Multiple Sclerosis: The Next 20 Years

  • Howard L. Weiner
Part of the Current Clinical Neurology book series (CCNEU)


Although one cannot predict where science will be in two decades from now, based on our current understanding and the work being done, it is possible to speculate on where the field of multiple sclerosis will be in 2030. I discuss below, four important areas which I believe will change our understanding and treatment of the disease in the next 20 years.


Heterogeneity Biomarkers Lesions Innate immune system Cytotoxic Immunotherapy Cure 


  1. 1.
    Lassmann H, Bruck W, Lucchinetti CF. The immunopathology of multiple sclerosis: an overview. Brain Pathol. 2007;17:210–8.PubMedCrossRefGoogle Scholar
  2. 2.
    Breij EC, Brink BP, Veerhuis R, et al. Homogeneity of active demyelinating lesions in established multiple sclerosis. Ann Neurol. 2008;63:16–25.PubMedCrossRefGoogle Scholar
  3. 3.
    Hinson SR, Roemer SF, Lucchinetti CF, et al. Aquaporin-4-binding autoantibodies in patients with neuromyelitis optica impair glutamate transport by down-regulating EAAT2. J Exp Med. 2008;205:2473–81.PubMedCrossRefGoogle Scholar
  4. 4.
    Misu T, Fujihara K, Kakita A, et al. Loss of aquaporin 4 in lesions of neuromyelitis optica: distinction from multiple sclerosis. Brain. 2007;130:1224–34.PubMedCrossRefGoogle Scholar
  5. 5.
    Ramsaransing GS, De Keyser J. Benign course in multiple sclerosis: a review. Acta Neurol Scand. 2006;113:359–69.PubMedCrossRefGoogle Scholar
  6. 6.
    Pittock SJ, McClelland RL, Mayr WT, et al. Clinical implications of benign multiple sclerosis: a 20-year population-based follow-up study. Ann Neurol. 2004;56:303–6.PubMedCrossRefGoogle Scholar
  7. 7.
    Hawkins SA, McDonnell GV. Benign multiple sclerosis? Clinical course, long term follow up, and assessment of prognostic factors. J Neurol Neurosurg Psychiatry. 1999;67:148–52.PubMedCrossRefGoogle Scholar
  8. 8.
    Gauthier S, Berger AM, Liptak Z, et al. Benign MS is characterized by a lower rate of brain atrophy as compared to early MS. Arch Neurol. 2009;66(2):234–7.PubMedCrossRefGoogle Scholar
  9. 9.
    Barcellos LF, Oksenberg JR, Begovich AB, et al. HLA-DR2 dose effect on susceptibility to multiple sclerosis and influence on disease course. Am J Hum Genet. 2003;72:710–6.PubMedCrossRefGoogle Scholar
  10. 10.
    Bakshi R, Neema M, Healy B, et al. Predicting clinical progression in multiple sclerosis with the magnetic resonance disease severity scale. Arch Neurol. 2008;65(11):1449–53.PubMedCrossRefGoogle Scholar
  11. 11.
    Pirko I, Lucchinetti CF, Sriram S, et al. Gray matter involvement in multiple ­sclerosis. Neurology. 2007;68:634–42.PubMedCrossRefGoogle Scholar
  12. 12.
    Miller DH, Thompson AJ, Filippi M. Magnetic resonance studies of abnormalities in the normal appearing white matter and grey matter in multiple sclerosis. J Neurol. 2003;250:1407–19.PubMedCrossRefGoogle Scholar
  13. 13.
    Agosta F, Filippi M. MRI of spinal cord in multiple sclerosis. J Neuroimaging. 2007;17 Suppl 1:46S–9.PubMedCrossRefGoogle Scholar
  14. 14.
    Comabella M, Balashov K, et al. Elevated interleukin-12 in progressive multiple sclerosis correlates with disease activity and is normalized by pulse cyclophosphamide therapy. J Clin Invest. 1998;102:671–8.PubMedCrossRefGoogle Scholar
  15. 15.
    Khoury SJ, Guttmann CR, Orav EJ, et al. Longitudinal MRI in multiple sclerosis: correlation between disability and lesion burden. Neurology. 1994;44:2120–4.PubMedGoogle Scholar
  16. 16.
    Khoury SJ, Guttmann CR, Orav EJ, et al. Changes in activated T cells in the blood correlate with disease activity in multiple sclerosis. Arch Neurol. 2000;57:1183–9.PubMedCrossRefGoogle Scholar
  17. 17.
    Achiron A, Gurevich M, Friedman N, et al. Blood transcriptional signatures of multiple sclerosis: unique gene expression of disease activity. Ann Neurol. 2004;55:410–7.PubMedCrossRefGoogle Scholar
  18. 18.
    Corvol JC, Pelletier D, Henry RG, et al. Abrogation of T cell quiescence characterizes patients at high risk for multiple sclerosis after the initial neurological event. Proc Natl Acad Sci USA. 2008;105:11839–44.PubMedCrossRefGoogle Scholar
  19. 19.
    Quintana F, Farez M, Viglietta V, et al. Antigen microarrays identify unique serum autoantibody signatures associated with different clinical forms and pathologic subtypes of multiple sclerosis. Proc Natl Acad Sci USA. 2008;105(48):18889–94.PubMedCrossRefGoogle Scholar
  20. 20.
    Farez MF, Quintana FJ, Gandhi R, Izquierdo G, Lucas M, Weiner HL. Toll-like receptor 2 and poly(ADP-ribose) polymerase 1 promote central nervous system neuroinflammation in progressive EAE. Nat Immunol. 2009;10:958–64.PubMedCrossRefGoogle Scholar
  21. 21.
    Miller DH, Leary SM. Primary-progressive multiple sclerosis. Lancet Neurol. 2007;6:903–12.PubMedCrossRefGoogle Scholar
  22. 22.
    Confavreux C, Vukusic S, Moreau T, et al. Relapses and progression of disability in multiple sclerosis. N Engl J Med. 2000;343:1430–8.PubMedCrossRefGoogle Scholar
  23. 23.
    Balashov KE, Smith DR, Khoury SJ, et al. Increased interleukin 12 production in progressive multiple sclerosis: induction by activated CD4+ T cells via CD40 ligand. Proc Natl Acad Sci USA. 1997;94:599–603.PubMedCrossRefGoogle Scholar
  24. 24.
    Karni A, Koldzic DN, Bharanidharan P, et al. IL-18 is linked to raised IFN-gamma in multiple sclerosis and is induced by activated CD4(+) T cells via CD40-CD40 ligand interactions. J Neuroimmunol. 2002;125:134–40.PubMedCrossRefGoogle Scholar
  25. 25.
    Karni A, Abraham M, Monsonego A, et al. Innate immunity in multiple sclerosis: myeloid dendritic cells in secondary progressive multiple sclerosis are activated and drive a proinflammatory immune response. J Immunol. 2006;177:4196–202.PubMedGoogle Scholar
  26. 26.
    Vaknin-Dembinsky A, Balashov K, Weiner HL. IL-23 is increased in dendritic cells in multiple sclerosis and down-regulation of IL-23 by antisense oligos increases dendritic cell IL-10 production. J Immunol. 2006;176:7768–74.PubMedGoogle Scholar
  27. 27.
    Kutzelnigg A, Lucchinetti CF, Stadelmann C, et al. Cortical demyelination and ­diffuse white matter injury in multiple sclerosis. Brain. 2005;128:2705–12.PubMedCrossRefGoogle Scholar
  28. 28.
    Venken K, Hellings N, Hensen K, et al. Secondary progressive in contrast to relapsing-remitting multiple sclerosis patients show a normal CD4+CD25+ regulatory T-cell function and FOXP3 expression. J Neurosci Res. 2006;83:1432–46.PubMedCrossRefGoogle Scholar
  29. 29.
    Trojano M, Pellegrini F, Fuiani A, et al. New natural history of interferon-beta-treated relapsing multiple sclerosis. Ann Neurol. 2007;61:300–6.PubMedCrossRefGoogle Scholar
  30. 30.
    Furtado GC, Pina B, Tacke F, et al. A novel model of demyelinating encephalomyelitis induced by monocytes and dendritic cells. J Immunol. 2006;177:6871–9.PubMedGoogle Scholar
  31. 31.
    Gopal M, Mittal A, Weiner H. Increased osteopontin expression in dendritic cells amplifies IL-17 production by CD4+ T cells in experimental autoimmune encephalomyelitis and in multiple sclerosis. J Immunol. 2008;181(11):7480–8.Google Scholar
  32. 32.
    Bjartmar C, Wujek JR, Trapp BD. Axonal loss in the pathology of MS: consequences for understanding the progressive phase of the disease. J Neurol Sci. 2003;206:165–71.PubMedCrossRefGoogle Scholar
  33. 33.
    Trapp BD, Wujek JR, Criste GA, et al. Evidence for synaptic stripping by cortical microglia. Glia. 2007;55:360–8.PubMedCrossRefGoogle Scholar
  34. 34.
    Basso AS, Frenkel D, Quintana FJ, et al. Reversal of axonal loss and disability in a mouse model of progressive multiple sclerosis. J Clin Invest. 2008;118:1532–43.PubMedCrossRefGoogle Scholar
  35. 35.
    Pitt D, Werner P, Raine CS. Glutamate excitotoxicity in a model of multiple sclerosis. Nat Med. 2000;6:67–70.PubMedCrossRefGoogle Scholar
  36. 36.
    Smith T, Groom A, Zhu B, et al. Autoimmune encephalomyelitis ameliorated by AMPA antagonists. Nat Med. 2000;6:62–6.PubMedCrossRefGoogle Scholar
  37. 37.
    Waxman SG. Mechanisms of disease: sodium channels and neuroprotection in multiple sclerosis-current status. Nat Clin Pract Neurol. 2008;4:159–69.PubMedCrossRefGoogle Scholar
  38. 38.
    Weiner H. Curing MS how science is solving the mysteries of multiple sclerosis. New York: Crown; 2004. p. 309.Google Scholar
  39. 39.
    Rudick RA, Stuart WH, Calabresi PA, et al. Natalizumab plus interferon beta-1a for relapsing multiple sclerosis. N Engl J Med. 2006;354:911–23.PubMedCrossRefGoogle Scholar
  40. 40.
    Coles AJ, Compston DA, Selmaj KW, et al. Alemtuzumab vs. interferon beta-1a in early multiple sclerosis. N Engl J Med. 2008;359:1786–801.PubMedCrossRefGoogle Scholar
  41. 41.
    Krishnan C, Kaplin AI, Brodsky RA, et al. Reduction of disease activity and disability with high-dose cyclophosphamide in patients with aggressive multiple sclerosis. Arch Neurol. 2008;65:1044–51.PubMedCrossRefGoogle Scholar
  42. 42.
    Le Page E, Leray E, Taurin G, et al. Mitoxantrone as induction treatment in aggressive relapsing remitting multiple sclerosis: treatment response factors in a 5 year follow-up observational study of 100 consecutive patients. J Neurol Neurosurg Psychiatry. 2008;79:52–6.PubMedCrossRefGoogle Scholar
  43. 43.
    Gauthier SA, Glanz BI, Mandel M, et al. A model for the comprehensive investigation of a chronic autoimmune disease: the multiple sclerosis CLIMB study. Autoimmun Rev. 2006;5:532–6.PubMedCrossRefGoogle Scholar
  44. 44.
    Rodriguez M, Lindsley MD. Immunosuppression promotes CNS remyelination in chronic virus-induced demyelinating disease. Neurology. 1992;42:348–57.PubMedGoogle Scholar
  45. 45.
    Mi S, Hu B, Hahm K, et al. LINGO-1 antagonist promotes spinal cord remyelination and axonal integrity in MOG-induced experimental autoimmune encephalomyelitis. Nat Med. 2007;13:1228–33.PubMedCrossRefGoogle Scholar
  46. 46.
    Karnezis T, Mandemakers W, McQualter JL, et al. The neurite outgrowth inhibitor Nogo A is involved in autoimmune-mediated demyelination. Nat Neurosci. 2004;7:736–44.PubMedCrossRefGoogle Scholar
  47. 47.
    Warrington AE, Asakura K, Bieber AJ, et al. Human monoclonal antibodies reactive to oligodendrocytes promote remyelination in a model of multiple sclerosis. Proc Natl Acad Sci USA. 2000;97:6820–5.PubMedCrossRefGoogle Scholar
  48. 48.
    Craner MJ, Damarjian TG, Liu S, et al. Sodium channels contribute to microglia/macrophage activation and function in EAE and MS. Glia. 2005;49:220–9.PubMedCrossRefGoogle Scholar
  49. 49.
    Pluchino S, Muzio L, Imitola J, et al. Persistent inflammation alters the function of the endogenous brain stem cell compartment. Brain. 2008;131:2564–78.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Howard L. Weiner
    • 1
  1. 1.Partners Multiple Sclerosis Center, Center for Neurologic DiseasesBrigham and Women’s Hospital, Harvard Medical SchoolBostonUSA

Personalised recommendations