovarian carcinoma with plasmapheresis. A case report. Cancer. 1985;56(9):2318–20.PubMedCrossRefGoogle Scholar
  156. 156.
    Counsell CE, McLeod M, Grant R. Reversal of subacute paraneoplastic cerebellar syndrome with intravenous immunoglobulin. Neurology. 1994;44(6):1184–5.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Enrico C. Lallana
    • 1
  • William F. Hickey
    • 2
  • Camilo E. Fadul
    • 1
  1. 1.Neuro-Oncology Program, Norris Cotton Cancer Center, Departments of Medicine and NeurologyDartmouth Medical School, Dartmouth-Hitchcock Medical CenterLebanonUSA
  2. 2.Department of PathologyDartmouth Medical School, Dartmouth-Hitchcock Medical CenterLebanonUSA

Personalised recommendations