Skip to main content

Cardiovascular and Autonomic Influences on Blood Pressure

  • Chapter
  • First Online:
Pediatric Hypertension

Abstract

The cardiovascular system provides appropriate organ and tissue perfusion at rest and at times of stress by regulation of blood pressure. The arterial pressure level reflects the composite activities of the heart and the peripheral circulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Tibby SM, Murdoch IA. Monitoring cardiac function in intensive care. Arch Dis Child. 2003;88:46–52.

    Article  PubMed  CAS  Google Scholar 

  2. Guyton AC. Arterial Pressure and Hypertension. Philadelphia, PA: Saunders; 1980.

    Google Scholar 

  3. Veille JC, Hanson R, Steele L, Tatum K. M-mode echocardiographic evaluation of fetal and infant hearts: longitudinal follow-up study from intrauterine life to year one. Am J Obstet Gynecol. 1996;175:922–928.

    Article  PubMed  CAS  Google Scholar 

  4. Dickerson LW, Rodak DJ, Fleming TJ, Gatti PJ, Massari VJ, McKenzie JC, Gillis RA. Parasympathetic neurons in the cranial medial ventricular fat pad on the dog heart selectively decrease ventricular contractility without effect on sinus rate or AV conduction. J Auton Nerv Syst. 1998;70:129–141.

    Article  PubMed  CAS  Google Scholar 

  5. Wang Z, Shi H, Wang H. Functional M3 muscarinic acetylcholine receptors in mammalian hearts. Br J Pharmacol. 2004;142:395–408.

    Article  PubMed  CAS  Google Scholar 

  6. Habecker BA, Bilimoria P, Linick C, Gritman K, Lorentz CU, Woodward W, Birren SJ. Regulation of cardiac innervation and function via the p75 neurotrophin receptor. Auton Neurosci. 2008;140:40–48.

    Article  PubMed  CAS  Google Scholar 

  7. Mabe AM, Hoover DB. Structural and functional cardiac cholinergic deficits in adult neurturin knockout mice. Cardiovasc Res. 2009;82:93–99.

    Article  PubMed  CAS  Google Scholar 

  8. Janowski E, Cleemann L, Sasse P, Morad M. Diversity of Ca2+ signaling in developing cardiac cells. Ann N Y Acad Sci. 2006;1080:154–164.

    Article  PubMed  CAS  Google Scholar 

  9. Lin E, Hung VH, Kashihara H, Dan P, Tibbits GF. Distribution patterns of the Na+-Ca2+ exchanger and caveolin-3 in developing rabbit cardiomyocytes. Cell Calcium. 2009;45:369–383.

    Article  PubMed  CAS  Google Scholar 

  10. Phoon CK. Circulatory physiology in the developing embryo. Curr Opin Pediatr. 2001;13:456–464.

    Article  PubMed  CAS  Google Scholar 

  11. Espinoza-Lewis RA, Yu L, He F, Liu H, Tang R, Shi J, Sun X, Martin JF, Wang D, Yang J, Chen Y. Shox2 is essential for the differentiation of cardiac pacemaker cells by repressing Nkx2-5. Dev Biol. 2009;327:376–385.

    Article  PubMed  CAS  Google Scholar 

  12. Walther T, Schultheiss HP, Tschope C, Stepan H. Natriuretic peptide system in fetal heart and circulation. J Hypertens. 2002;20:785–791.

    Article  PubMed  CAS  Google Scholar 

  13. Aviado DM, Guevara Aviado D. The Bezold-Jarisch reflex. A historical perspective of cardiopulmonary reflexes. Ann N Y Acad Sci. 2001;940:48–58.

    Article  PubMed  CAS  Google Scholar 

  14. Mazursky JE, Birkett CL, Bedell KA, Ben-Haim SA, Segar JL. Development of baroreflex influences on heart rate variability in preterm infants. Early Hum Dev. 1998;53:37–52.

    Article  PubMed  CAS  Google Scholar 

  15. Tavernarakis N, Driscoll M. Degenerins. At the core of the metazoan mechanotransducer? Ann N Y Acad Sci. 2001;940:28–41.

    Article  PubMed  CAS  Google Scholar 

  16. Drummond HA, Welsh MJ, Abboud FM. ENaC subunits are molecular components of the arterial baroreceptor complex. Ann N Y Acad Sci. 2001;940:42–47.

    Article  PubMed  CAS  Google Scholar 

  17. Fung M-L, Lam SY, Dong X, Chen Y, Leung PS. Postnatal hypoxemia increases angiotensin II sensitivity and up-regulates AT1a angiotensin receptors in rat carotid body chemoreceptors. J Endocrinol. 2002;173:305–313.

    Article  CAS  Google Scholar 

  18. Lanfranchi PA, Somers VK. Arterial baroreflex function and cardiovascular variability: interactions and implications. Am J Physiol Regul Integr Comp Physiol. 2002;283:R815–R826.

    PubMed  Google Scholar 

  19. Sharif-Naeini R, Ciura S, Zhang Z, Bourque CW. Contribution of TRPV channels to osmosensory transduction, thirst, and vasopressin release. Kidney Int. 2008;73:811–815.

    Article  PubMed  CAS  Google Scholar 

  20. Chapleau MW, Li Z, Meyrelles SS, Ma X, Abboud FM. Mechanisms determining sensitivity of baroreceptor afferents in health and disease. Ann N Y Acad Sci. 2001;940:1–19.

    Article  PubMed  CAS  Google Scholar 

  21. Wei SG, Zhang ZH, Yu Y, Felder RB. Systemically administered tempol reduces neuronal activity in paraventricular nucleus of hypothalamus and rostral ventrolateral medulla in rats. J Hypertens. 2009;27:543–550.

    Article  PubMed  CAS  Google Scholar 

  22. Segar JL. Ontogeny of the arterial and cardiopulmonary baroreflex during fetal and postnatal life. Am J Physiol. 1997;273:R457–R471.

    PubMed  CAS  Google Scholar 

  23. Longin E, Gerstner T, Schaible T, Lenz T, König S. Maturation of the autonomic nervous system: differences in heart rate variability in premature vs. term infants. J Perinat Med. 2006;34:303–308.

    Article  PubMed  Google Scholar 

  24. Martin JL, Jenkins VK, Hsieh HY, Balkowiec A. Brain-derived neurotrophic factor in arterial baroreceptor pathways: implications for activity-dependent plasticity at baroafferent synapses. J Neurochem. 2009;108:450–464.

    Article  PubMed  CAS  Google Scholar 

  25. Yu ZY, Lumbers ER. Effects of birth on baroreceptor-mediated changes in heart rate variability in lambs and fetal sheep. Clin Exp Pharmacol Physiol. 2002;29:455–463.

    Article  PubMed  CAS  Google Scholar 

  26. Yiallourou SR, Walker AM, Horne RS. Prone sleeping impairs circulatory control during sleep in healthy term infants: implications for SIDS. Sleep. 2008;31:1139–1146.

    PubMed  Google Scholar 

  27. Yiallourou SR, Walker AM, Horne RS. Effects of sleeping position on development of infant cardiovascular control. Arch Dis Child. 2008;93:868–872.

    Article  PubMed  CAS  Google Scholar 

  28. Gootman PM, Gootman N. Postnatal changes in cardiovascular regulation during hypoxia. Adv Exp Med Biol. 2000;475:539–548.

    PubMed  CAS  Google Scholar 

  29. Buckley BJ, Gootman N, Nagelberg JS, Griswold PR, Gootman PM. Cardiovascular response to arterial and venous hemorrhage in neonatal swine. Am J Physiol. 1984;247:8626–8633.

    Google Scholar 

  30. Bevan JAA, Su C. Sympathetic mechanisms in blood vessels: nerve and muscle relationships. Annu Rev Pharmacol. 1973;13:269–285.

    Article  PubMed  CAS  Google Scholar 

  31. Li G, Xu J, Wang P, Velazquez H, Li Y, Wu Y, Desir GV. Catecholamines regulate the activity, secretion, and synthesis of renalase. Circulation. 2008;117:1277–1282.

    Article  PubMed  CAS  Google Scholar 

  32. Piascik MT, Perez DM. α 1-Adrenergic receptors: new insights and directions. Pharmacol Exp Ther. 2001;298:403–410.

    CAS  Google Scholar 

  33. Gilsbach R, Röser C, Beetz N, Brede M, Hadamek K, Haubold M, Leemhuis J, Philipp M, Schneider J, Urbanski M, Szabo B, Weinshenker D, Hein L. Genetic dissection of alpha2-adrenoceptor functions in adrenergic versus nonadrenergic cells. Mol Pharmacol. 2009;75:1160–1167.

    Article  PubMed  CAS  Google Scholar 

  34. Hieble JP. Subclassification and nomenclature of alpha- and beta-adrenoceptors. Curr Top Med Chem. 2007;7(2):129–134.

    Article  PubMed  CAS  Google Scholar 

  35. Rokosh DG, Simpson PC. Knockout of the α1A/C-adrenergic receptor subtype: the alpha 1A/C is expressed in resistance arteries and is required to maintain arterial blood pressure. Proc Natl Acad Sci USA. 2002;99:9474–9479.

    Article  PubMed  CAS  Google Scholar 

  36. Daly CJ, Deighan C, McGee A, Mennie D, Ali Z, McBride M, McGrath JC. A knockout approach indicates a minor vasoconstrictor role for vascular α 1B-adrenoceptors in mouse. Physiol Genomics. 2002;9:85–91.

    PubMed  CAS  Google Scholar 

  37. Tanoue A, Koshimizu TA, Tsujimoto G. Transgenic studies of α 1-adrenergic receptor subtype function. Life Sci. 2002;71:2207–2215.

    Article  PubMed  CAS  Google Scholar 

  38. MacDonald E, Kobilka BK, Scheinin M. Gene targeting—homing in on alpha 2-adrenoceptor-subtype function. Trends Pharmacol Sci. 1997;18:211–219.

    PubMed  CAS  Google Scholar 

  39. Rohrer DK. Physiological consequences of beta-adrenergic receptor disruption. J Mol Med. 1998;76:764–772.

    Article  PubMed  CAS  Google Scholar 

  40. Chruscinski AJ, Rohrer DK, Schauble E, Desai KH, Bernstein D, Kobilka BK. Targeted disruption of the β2 adrenergic receptor gene. J Biol Chem. 1999;274:16694–16700.

    Article  PubMed  CAS  Google Scholar 

  41. Rohrer DK, Chruscinski A, Schauble EH, Bernstein D, Kobilka BK. Cardiovascular and metabolic alterations in mice lacking both β1- and β2-adrenergic receptors. J Biol Chem. 1999;274:16701–16708.

    Article  PubMed  CAS  Google Scholar 

  42. Jimenez M, Leger B, Canola K, Lehr L, Arboit P, Seydoux J, Russell AP, Giacobino JP, Muzzin P, Preitner F. β 1/β 2/β 3-adrenoceptor knockout mice are obese and cold-sensitive but have normal lipolytic responses to fasting. FEBS Lett. 2002;530:37–40.

    Article  PubMed  CAS  Google Scholar 

  43. Ozono R, O’Connell DP, Wang ZQ, Moore AF, Sanada H, Felder RA, Carey RM. Localization of the dopamine D1 receptor protein in the human heart and kidney. Hypertension. 1997;30:725–729.

    PubMed  CAS  Google Scholar 

  44. Habuchi Y, Tanaka H, Nishio M, Yamamoto T, Komori T, Morikawa J, Yoshimura M. Dopamine stimulation of cardiac beta-adrenoceptors: the involvement of sympathetic amine transporters and the effect of SKF38393. Br J Pharmacol. 1997;122:1669–1678.

    Article  PubMed  CAS  Google Scholar 

  45. Ding G, Wiegerinck RF, Shen M, Cojoc A, Zeidenweber CM, Wagner MB. Dopamine increases L-type calcium current more in newborn than adult rabbit cardiomyocytes via D1 and β2 receptors. Am J Physiol Heart Circ Physiol. 2008;294:H2327–H2335.

    Article  PubMed  CAS  Google Scholar 

  46. Zeng C, Armando I, Luo Y, Eisner GM, Felder RA, Jose PA. Dysregulation of dopamine-dependent mechanisms as a determinant of hypertension: studies in dopamine receptor knockout mice. Am J Physiol Heart Circ Physiol. 2008;294(2):H551–H556.

    Article  PubMed  CAS  Google Scholar 

  47. Banday AA, Lokhandwala MF. Dopamine receptors and hypertension. Curr Hypertens Rep. 2008;10(4):268–275.

    Article  PubMed  CAS  Google Scholar 

  48. Schafer JA, Li L, Sun D. The collecting duct, dopamine and vasopressin-dependent hypertension. Acta Physiol Scand. 2000;168:239–244.

    Article  PubMed  CAS  Google Scholar 

  49. Saito O, Ando Y, Kusano E, Asano Y. Functional characterization of basolateral and luminal dopamine receptors in rabbit CCD. Am J Physiol Renal Physiol. 2001;281:F114–F122.

    PubMed  CAS  Google Scholar 

  50. Jose PA, Eisner GM, Felder RA. The renal dopamine receptors in health and hypertension. Pharmacol Ther. 1998;80:149–182.

    Article  PubMed  CAS  Google Scholar 

  51. Narkar V, Hussain T, Lokhandwala M. Role of tyrosine kinase and p44/42 MAPK in D2-like receptor-mediated stimulation of Na+, K+-ATPase in kidney. Am J Physiol Renal Physiol. 2002;282:F697–F702.

    PubMed  CAS  Google Scholar 

  52. Yasunari K, Kohno M, Kano H, Minami M, Yoshikawa J. Dopamine as a novel antioxidative agent for rat vascular smooth muscle cells through dopamine D1-like receptors. Circulation. 2000;101:2302–2308.

    PubMed  CAS  Google Scholar 

  53. Han W, Li H, Villar VA, Pascua AM, Dajani MI, Wang X, Natarajan A, Quinn MT, Felder RA, Jose PA, Yu P. Lipid rafts keep NADPH oxidase in the inactive state in human renal proximal tubule cells. Hypertension. 2008;51:481–487.

    Article  PubMed  CAS  Google Scholar 

  54. Yang Z, Asico LD, Yu P, Wang Z, Jones JE, Escano CS, Wang X, Quinn MT, Sibley DR, Romero GG, Felder RA, Jose PA. D5 dopamine receptor regulation of reactive oxygen species production, NADPH oxidase, and blood pressure. Am J Physiol Regul Integr Comp Physiol. 2006;290:R96–R104.

    Article  PubMed  CAS  Google Scholar 

  55. Banday AA, Lau YS, Lokhandwala MF. Oxidative stress causes renal dopamine D1 receptor dysfunction and salt-sensitive hypertension in Sprague-Dawley rats. Hypertension. 2008;51:367–375.

    Article  PubMed  CAS  Google Scholar 

  56. Hogg N. The biochemistry and physiology of S-nitrosothiols. Annu Rev Pharmacol Toxicol. 2002;42:585–600.

    Article  PubMed  CAS  Google Scholar 

  57. Pao CS, Benovic JL. Phosphorylation-independent desensitization of G protein-coupled receptors? Sci STKE. 2002;2002:PE42.

    Article  Google Scholar 

  58. Gainetdinov RR, Premont RT, Bohn LM, Lefkowitz RJ, Caron MG. Desensitization of G protein-coupled receptors and neuronal functions. Annu Rev Neurosci. 2004;27:107–144.

    Article  PubMed  CAS  Google Scholar 

  59. Tobin AB. G-protein-coupled receptor phosphorylation: where, when and by whom. Br J Pharmacol. 2008;153:S167–S176.

    Article  PubMed  CAS  Google Scholar 

  60. Felder RA, Sanada H, Xu J, Yu P-Y, Wang Z, Watanabe H, Asico LD, Wang W, Zheng S, Yamaguchi I, Williams S, Gainer J, Brown NJ, Hazen-Martin D, Wong L-J, Robillard JE, Carey RM, Eisner GM, Jose PA. G protein-coupled receptor kinase 4 gene variants in human essential hypertension. Proc Natl Acad Sci USA. 2002;99:3872–3877.

    Article  PubMed  CAS  Google Scholar 

  61. Ozawa K, Whalen EJ, Nelson CD, Mu Y, Hess DT, Lefkowitz RJ, Stamler JS. S-nitrosylation of beta-arrestin regulates beta-adrenergic receptor trafficking. Mol Cell. 2008;31:395–405.

    Article  PubMed  CAS  Google Scholar 

  62. Whalen EJ, Foster MW, Matsumoto A, Ozawa K, Violin JD, Que LG, Nelson CD, Benhar M, Keys JR, Rockman HA, Koch WJ, Daaka Y, Lefkowitz RJ, Stamler JS. Regulation of beta-adrenergic receptor signaling by S-nitrosylation of G-protein-coupled receptor kinase 2. Cell. 2007;129:511–522.

    Article  PubMed  CAS  Google Scholar 

  63. Yu P, Asico LD, Eisner GM, Hopfer U, Felder RA, Jose PA. Renal protein phosphatase 2A activity and spontaneous hypertension in rats. Hypertension. 2000;36:1053–1058.

    PubMed  CAS  Google Scholar 

  64. Li H, Armando I, Yu P, Escano C, Mueller SC, Asico L, Pascua A, Lu Q, Wang X, Villar VA, Jones JE, Wang Z, Periasamy A, Lau YS, Soares-da-Silva P, Creswell K, Guillemette G, Sibley DR, Eisner G, Felder RA, Jose PA. Dopamine 5 receptor mediates Ang II type 1 receptor degradation via ubiquitin-proteasome pathway in mice and human cells. J Clin Invest. 2008;118:2180–2189.

    Article  PubMed  CAS  Google Scholar 

  65. Tobin AB, Butcher AJ, Kong KC. Location, location, location... site-specific GPCR phosphorylation offers a mechanism for cell-type-specific signaling. Trends Pharmacol Sci. 2008;29:413–420.

    Article  PubMed  CAS  Google Scholar 

  66. Auman JT, Seidler FJ, Slotkin TA. Beta-adrenoceptor control of G protein function in the neonate: determinant of desensitization or sensitization. Am J Physiol Regul Integr Comp Physiol. 2002;283:R1236–R1244.

    PubMed  CAS  Google Scholar 

  67. Li XX, Albrecht FE, Robillard JE, Eisner GM, Jose PA. Gβ regulation of Na/H exchanger-3 activity in rat renal proximal tubules during development. Am J Physiol Regul Integr Comp Physiol. 2000;278:R931–R936.

    PubMed  CAS  Google Scholar 

  68. Protogerou AD, Papaioannou TG, Lekakis JP, Blacher J, Safar ME. The effect of antihypertensive drugs on central blood pressure beyond peripheral blood pressure. Part I: (Patho)-physiology, rationale and perspective on pulse pressure amplification. Curr Pharm Des. 2009;15(3):267–271.

    Article  PubMed  CAS  Google Scholar 

  69. Anwar MA, Ju K, Docherty CC, Poston L, Nathanielsz PW. Developmental changes in reactivity of small femoral arteries in the fetal and postnatal baboon. Am J Obstet Gynecol. 2001;184:707–712.

    Article  PubMed  CAS  Google Scholar 

  70. Yanowitz TD, Yao AC, Pettigrew KD, Werner JC, Oh W, Stonestreet BS. Postnatal hemodynamic changes in very-low-birthweight infants. J Appl Physiol. 1999;87:370–380.

    PubMed  CAS  Google Scholar 

  71. Reber KM, Nankervis CA, Nowicki PT. Newborn intestinal circulation. Physiology and pathophysiology. Clin Perinatol. 2002;29:23–39.

    Article  PubMed  Google Scholar 

  72. Simeoni U, Zhu B, Muller C, Judes C, Massfelder T, Geisert J, Helwig JJ. Postnatal development of vascular resistance of the rabbit isolated perfused kidney: modulation by nitric oxide and angiotensin II. Pediatr Res. 1997;42:550–555.

    Article  PubMed  CAS  Google Scholar 

  73. Solhaug MJ, Wallace MR, Granger JP. Nitric oxide and angiotensin II regulation of renal hemodynamics in the developing piglet. Pediatr Res. 1996;39:527–533.

    Article  PubMed  CAS  Google Scholar 

  74. Ratliff B, Rodebaugh J, Sekulic M, Dong KW, Solhaug M. Nitric oxide synthase and renin-angiotensin gene expression and NOS function in the postnatal renal resistance vasculature. Pediatr Nephrol. Feb 2009;24(2):355–365.

    Article  PubMed  Google Scholar 

  75. Jose P, Slotkoff L, Lilienfield L, Calcagno P, Eisner G. Sensitivity of the neonatal renal vasculature to epinephrine. Am J Physiol. 1974;226:796–799.

    PubMed  CAS  Google Scholar 

  76. Duckles SP, Banner W Jr. Changes in vascular smooth muscle reactivity during development. Annu Rev Pharmacol Toxicol. 1984;24:65–83.

    Article  PubMed  CAS  Google Scholar 

  77. Nuyt AM, Segar JL, Holley AT, Robillard JE. Autonomic adjustments to severe hypotension in fetal and neonatal sheep. Pediatr Res. 2001;49:56–62.

    Article  PubMed  CAS  Google Scholar 

  78. Symonds ME, Stephenson T, Budge H. Early determinants of cardiovascular disease: the role of early diet in later blood pressure control. Am J Clin Nutr. May 2009;89(5):1518S–1522S.

    Article  PubMed  CAS  Google Scholar 

  79. Alexander BT, Hendon AE, Ferril G, Dwyer TM. Renal denervation abolishes hypertension in low-birth-weight offspring from pregnant rats with reduced uterine perfusion. Hypertension. 2005;45:754–758.

    Article  PubMed  CAS  Google Scholar 

  80. Dodic M, Moritz K, Koukoulas I, Wintour EM. Programmed hypertension: kidney, brain or both? Trends Endocrinol Metab. 2002;13:403–408.

    Article  PubMed  CAS  Google Scholar 

  81. Ingelfinger JR. Disparities in renal endowment: causes and consequences. Adv Chronic Kidney Dis. 2008;15:107–114.

    Article  PubMed  Google Scholar 

  82. Francis NJ, Landis SC. Cellular and molecular determinants of sympathetic neuron development. Annu Rev Neurosci. 1999;22:541–566.

    Article  PubMed  CAS  Google Scholar 

  83. Hildreth V, Anderson RH, Henderson DJ. Autonomic innervation of the developing heart: origins and function. Clin Anat. 2009;22:36–46.

    Article  PubMed  Google Scholar 

  84. Glebova NO, Ginty DD. Growth and survival signals controlling sympathetic nervous system development. Annu Rev Neurosci. 2005;28:191–222.

    Article  PubMed  CAS  Google Scholar 

  85. Ernsberger U. The role of GDNF family ligand signalling in the differentiation of sympathetic and dorsal root ganglion neurons. Cell Tissue Res. 2008;333:353–371.

    Article  PubMed  CAS  Google Scholar 

  86. Garofolo MC, Seidler FJ, Auman JT, Slotkin TA. β-Adrenergic modulation of muscarinic cholinergic receptor expression and function in developing heart. Am J Physiol Regul Integr Comp Physiol. 2002;282:R1356–R1363.

    PubMed  CAS  Google Scholar 

  87. Wang L, Zhang W, Zhao Y. The study of maternal and fetal plasma catecholamines levels during pregnancy and delivery. J Perinat Med. 1999;27:195–198.

    Article  PubMed  CAS  Google Scholar 

  88. Agata Y, Hiraishi S, Misawa H, Han JH, Oguchi K, Horiguchi Y, Fujino N, Takeda N, Padbury JF. Hemodynamic adaptations at birth and neonates delivered vaginally and by cesarean section. Biol Neonate. 1995;68:404–411.

    Article  PubMed  CAS  Google Scholar 

  89. Hirsimaki H, Kero P, Ekblad H, Scheinin M, Saraste M, Erkkola R. Mode of delivery, plasma catecholamines and Doppler-derived cardiac output in healthy term newborn infants. Biol Neonate. 1992;61:285–293.

    Article  PubMed  CAS  Google Scholar 

  90. Moftaquir-Handaj A, Barbé F, Barbarino-Monnier P, Aunis D, Boutroy MJ. Circulating chromogranin A and catecholamines in human fetuses at uneventful birth. Pediatr Res. 1995;37:101–105.

    Article  PubMed  CAS  Google Scholar 

  91. Pohjavuori M, Rovamo L, Laatikainen T, Kariniemi V, Pettersson J. Stress of delivery and plasma endorphins and catecholamines in the newborn infant. Biol Res Pregnancy Perinatol. 1986;7:1–5.

    PubMed  CAS  Google Scholar 

  92. Eliot RJ, Lam R, Leake RD, Hobel CJ, Fisher DA. Plasma catecholamine concentrations in infants at birth and during the first 48 hours of life. J Pediatr. 1980;96:311–315.

    Article  PubMed  CAS  Google Scholar 

  93. Padbury JF, Polk DH, Newham JP, Lam RW. Neonatal adaptation: greater sympathoadrenal response in preterm than full-term fetal sheep at birth. Am J Physiol. 1985;248:E443–E449.

    PubMed  CAS  Google Scholar 

  94. Wefers B, Cunningham S, Stephen R, McIntosh N. Neonatal blood pressure waves are associated with surges of systemic noradrenaline. Arch Dis Child Fetal Neonatal Ed. 2009;94:F149–F151.

    Article  PubMed  CAS  Google Scholar 

  95. Dahnaz YL, Peyrin L, Dutruge J, Sann L. Neonatal pattern of adrenergic metabolites in urine of small for gestational age and preteen infants. J Neural Trans. 1980;49:151–165.

    Article  Google Scholar 

  96. Nicolopoulos D, Agathopoulos A. Galanakos-Tharouniati M, Stergiopoulos C. Urinary excretion of catecholamines by full term and premature infants. Pediatrics. 1969;44:262–265.

    PubMed  CAS  Google Scholar 

  97. Vanpee M, Herin P, Lagercrantz H, Aperia A. Effect of extreme prematurity on renal dopamine and norepinephrine excretion during the neonatal period. Pediatr Nephrol. 1997;11:46–48.

    Article  PubMed  CAS  Google Scholar 

  98. Franco MC, Casarini DE, Carneiro-Ramos MS, Sawaya AL, Barreto-Chaves ML, Sesso R. Circulating renin-angiotensin system and catecholamines in childhood: is there a role for birthweight? Clin Sci (Lond). 2008;114:375–380.

    Article  CAS  Google Scholar 

  99. Johansson S, Norman M, Legnevall L, Dalmaz Y, Lagercrantz H, Vanpée M. Increased catecholamines and heart rate in children with low birth weight: perinatal contributions to sympathoadrenal overactivity. J Intern Med. 2007;261:480–487.

    Article  PubMed  CAS  Google Scholar 

  100. Heymann MA, Iwamoto HS, Rudolph AM. Factors affecting changes in the neonatal systemic circulation. Annu Rev Physiol. 1981;43:371–381.

    Article  PubMed  CAS  Google Scholar 

  101. Gootman N, Gootman PM. Perinatal Cardiovascular Function. New York, NY: Marcel Dekker; 1983.

    Google Scholar 

  102. Robillard JE, Nakamura KT. Neurohormonal regulation of renal function during development. Am J Physiol. 1988;254:F771–F779.

    PubMed  CAS  Google Scholar 

  103. Gray SD. Reactivity of neonatal canine aortic strips. Biol Neonate. 1977;31:10–14.

    Article  PubMed  CAS  Google Scholar 

  104. Nishina H, Ozaki T, Hanson MA, Poston L. Mechanisms of noradrenaline-induced vasorelaxation in isolated femoral arteries of the neonatal rat. Br J Pharmacol. 1999;127:809–812.

    Article  PubMed  CAS  Google Scholar 

  105. Andriani G, Persico A, Tursini S, Ballone E, Cirotti D, Lelli Chiesa P. The renal-resistive index from the last 3 months of pregnancy to 6 months old. BJU Int. 2001;87:562–564.

    Article  PubMed  CAS  Google Scholar 

  106. Hayashi S, Park MK, Kuehl TJ. Higher sensitivity of cerebral arteries isolated from premature and newborn baboons to adrenergic and cholinergic stimulation. Life Sci. 1984;35:253–260.

    Article  PubMed  CAS  Google Scholar 

  107. Fildes RD, Eisner GM, Calcagno PL, Jose PA. Renal alpha-adrenoceptors and sodium excretion in the dog. Am J Physiol. 1985;248:F128–F133.

    PubMed  CAS  Google Scholar 

  108. Guillery EN, Segar JL, Merrill DC, Nakamura KT, Jose PA, Robillard JE. Ontogenic changes in renal response to alpha 1-adrenoceptor stimulation in sheep. Am J Physiol. 1994;267:R990–R998.

    PubMed  CAS  Google Scholar 

  109. Gitler MS, Piccio MM, Robillard JE, Jose PA. Characterization of renal alpha-adrenoceptor subtypes in sheep during development. Am J Physiol. 1991;260:R407–R412.

    PubMed  CAS  Google Scholar 

  110. Nakamura KT, Matherne GP, Jose PA, Alden BM, Robillard JE. Ontogeny of renal β-adrenoceptor-mediated vasodilation in sheep: comparison between endogenous catecholamines. Pediatr Res. 1987;22:465–470.

    Article  PubMed  CAS  Google Scholar 

  111. Sener A, Smith FG. Renal hemodynamic effects of L-NAME during postnatal maturation in conscious lambs. Pediatr Nephrol. 2001;16:868–873.

    Article  PubMed  CAS  Google Scholar 

  112. Gootman PM, Buckley NM, Gootman N. Postnatal maturation of neural control of the circulation. In: Scarpelli EM, Cosmi EV, eds. Reviews in Perinatal Medicine, Vol. 3. New York, NY: Raven Press; 1979:1–72.

    Google Scholar 

  113. Felder RA, Jose PA. Development of adrenergic and dopamine receptors in the kidney. In: Strauss J, ed. Electrolytes, Nephrotoxins, and the Neonatal Kidney. Hague, the Netherlands: Martinus-Nihjoff; 1985:3–10.

    Google Scholar 

  114. Alexander BT, Hendon AE, Ferril G, Dwyer TM. Renal denervation abolishes hypertension in low-birth-weight offspring from pregnant rats with reduced uterine perfusion. Hypertension. 2005;45:754–758.

    Article  PubMed  CAS  Google Scholar 

  115. Maruyama K, Koizumi T. Superior mesenteric artery blood flow velocity in small for gestational age infants of very low birth weight during the early neonatal period. J Perinat Med. 2001;29:64–70.

    Article  PubMed  CAS  Google Scholar 

  116. Hoang TV, Choe EU, Lippton HL, Hyman AL, Flint LM, Ferrara JJ. Effect of maturation on alpha-adrenoceptor activity in newborn piglet mesentery. J Surg Res. 1996;61:330–338.

    Article  PubMed  CAS  Google Scholar 

  117. Nankervis CA, Reber KM, Nowicki PT. Age-dependent changes in the postnatal intestinal microcirculation. Microcirculation. 2001;8:377–387.

    PubMed  CAS  Google Scholar 

  118. Willis AP, Leffler CW. Endothelial NO and prostanoid involvement in newborn and juvenile pig pial arteriolar vasomotor responses. Am J Physiol Heart Circ Physiol. 2001;281:H2366–H2377.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John E. Jones PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Jones, J.E., Natarajan, A.R., Jose, P.A. (2011). Cardiovascular and Autonomic Influences on Blood Pressure. In: Flynn, J., Ingelfinger, J., Portman, R. (eds) Pediatric Hypertension. Clinical Hypertension and Vascular Diseases. Humana Press. https://doi.org/10.1007/978-1-60327-824-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-824-9_3

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-823-2

  • Online ISBN: 978-1-60327-824-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics