Skip to main content

Cognition in Adults with Type 1 Diabetes

  • Chapter
  • First Online:
Diabetes and the Brain

Abstract

In this chapter, the literature on the neuropsychology of type 1 diabetes is reviewed. First, the pattern and magnitude of cognitive impairments in adults with type 1 diabetes are discussed. Cognitive decrements are limited to only some cognitive domains and can best be characterised as a slowing of mental speed and a diminished mental flexibility, whereas learning and memory are generally spared. Also, the cognitive decrements are mild in magnitude (i.e. within 0.5 SD of the mean of the control group) and seem neither to be progressive over time, nor to be substantially worse in older adults. Next, we focus on the results of neuroimaging studies. These studies suggest that type 1 diabetic patients have relatively subtle reductions in brain volume but these structural changes may be more pronounced in patients with an early disease onset. Furthermore, we will highlight several possible risk factors and confounding variables, including psychiatric comorbidity, recurrent hypoglycaemia, and chronic hyperglycaemia, and we will address the apparent paradox between evidence of end-organ damage in the brain as a result of diabetes versus evidence of cognitive resilience. Finally, we will discuss the implications of these findings for understanding their effects on daily life.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brands AMA, Biessels GJ, De Haan EHF, Kappelle LJ, Kessels RPC. The effects of type 1 diabetes on cognitive performance: A meta-analysis. Diabetes Care 2005; 28:726–735.

    Article  PubMed  Google Scholar 

  2. Kodl CT, Seaquist ER. Cognitive dysfunction and diabetes mellitus. Endocr Rev 2008; 29:494–511.

    Google Scholar 

  3. Cohen, J. Statistical power analysis for the behavioral sciences. 2nd ed. Hillsdale, NJ: Erlbaum, 1988.

    Google Scholar 

  4. Kahneman D. Attention and effort. Englewood Cliffs, NJ: Prentice Hall Inc., 1973.

    Google Scholar 

  5. Park DC, Lautenschlager G, Hedden T, Davidson NS, Smith AD, Smith PK. Models of visuospatial and verbal memory across the adult life span. Psychol Aging 2002; 17:299–320.

    Article  Google Scholar 

  6. Salthouse TA. What and when of cognitive aging. Curr Dir Psychol Sci 2004; 13:140–144.

    Article  Google Scholar 

  7. Braver TS, Barch DM. A theory of cognitive control, aging cognition, and neuromodulation. Neurosci Biobehav Rev 2002; 26:809–817.

    Article  PubMed  Google Scholar 

  8. Tisserand DJ, Jolles J. On the involvement of prefrontal networks in cognitive ageing. Cortex 2003; 39:1107–1128.

    Article  PubMed  Google Scholar 

  9. Wickens CD. Processing resources in attention. In: Parasuraman R, ed. Varieties of attention. Orlando, FL: Academic Press, 1984.

    Google Scholar 

  10. Brands AMA, Kessels RPC, Hoogma RPLM, et al. Cognitive performance, psychological well-being and brain MRI in older patients with type 1 diabetes. Diabetes 2006; 55(6):1800.

    Article  PubMed  CAS  Google Scholar 

  11. DCCT Research Group Effects of intensive diabetes therapy on neuropsychological function in adults in the Diabetes Control and Complications Trial. Ann Int Med 1996; 124:379–388.

    Google Scholar 

  12. Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Study Research Group, Jacobson AM, Musen G, Ryan CM, et al. Long-term effect of diabetes and its treatment on cognitive function. N Engl J Med 2007; 356:1842–1852.

    Google Scholar 

  13. Ryan CM, Williams TM. Effects of insulin-dependent diabetes on learning and memory efficiency in adults. J Clin Exp Neuropsychol 1993; 15:685–700.

    Article  PubMed  CAS  Google Scholar 

  14. Reichard P, Pihl M, Rosenqvist U, Sule J. Complications in IDDM are caused by elevated blood glucose level: The Stockholm Diabetes Intervention Study (SDIS) at 10-year follow up. Diabetologia 1996; 39:1483–1488.

    Article  PubMed  CAS  Google Scholar 

  15. Reske-Nielsen E, Lundbaek K, Rafaelsen OJ. Pathological changes in the central and peripheral nervous system of young long-term diabetics. Diabetologia 1965; 1: 233–241.

    Article  Google Scholar 

  16. Dejgaard A, Gade A, Larsson H, Balle V, Parving A, Parving HH. Evidence for diabetic encephalopathy. Diabet Med 1991; 8:162–167.

    Article  PubMed  CAS  Google Scholar 

  17. Lunetta M, Damanti AR, Fabbri G, Lombardo M, Di Mauro M, Mughini L. Evidence by magnetic resonance imaging of cerebral alterations of atrophy type in young insulin-dependent diabetic patients. J Endocrinol Invest 1994; 17:241–245.

    PubMed  CAS  Google Scholar 

  18. de Leeuw F, de Groot J, Achten E, et al. Prevalence of cerebral white-matter lesions in elderly people: a population based magnetic resonance imaging study. The Rotterdam Scan Study. J Neurol Neurosurg Psychiatry 2001; 70:9–14.

    Article  PubMed  Google Scholar 

  19. Vermeer SE, den Heijer T, Koudstaal PJ, Oudkerk M, Hofman A, Breteler MMB. Incidence and Risk Factors of Silent Brain Infarcts in the Population-Based Rotterdam Scan Study. Stroke 2003; 34:392–396.

    Article  PubMed  Google Scholar 

  20. Ylikoski A, Erkinjuntti T, Raininko R, Sarna S, Sulkava R, Tilvis R. White-matter hyperintensities on MRI in the neurologically nondiseased elderly. Analysis of cohorts of consecutive subjects aged 55 to 85 years living at home. Stroke 1995; 26:1171–1177.

    PubMed  CAS  Google Scholar 

  21. Lobnig BM, Krömeke O, Optenhostert-Porst C, Wolf OT. Hippocampal volume and cognitive performance in longstanding Type 1 diabetic patients without macrovascular complications. Diabet Med 2006; 23:32–39.

    Article  PubMed  CAS  Google Scholar 

  22. Musen G, Lyoo IK, Sparks CR, et al. Effects of type 1 diabetes on gray matter density as measured by voxel-based morphometry. Diabetes 2006; 55:326–332.

    Article  PubMed  CAS  Google Scholar 

  23. Wessels AM, Simsek S, Remeijnse PL, et al. Voxel-based morphometry demonstrates reduced grey matter density on brain MRI in patients with diabetic retinopathy. Diabetologia 2006; 49:2474–2480.

    Article  PubMed  CAS  Google Scholar 

  24. Weinger K, Jacobson AM, Musen G, et al. The effects of type 1 diabetes on cerebral white matter. Diabetologia 2008; 51:417–425.

    Article  PubMed  CAS  Google Scholar 

  25. Wessels AM, Rombouts SA, Remeijnse PL, et al. Cognitive performance in type 1 diabetes patients is associated with cerebral white matter volume. Diabetologia 2007; 50:1763–1769.

    Article  PubMed  CAS  Google Scholar 

  26. Ferguson SC, Blane A, Perros P, et al. Cognitive ability and brain structure in type 1 diabetes: relation to microangiopathy and preceding severe hypoglycemia. Diabetes 2003; 52: 149–156.

    Article  PubMed  CAS  Google Scholar 

  27. Wessels AM, Rombouts SA, Simsek S, et al. Microvascular disease in type 1 diabetes alters brain activation: a functional magnetic resonance imaging study. Diabetes 2006; 55:334–340.

    Article  PubMed  CAS  Google Scholar 

  28. Elderkin-Thompson V, Kumar A, Bilker WB, et al. Neuropsychological deficits among patients with late-onset minor and major depression. Arch Clin Neuropsychol 2003; 18:529–549.

    Article  PubMed  Google Scholar 

  29. Lockwood KA, Alexopoulos GS, van Gorp WG. Executive dysfunction in geriatric depression. Am J Psychiatry 2002; 159:1119–1126.

    Article  PubMed  Google Scholar 

  30. Anderson RJ, Freedland KE, Clouse RE, Lustman PJ. The prevalence of comorbid depression in adults with diabetes: a meta-analysis. Diabetes Care 2001; 24:1069–1078.

    Article  PubMed  CAS  Google Scholar 

  31. Broderick PA, Jacoby JH. Serotonergic function in diabetic rats: psychotherapeutic implications. Biol Psychiatry 1988; 24:234–239.

    Article  PubMed  CAS  Google Scholar 

  32. Lackovic Z, Salkovic M, Kuci Z, Relja M. Effect of long-lasting diabetes mellitus on rat and human brain monoamines. J Neurochem 1990; 54:143–147.

    Article  PubMed  CAS  Google Scholar 

  33. Prestele S, Aldenhoff J, Reiff J. The HPA-axis as a possible link between depression, diabetes mellitus and cognitive dysfunction. Fortschritte der Neurologie-Psychiatrie 2003; 71: 24–36.

    Article  PubMed  CAS  Google Scholar 

  34. Roy M, Collier B, Roy A. Dysregulation of the hypothalamo-pituitary-adrenal axis and duration of diabetes. J Diabet Complications 1991; 5:218–220.

    Article  PubMed  CAS  Google Scholar 

  35. Jorm AF, Anstey KJ, Christensen H, de Plater G, Kumar R, Wen W, Sachdev P. MRI hyperintensities and depressive symptoms in a community sample of individuals 60–64 years old. Am J Psychiatry 2005; 162:699–704.

    Article  PubMed  Google Scholar 

  36. Leedom L, Meehan WP, Procci W, Zeidler A. Symptoms of depression in patients with type II diabetes mellitus. Psychosomatics 1991; 32:280–286.

    PubMed  CAS  Google Scholar 

  37. Alexopoulos GS, Meyers BS, Young RC, Campbell S, Silbersweig D, Charlson M. ‘Vascular depression’ hypothesis. Arch Gen Psychiatry 1997; 54:915–922.

    PubMed  CAS  Google Scholar 

  38. Baldwin RC, Gallagley A, Gourlay M, Jackson A, Burns A. Prognosis of late life depression: a three-year cohort study of outcome and potential predictors. Int J Geriatr Psychiatry 2006; 21:57–63.

    Article  PubMed  Google Scholar 

  39. Waldstein SR, Ryan CM, Jennings JR, Muldoon MF, Manuck SB. Self-reported levels of anxiety do not predict neuropsychological performance in healthy men. Arch Clin Psychol 1997; 122:567–574.

    Google Scholar 

  40. Lovera J, Bagert B, Smoot KH, et al. Correlations of perceived deficits questionnaire of multiple sclerosis quality of life inventory with Beck depression inventory and neuropsychological tests. J Rehab Res Devel 2006; 43:73–82.

    Article  Google Scholar 

  41. O’Jile JR, Schrimsher GW, O’Bryant SE. The relation of self-report of mood and anxiety to CVLT-C, CVLT, and CVLT-2 in a psychiatric sample. Arch Clin Neuropsychol 2005; 20:547–553.

    Google Scholar 

  42. Bale RN. Brain damage in diabetes mellitus. Br J Psychiatry 1973; 122:337–341.

    Article  PubMed  CAS  Google Scholar 

  43. Sachon C, Grimaldi A, Digy JP, Pillon B, Dubois B, Thervet F. Cognitive function, insulin-dependent diabetes and hypoglycemia. J Int Med 1992; 231:471–475.

    Article  CAS  Google Scholar 

  44. Wredling R, Levander S, Adamson U, Lins PE. Permanent neuropsychological impairment after recurrent episodes of severe hypoglycemia in man. Diabetologia 1990; 33:152–157.

    Article  PubMed  CAS  Google Scholar 

  45. Gold AE, Deary IJ, Jones RW, O’Hare JP, Reckless JP, Frier BM. Severe deterioration in cognitive function and personality in five patients with long-standing diabetes: a complication of diabetes or a consequence of treatment? Diabet Med 1994; 11:499–505.

    Article  PubMed  CAS  Google Scholar 

  46. Reichard P, Berglund A, Britz A, Levander S, Rosenqvist U. Hypoglycaemic episodes during intensified insulin treatment: increased frequency but no effect on cognitive function. J Int Med 1991; 229:9–16.

    Article  CAS  Google Scholar 

  47. Chabriat H, Sachon C, Levasseur M, et al. Brain metabolism after recurrent insulin induced hypoglycemic episodes: a PET study. J Neurol Neurosurg Psychiatry 1994; 57:1360–1365.

    Article  PubMed  CAS  Google Scholar 

  48. Fehm HL, Kern W, Peters A. The selfish brain: competition for energy resources. Prog Brain Res 2006; 153:129–140.

    Article  PubMed  CAS  Google Scholar 

  49. Stern Y. What is cognitive reserve? Theory and research application of the reserve concept. J Int Neuropsychol Soc 2002; 8:448–460.

    Google Scholar 

  50. Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature 2001; 414:813–820.

    Article  PubMed  CAS  Google Scholar 

  51. Biessels GJ, van der Heide LP, Kamal A, Bleys RLAW, Gispen WH. Ageing and diabetes: implications for brain function. Eur J Pharmacol 2002; 441:1–14.

    Article  PubMed  CAS  Google Scholar 

  52. Seidl R, Birnbacher R, Hauser E, Bernert G, Freilinger M, Schober E. Brainstem auditory evoked potentials and visually evoked potentials in young patients with IDDM. Diabetes Care 1996; 19:1220–1224.

    Article  PubMed  CAS  Google Scholar 

  53. Pozzessere G, Rizzo P, Valle E, et al. A longitudinal study of multimodal evoked potentials in diabetes mellitus. Diabet Res 1989; 10:17–20.

    CAS  Google Scholar 

  54. Pozzessere G, Valle E, de Crignis S, et al. Abnormalities of cognitive functions in IDDM revealed by P300 event-related potential analysis. Comparison with short-latency evoked potentials and psychometric tests. Diabetes 1991; 40:952–958.

    Article  PubMed  CAS  Google Scholar 

  55. Pietravalle P, Morano S, Cristina G, et al. Early complications in type 1 diabetes: central nervous system alterations preceded kidney abnormalities. Diabet Res Clin Prac 1993; 21:143–154.

    Article  CAS  Google Scholar 

  56. Donald MW, Erdahl DL, Surridge DH, Monga TN, Lawson JS, Bird CE, Letemendia FJ. Functional correlates of reduced central conduction velocity in diabetic subjects. Diabetes 1984; 33:627–633.

    Article  PubMed  CAS  Google Scholar 

  57. Ryan CM, Williams TM, Finegold DN, Orchard TJ. Cognitive dysfunction in adults with type 1 (insulin-dependent) diabetes mellitus of long duration: effects of recurrent hypoglycemia and other chronic complications. Diabetologia 1993; 36:329–334.

    Article  PubMed  CAS  Google Scholar 

  58. Ryan CM, Geckle MO, Orchard TJ. Cognitive efficiency declines over time in adults with type 1 diabetes: effects of micro- and macrovascular complications. Diabetologia 2003; 46:940–948.

    Article  PubMed  CAS  Google Scholar 

  59. Wong TY, Klein R, Sharrett AR, et al. Cerebral white matter lesions, retinopathy, and incident clinical stroke. JAMA 2002; 288:67–74.

    Article  PubMed  Google Scholar 

  60. Ryan CM. Memory and metabolic control in children. Diabetes Care 1999; 22:1239–1241.

    Article  PubMed  CAS  Google Scholar 

  61. Reichard P, Britz A, Rosenqvist U. Intensified conventional insulin treatment and neuropsychological impairment. Br Med J 1991; 303:1439–1442.

    Article  CAS  Google Scholar 

  62. Schoenle EJ, Schoenle D, Molinari L, Largo RH. Impaired intellectual development in children with type1 diabetes: association with HbA1c, age at diagnosis and sex. Diabetologia 2002; 45:108–114.

    Article  PubMed  CAS  Google Scholar 

  63. Northam EA, Anderson PJ, Werther GA, Warne GL, Andrewes D. Predictors of change in the neuropsychological profiles of children with type 1 diabetes 2 years after disease onset. Diabetes Care 1999; 22:1438–1444.

    Article  PubMed  CAS  Google Scholar 

  64. Ryan CM, Longstreet C, Morrow L. The effects of diabetes mellitus on the school attendance and school achievement of adolescents. Child Care Health Devel 1985; 11:229–240.

    Article  CAS  Google Scholar 

  65. Ryan CM. Why is cognitive dysfunction associated with the development of diabetes early in life? The diathesis hypothesis. Pediatr Diabet 2006; 7:289–297.

    Article  Google Scholar 

  66. Ho MS, Weller NJ, Ives FJ, et al. Prevalence of structural central nervous system abnormalities in early-onset type 1 diabetes mellitus. J Pediatr 2008; 153:385–390.

    Google Scholar 

  67. Ryan CM. Diabetes and brain damage: more (or less) than meets the eye? Diabetologia 2006; 49:2229–2233.

    Article  PubMed  Google Scholar 

  68. DeJong RN. The nervous system complications in diabetes mellitus with special reference to cerebrovascular changes. J Nerv Ment Dis 1950; 111:181–206.

    Article  Google Scholar 

  69. Reske-Nielsen E, Lundbaek K, Rafaelsen OJ. Pathological changes in the central and peripheral nervous system of young long-term diabetics. Diabetologia 1965; 1:233–241.

    Article  Google Scholar 

  70. Satz, P. Brain reserve capacity on symptom onset after brain injury: a formulation and review of evidence for threshold theory. Neuropsychology 1993; 7:273–295.

    Article  Google Scholar 

  71. Zakzanis K, Leach L, Kaplan E. Neuropsychological differential diagnosis. Lisse: Swets and Zeitlinger, 1999.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Augustina M.A. Brands PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Brands, A.M., Kessels, R.P., Ryan, C.M. (2009). Cognition in Adults with Type 1 Diabetes. In: Biessels, G., Luchsinger, J. (eds) Diabetes and the Brain. Contemporary Diabetes. Humana Press. https://doi.org/10.1007/978-1-60327-850-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-850-8_11

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-849-2

  • Online ISBN: 978-1-60327-850-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics